
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 193–201,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Correcting Dependency Annotation Errors

Markus Dickinson
Indiana University

Bloomington, IN, USA
md7@indiana.edu

Abstract

Building on work detecting errors in de-
pendency annotation, we set out to correct
local dependency errors. To do this, we
outline the properties of annotation errors
that make the task challenging and their
existence problematic for learning. For
the task, we define a feature-based model
that explicitly accounts for non-relations
between words, and then use ambiguities
from one model to constrain a second,
more relaxed model. In this way, we are
successfully able to correct many errors,
in a way which is potentially applicable to
dependency parsing more generally.

1 Introduction and Motivation

Annotation error detection has been explored for
part-of-speech (POS), syntactic constituency, se-
mantic role, and syntactic dependency annotation
(see Boyd et al., 2008, and references therein).
Such work is extremely useful, given the harm-
fulness of annotation errors for training, including
the learning of noise (e.g., Hogan, 2007; Habash
et al., 2007), and for evaluation (e.g., Padro and
Marquez, 1998). But little work has been done
to show the full impact of errors, or what types
of cases are the most damaging, important since
noise can sometimes be overcome (cf. Osborne,
2002). Likewise, it is not clear how to learn from
consistently misannotated data; studies often only
note the presence of errors or eliminate them from
evaluation (e.g., Hogan, 2007), and a previous at-
tempt at correction was limited to POS annotation
(Dickinson, 2006). By moving from annotation
error detection to error correction, we can more
fully elucidate ways in which noise can be over-
come and ways it cannot.

We thus explore annotation error correction and
its feasibility for dependency annotation, a form

of annotation that provides argument relations
among words and is useful for training and testing
dependency parsers (e.g., Nivre, 2006; McDonald
and Pereira, 2006). A recent innovation in depen-
dency parsing, relevant here, is to use the predic-
tions made by one model to refine another (Nivre
and McDonald, 2008; Torres Martins et al., 2008).
This general notion can be employed here, as dif-
ferent models of the data have different predictions
about whch parts are erroneous and can highlight
the contributions of different features. Using dif-
ferences that complement one another, we can be-
gin to sort accurate from inaccurate patterns, by
integrating models in such a way as to learn the
true patterns and not the errors. Although we focus
on dependency annotation, the methods are poten-
tially applicable for different types of annotation,
given that they are based on the similar data repre-
sentations (see sections 2.1 and 3.2).

In order to examine the effects of errors and
to refine one model with another’s information,
we need to isolate the problematic cases. The
data representation must therefore be such that it
clearly allows for the specific identification of er-
rors between words. Thus, we explore relatively
simple models of the data, emphasizing small sub-
structures (see section 3.2). This simple model-
ing is not always rich enough for full dependency
parsing, but different models can reveal conflict-
ing information and are generally useful as part of
a larger system. Graph-based models of depen-
dency parsing (e.g., McDonald et al., 2006), for
example, rely on breaking parsing down into deci-
sions about smaller substructures, and focusing on
pairs of words has been used for domain adapta-
tion (Chen et al., 2008) and in memory-based pars-
ing (Canisius et al., 2006). Exploring annotation
error correction in this way can provide insights
into more general uses of the annotation, just as
previous work on correction for POS annotation
(Dickinson, 2006) led to a way to improve POS

193

tagging (Dickinson, 2007).
After describing previous work on error detec-

tion and correction in section 2, we outline in sec-
tion 3 how we model the data, focusing on individ-
ual relations between pairs of words. In section 4,
we illustrate the difficulties of error correction and
show how simple combinations of local features
perform poorly. Based on the idea that ambigui-
ties from strict, lexical models can constrain more
general POS models, we see improvement in error
correction in section 5.

2 Background

2.1 Error detection

We base our method of error correction on a
form of error detection for dependency annota-
tion (Boyd et al., 2008). The variation n-gram ap-
proach was developed for constituency-based tree-
banks (Dickinson and Meurers, 2003, 2005) and
it detects strings which occur multiple times in
the corpus with varying annotation, the so-called
variation nuclei. For example, the variation nu-
cleus next Tuesday occurs three times in the Wall
Street Journal portion of the Penn Treebank (Tay-
lor et al., 2003), twice labeled as NP and once as
PP (Dickinson and Meurers, 2003).

Every variation detected in the annotation of a
nucleus is classified as either an annotation error
or as a genuine ambiguity. The basic heuristic
for detecting errors requires one word of recur-
ring context on each side of the nucleus. The nu-
cleus with its repeated surrounding context is re-
ferred to as a variation n-gram. While the original
proposal expanded the context as far as possible
given the repeated n-gram, using only the immedi-
ately surrounding words as context is sufficient for
detecting errors with high precision (Boyd et al.,
2008). This “shortest” context heuristic receives
some support from research on first language ac-
quisition (Mintz, 2006) and unsupervised gram-
mar induction (Klein and Manning, 2002).

The approach can detect both bracketing and la-
beling errors in constituency annotation, and we
already saw a labeling error for next Tuesday. As
an example of a bracketing error, the variation nu-
cleus last month occurs within the NP its biggest
jolt last month once with the label NP and once as
a non-constituent, which in the algorithm is han-
dled through a special label NIL.

The method for detecting annotation errors can
be extended to discontinuous constituency annota-

tion (Dickinson and Meurers, 2005), making it ap-
plicable to dependency annotation, where words
in a relation can be arbitrarily far apart. Specifi-
cally, Boyd et al. (2008) adapt the method by treat-
ing dependency pairs as variation nuclei, and they
include NIL elements for pairs of words not an-
notated as a relation. The method is successful
at detecting annotation errors in corpora for three
different languages, with precisions of 93% for
Swedish, 60% for Czech, and 48% for German.1

2.2 Error correction

Correcting POS annotation errors can be done by
applying a POS tagger and altering the input POS
tags (Dickinson, 2006). Namely, ambiguity class
information (e.g., IN/RB/RP) is added to each cor-
pus position for training, creating complex ambi-
guity tags, such as <IN/RB/RP,IN>. While this
results in successful correction, it is not clear how
it applies to annotation which is not positional and
uses NIL labels. However, ambiguity class infor-
mation is relevant when there is a choice between
labels; we return to this in section 5.

3 Modeling the data

3.1 The data

For our data set, we use the written portion (sec-
tions P and G) of the Swedish Talbanken05 tree-
bank (Nivre et al., 2006), a reconstruction of the
Talbanken76 corpus (Einarsson, 1976) The written
data of Talbanken05 consists of 11,431 sentences
with 197,123 tokens, annotated using 69 types of
dependency relations.

This is a small sample, but it matches the
data used for error detection, which results in
634 shortest non-fringe variation n-grams, corre-
sponding to 2490 tokens. From a subset of 210
nuclei (917 tokens), hand-evaluation reveals error
detection precision to be 93% (195/210), with 274
(of the 917) corpus positions in need of correction
(Boyd et al., 2008). This means that 643 positions
do not need to be corrected, setting a baseline of
70.1% (643/917) for error correction.2 Following
Dickinson (2006), we train our models on the en-
tire corpus, explicitly including NIL relations (see

1The German experiment uses a more relaxed heuristic;
precision is likely higher with the shortest context heuristic.

2Detection and correction precision are different measure-
ments: for detection, it is the percentage of variation nuclei
types where at least one is incorrect; for correction, it is the
percentage of corpus tokens with the true (corrected) label.

194

section 3.2); we train on the original annotation,
but not the corrections.

3.2 Individual relations

Annotation error correction involves overcoming
noise in the corpus, in order to learn the true
patterns underlying the data. This is a slightly
different goal from that of general dependency
parsing methods, which often integrate a vari-
ety of features in making decisions about depen-
dency relations (cf., e.g., Nivre, 2006; McDon-
ald and Pereira, 2006). Instead of maximizing a
feature model to improve parsing, we isolate in-
dividual pieces of information (e.g., context POS
tags), thereby being able to pinpoint, for example,
when non-local information is needed for particu-
lar types of relations and pointing to cases where
pieces of information conflict (cf. also McDonald
and Nivre, 2007).

To support this isolation of information, we use
dependency pairs as the basic unit of analysis and
assign a dependency label to each word pair. Fol-
lowing Boyd et al. (2008), we add L or R to the
label to indicate which word is the head, the left
(L) or the right (R). This is tantamount to han-
dling pairs of words as single entries in a “lex-
icon” and provides a natural way to talk of am-
biguities. Breaking the representation down into
strings whch receive a label also makes the method
applicable to other annotation types (e.g., Dickin-
son and Meurers, 2005).

A major issue in generating a lexicon is how
to handle pairs of words which are not dependen-
cies. We follow Boyd et al. (2008) and generate
NIL labels for those pairs of words which also
occur as a true labeled relation. In other words,
only word pairs which can be relations can also be
NILs. For every sentence, then, when we produce
feature lists (see section 3.3), we produce them for
all word pairs that are related or could potentially
be related, but not those which have never been
observed as a dependency pair. This selection of
NIL items works because there are no unknown
words. We use the method in Dickinson and Meur-
ers (2005) to efficiently calculate the NIL tokens.

Focusing on word pairs and not attempting to
build a a whole dependency graph allows us to ex-
plore the relations between different kinds of fea-
tures, and it has the potential benefit of not rely-
ing on possibly erroneous sister relations. From
the perspective of error correction, we cannot as-

sume that information from the other relations in
the sentence is reliable.3 This representation also
fits nicely with previous work, both in error de-
tection (see section 2.1) and in dependency pars-
ing (e.g., Canisius et al., 2006; Chen et al., 2008).
Most directly, Canisius et al. (2006) integrate such
a representation into a memory-based dependency
parser, treating each pair individually, with words
and POS tags as features.

3.3 Method of learning
We employ memory-based learning (MBL) for
correction. MBL stores all corpus instances as
vectors of features, and given a new instance, the
task of the classifier is to find the most similar
cases in memory to deduce the best class. Given
the previous discussion of the goals of correcting
errors, what seems to be needed is a way to find
patterns which do not fully generalize because of
noise appearing in very similar cases in the cor-
pus. As Zavrel et al. (1997, p. 137) state about the
advantages of MBL:

Because language-processing tasks typ-
ically can only be described as a com-
plex interaction of regularities, sub-
regularities and (families of) exceptions,
storing all empirical data as potentially
useful in analogical extrapolation works
better than extracting the main regulari-
ties and forgetting the individual exam-
ples (Daelemans, 1996).

By storing all corpus examples, as MBL does,
both correct and incorrect data is maintained, al-
lowing us to pinpoint the effect of errors on train-
ing. For our experiments, we use TiMBL, version
6.1 (Daelemans et al., 2007), with the default set-
tings. We use the default overlap metric, as this
maintains a direct connection to majority-based
correction. We could run TiMBL with different
values of k, as this should lead to better feature
integration. However, this is difficult to explore
without development data, and initial experiments
with higher k values were not promising (see sec-
tion 4.2).

To fully correct every error, one could also ex-
periment with a real dependency parser in the fu-
ture, in order to look beyond the immediate con-
text and to account for interactions between rela-

3We use POS information, which is also prone to errors,
but on a different level of annotation. Still, this has its prob-
lems, as discussed in section 4.1.

195

tions. The approach to correction pursued here,
however, isolates problems for assigning depen-
dency structures, highlighting the effectiveness of
different features within the same local domain.
Initial experiments with a dependency parser were
again not promising (see section 4.2).

3.4 Integrating features

When using features for individual relations, we
have different options for integrating them. On
the one hand, one can simply additively combine
features into a larger vector for training, as de-
scribed in section 4.2. On the other hand, one can
use one set of features to constrain another set,
as described in section 5. Pulling apart the fea-
tures commonly employed in dependency parsing
can help indicate the contributions each has on the
classification.

This general idea is akin to the notion of clas-
sifier stacking, and in the realm of dependency
parsing, Nivre and McDonald (2008) successfully
stack classifiers to improve parsing by “allow[ing]
a model to learn relative to the predictions of the
other” (p. 951). The output from one classifier
is used as a feature in the next one (see also Tor-
res Martins et al., 2008). Nivre and McDonald
(2008) use different kinds of learning paradigms,
but the general idea can be carried over to a situ-
ation using the same learning mechanism. Instead
of focusing on what one learning algorithm in-
forms another about, we ask what one set of more
or less informative features can inform another set
about, as described in section 5.1.

4 Performing error correction

4.1 Challenges

The task of automatic error correction in some
sense seems straightforward, in that there are no
unknown words. Furthermore, we are looking at
identical recurring words, which should for the
most part have consistent annotation. But it is pre-
cisely this similarity of local contexts that makes
the correction task challenging.

Given that variations contain sets of corpus po-
sitions with differing labels, it is tempting to take
the error detection output and use a heuristic of
“majority rules” for the correction cases, i.e., cor-
rect the cases to the majority label. When us-
ing only information from the word sequence, this
runs into problems quickly, however, in that there
are many non-majority labels which are correct.

Some of these non-majority cases pattern in uni-
form ways and are thus more correctable; oth-
ers are less tractable in being corrected, as they
behave in non-uniform and often non-local ways.
Exploring the differences will highlight what can
and cannot be easily corrected, underscoring the
difficulties in training from erroneous annotation.

Uniform non-majority cases The first problem
with correction to the majority label is an issue
of coverage: a large number of variations are ties
between two different labels. Out of 634 shortest
non-fringe variation nuclei, 342 (53.94%) have no
majority label; for the corresponding 2490 tokens,
749 (30.08%) have no majority tag.

The variation är väg (’is way’), for example, ap-
pears twice with the same local context shown in
(1),4 once incorrectly labeled as OO-L (other ob-
ject [head on the left]) and once correctly as SP-
L (subjective predicative complement). To dis-
tinguish these two, more information is necessary
than the exact sequence of words. In this case, for
example, looking at the POS categories of the nu-
clei could potentially lead to accurate correction:
AV NN is SP-L 1032 times and OO-L 32 times
(AV = the verb “vara” (be), NN = other noun).
While some ties might require non-local informa-
tion, we can see that local—but more general—
information could accurately break this tie.

(1) kärlekens
love’s

väg
way

är/AV
is

en
a

lång
long

väg/NN
way

och
and

. . .

. . .

Secondly, in a surprising number of cases where
there is a majority tag (122 out of the 917 tokens
we have a correction for), a non-majority label
is actually correct. For the example in (2), the
string institution kvarleva (‘institution remnant’)
varies between CC-L (sister of first conjunct in bi-
nary branching analysis of coordination) and AN-
L (apposition).5 CC-L appears 5 times and AN-L
3 times, but the CC-L cases are incorrect and need
to be changed to AN-L.

(2) en
an

föråldrad
obsolete

institution/NN
institution

,/IK
,

en/EN
a

kvarleva/NN
remnant

från
from

1800-talets
the 1800s

4We put variation nuclei in bold and underline the imme-
diately surrounding context.

5Note that CC is a category introduced in the conversion
from the 1976 to the 2005 corpus.

196

Other cases with a non-majority label have
other problems. In example (3), for instance, the
string under hägnet (‘under protection’) varies in
this context between HD-L (other head, 3 cases)
and PA-L (complement of preposition, 5 cases),
where the PA-L cases need to be corrected to HD-
L. Both of these categories are new, so part of the
issue here could be in the consistency of the con-
version.

(3) fria
free

liv
life

under/PR
under

hägnet/ID|NN
the protection

av/ID|PR
of

ett
a

en
one

gång
time

givet
given

löfte
promise

The additional problem is that there are other,
correlated errors in the analysis, as shown in fig-
ure 1. In the case of the correct HD analysis, both
hägnet and av are POS-annotated as ID (part of id-
iom (multi-word unit)) and are HD dependents of
under, indicating that the three words make up an
idiom. The PA analysis is a non-idiomatic analy-
sis, with hägnet as NN.

AT ET HD HD

fria liv under hägnet av ...
AJ NN PR ID ID

AT ET PA PA

fria liv under hägnet av ...
AJ NN PR NN PR

Figure 1: Erroneous POS & dependency variation

Significantly, hägnet only appears 10 times in
the corpus, all with under as its head, 5 times HD-
L and 5 times PA-L. We will not focus explicitly
on correcting these types of cases, but the example
serves to emphasize the necessity of correction at
all levels of annotation.

Non-uniform non-majority cases All of the
above cases have in common that whatever change
is needed, it needs to be done for all positions in a
variation. But this is not sound, as error detection
precision is not 100%. Thus, there are variations
which clearly must not change.

For example, in (4), there is legitimate varia-
tion between PA-L (4a) and HD-L (4b), stemming
from the fact that one case is non-idiomatic, and

the other is idiomatic, despite having identical lo-
cal context. In these examples, at least the POS
labels are different. Note, though, that in (4) we
need to trust the POS labels to overcome the simi-
larity of text, and in (3) we need to distrust them.6

(4) a. Med/PR
with

andra
other

ord/NN
words

en
an

ändamålsenlig
appropriate

...

b. Med/AB
with

andra
other

ord/ID
words

en
a

form
form

av
of

prostitution
prostitution

.

Without non-local information, some legitimate
variations are virtually irresolvable. Consider (5),
for instance: here, we find variation between SS-R
(other subject), as in (5a), and FS-R (dummy sub-
ject), as in (5b). Crucially, the POS tags are the
same, and the context is the same. What differen-
tiates these cases is that går has a different set of
dependents in the two sentences, as shown in fig-
ure 2; to use this information would require us to
trust the rest of the dependency structure or to use
a dependency parser which accurately derives the
structural differences.

(5) a. Det/PO
it

går/VV
goes

bara
just

inte
not

ihop
together

.

‘It just doesn’t add up.’

b. Det/PO
it

går/VV
goes

bara
just

inte
not

att
to

hålla
hold

ihop
together

...

...

4.2 Using local information

While some variations require non-local informa-
tion, we have seen that some cases are correctable
simply with different kinds of local information
(cf. (1)). In this paper, we will not attempt to
directly cover non-local cases or cases with POS
annotation problems, instead trying to improve the
integration of different pieces of local information.

In our experiments, we trained simple models of
the original corpus using TiMBL (see section 3.3)
and then tested on the same corpus. The models
we use include words (W) and/or tags (T) for nu-
cleus and/or context positions, where context here

6Rerunning the experiments in the paper by first running
a POS tagger showed slight degradations in precision.

197

SS MA NA PL

Det går bara inte ihop
PO VV AB AB AB

FS CA NA IM ES

Det går bara inte att hålla ...
PO VV AB AB IM VV

Figure 2: Correct dependency variation

refers only to the immediately surrounding words.
These are outlined in table 1, for different mod-
els of the nucleus (Nuc.) and the context (Con.).
For instance, the model 6 representation of exam-
ple (6) (=(1)) consists of all the underlined words
and tags.

(6) kärlekens väg/NN är/AV en/EN lång/AJ
väg/NN och/++ man gör oklokt ...

In table 1, we report the precision figures for
different models on the 917 positions we have
corrections for. We report the correction preci-
sion for positions the classifier changed the label
of (Changed), and the overall correction precision
(Overall). We also report the precision TiMBL has
for the whole corpus, with respect to the original
tags (instead of the corrected tags).

Nuc. Con. TiMBL Changed Overall
1 W - 86.6% 34.0% 62.5%
2 W, T - 88.1% 35.9% 64.8%
3 W W 99.8% 50.3% 72.7%
4 W W, T 99.9% 52.6% 73.5%
5 W, T W 99.9% 50.8% 72.4%
6 W, T W, T 99.9% 51.2% 72.6%
7 T - 73.4% 20.1% 49.5%
8 T T 92.7% 50.2% 73.2%

Table 1: The models tested

We can draw a few conclusions from these re-
sults. First, all models using contexual informa-
tion perform essentially the same—approximately
50% on changed positions and 73% overall. When
not generalizing to new data, simply adding fea-
tures (i.e., words or tags) to the model is less im-
portant than the sheer presence of context. This
is true even for some higher values of k: model

6, for example, has only 73.2% and 72.1% overall
precision for k = 2 and k = 3, respectively.

Secondly, these results confirm that the task is
difficult, even for a corpus with relatively high er-
ror detection precision (see section 2.1). Despite
high similarity of context (e.g., model 6), the best
results are only around 73%, and this is given a
baseline (no changes) of 70%. While a more ex-
pansive set of features would help, there are other
problems here, as the method appears to be over-
training. There is no question that we are learning
the “correct” patterns, i.e., 99.9% similarity to the
benchmark in the best cases. The problem is that,
for error correction, we have to overcome noise in
the data. Training and testing with the dependency
parser MaltParser (Nivre et al., 2007, default set-
tings) is no better, with 72.1% overall precision
(despite a labeled attachment score of 98.3%).

Recall in this light that there are variations for
which the non-majority label is the correct one;
attempting to get a non-majority label correct us-
ing a strict lexical model does not work. To be
able not to learn the erroneous patterns requires
a more general model. Interestingly, a more gen-
eral model—e.g., treating the corpus as a sequence
of tags (model 8)—results in equally good correc-
tion, without being a good overall fit to the cor-
pus data (only 92.7%). This model, too, learns
noise, as it misses cases that the lexical models get
correct. Simply combining the features does not
help (cf. model 6); what we need is to use infor-
mation from both stricter and looser models in a
way that allows general patterns to emerge with-
out overgeneralizing.

5 Model combination

Given the discussion in section 4.1 surrounding
examples (1)-(5), it is clear that the information
needed for correction is sometimes within the
immediate context, although that information is
needed, however, is often different. Consider the
more general models, 7 and 8, which only use POS
tag information. While sometimes this general in-
formation is effective, at times it is dramatically
incorrect. For example, for (7), the original (incor-
rect) relation between finna and erbjuda is CC-L;
the model 7 classifier selects OO-L as the correct
tag; model 8 selects NIL; and the correct label is
+F-L (coordination at main clause level).

198

(7) försöker
try

finna/VV
to find

ett
a

lämpligt
suitable

arbete
job

i
in

öppna
open

marknaden
market

eller
or

erbjuda/VV
to offer

andra
other

arbetsmöjligheter
work possibilities

.

The original variation for the nucleus finna erb-
juda (‘find offer’) is between CC-L and +F-L, but
when represented as the POS tags VV VV (other
verb), there are 42 possible labels, with OO-L be-
ing the most frequent. This allows for too much
confusion. If model 7 had more restrictions on the
set of allowable tags, it could make a more sensi-
ble choice and, in this case, select the correct label.

5.1 Using ambiguity classes
Previous error correction work (Dickinson, 2006)
used ambiguity classes for POS annotation, and
this is precisely the type of information we need
to constrain the label to one which we know is rel-
evant to the current case. Here, we investigate am-
biguity class information derived from one model
integrated into another model.

There are at least two main ways we can use
ambiguity classes in our models. The first is what
we have just been describing: an ambiguity class
can serve as a constraint on the set of possible out-
comes for the system. If the correct label is in the
ambiguity class (as it usually is for error correc-
tion), this constraining can do no worse than the
original model. The other way to use an ambigu-
ity class is as a feature in the model. The success
of this approach depends on whether or not each
ambiguity class patterns in its own way, i.e., de-
fines a sub-regularity within a feature set.

5.2 Experiment details
We consider two different feature models, those
containing only tags (models 7 and 8), and add
to these ambiguity classes derived from two other
models, those containing only words (models 1
and 3). To correct the labels, we need models
which do not strictly adhere to the corpus, and the
tag-based models are best at this (see the TiMBL
results in table 1). The ambiguity classes, how-
ever, must be fairly constrained, and the word-
based models do this best (cf. example (7)).

5.2.1 Ambiguity classes as constraints
As described in section 5.1, we can use ambiguity
classes to constrain the output of a model. Specif-
ically, we take models 7 and 8 and constrain each

selected tag to be one which is within the ambi-
guity class of a lexical model, either 1 or 3. That
is, if the TiMBL-determined label is not in the am-
biguity class, we select the most likely tag of the
ones which are. If no majority label can be de-
cided from this restricted set, we fall back to the
TiMBL-selected tag. In (7), for instance, if we use
model 7, the TiMBL tag is OO-L, but model 3’s
ambiguity class restricts this to either CC-L or +F-
L. For the representation VV VV, the label CC-L
appears 315 times and +F-L 544 times, so +F-L is
correctly selected.7

The results are given in table 2, which can be
compared to the the original models 7 and 8 in ta-
ble 1, i.e., total precisions of 49.5% and 73.2%,
respectively. With these simple constraints, model
8 now outperforms any other model (75.5%), and
model 7 begins to approach all the models that use
contextual information (68.8%).

AC Changed Total
7 1 28.5% (114/400) 57.4% (526/917)
7 3 45.9% (138/301) 68.8% (631/917)
8 1 54.0% (142/263) 74.8% (686/917)
8 3 56.7% (144/254) 75.5% (692/917)

Table 2: Constraining TiMBL with ACs

5.2.2 Ambiguity classes as features
Ambiguity classes from one model can also be
used as features for another (see section 5.1); in
this case, ambiguity class information from lexical
models (1 and 3) is used as a feature for POS tag
models (7 and 8). The results are given in table 3,
where we can see dramatically improved perfor-
mance from the original models (cf. table 1) and
generally improved performance over using ambi-
guity classes as constraints (cf. table 2).

AC Changed Total
7 1 33.2% (122/368) 61.9% (568/917)
7 3 50.2% (131/261) 72.1% (661/917)
8 1 59.0% (148/251) 76.4% (701/917)
8 3 55.1% (130/236) 73.6% (675/917)

Table 3: TiMBL with ACs as features

If we compare the two results for model 7
(61.9% vs. 72.1%) and then the two results for
model 8 (76.4% vs. 73.6%), we observe that the

7Even if CC-L had been selected here, the choice is sig-
nificantly better than OO-L.

199

better use of ambiguity classes integrates contex-
tual and non-contextual features. Model 7 (POS,
no context) with model 3 ambiguity classes (lex-
ical, with context) is better than using ambiguity
classes derived from a non-contextual model. For
model 8, on the other hand, which uses contextual
POS features, using the ambiguity class without
context (model 1) does better. In some ways, this
combination of model 8 with model 1 ambiguity
classes makes the most sense: ambiguity classes
are derived from a lexicon, and for dependency an-
notation, a lexicon can be treated as a set of pairs
of words. It is also noteworthy that model 7, de-
spite not using context directly, achieves compara-
ble results to all the previous models using context,
once appropriate ambiguity classes are employed.

5.2.3 Both methods
Given that the results of ambiguity classes as fea-
tures are better than that of constraining, we can
now easily combine both methodologies, by con-
straining the output from section 5.2.2 with the
ambiguity class tags. The results are given in ta-
ble 4; as we can see, all results are a slight im-
provement over using ambiguity classes as fea-
tures without constraining the output (table 3). Us-
ing only local context, the best model here is 3.2%
points better than the best original model, repre-
senting an improvement in correction.

AC Changed Total
7 1 33.5% (123/367) 62.2% (570/917)
7 3 55.8% (139/249) 74.1% (679/917)
8 1 59.6% (149/250) 76.7% (703/917)
8 3 57.1% (133/233) 74.3% (681/917)

Table 4: TiMBL w/ ACs as features & constraints

6 Summary and Outlook

After outlining the challenges of error correction,
we have shown how to integrate information from
different models of dependency annotation in or-
der to perform annotation error correction. By us-
ing ambiguity classes from lexical models, both as
features and as constraints on the final output, we
saw improvements in POS models that were able
to overcome noise, without using non-local infor-
mation.

A first step in further validating these methods
is to correct other dependency corpora; this is lim-
ited, of course, by the amount of corpora with cor-

rected data available. Secondly, because this work
is based on features and using ambiguity classes, it
can in principle be applied to other types of anno-
tation, e.g., syntactic constituency annotation and
semantic role annotation. In this light, it is inter-
esting to note the connection to annotation error
detection: the work here is in some sense an ex-
tension of the variation n-gram method. Whether
it can be employed as an error detection system on
its own requires future work.

Another way in which this work can be ex-
tended is to explore how these representations and
integration of features can be used for dependency
parsing. There are several issues to work out, how-
ever, in making insights from this work more gen-
eral. First, it is not clear that pairs of words are suf-
ficiently general to treat them as a lexicon, when
one is parsing new data. Secondly, we have ex-
plicit representations for word pairs not annotated
as a dependency relation (i.e., NILs), and these are
constrained by looking at those which are the same
words as real relations. Again, one would have to
determine which pairs of words need NIL repre-
sentations in new data.

Acknowledgements

Thanks to Yvonne Samuelsson for help with the
Swedish examples; to Joakim Nivre, Mattias Nils-
son, and Eva Pettersson for the evaluation data for
Talbanken05; and to the three anonymous review-
ers for their insightful comments.

References

Boyd, Adriane, Markus Dickinson and Detmar
Meurers (2008). On Detecting Errors in Depen-
dency Treebanks. Research on Language and
Computation 6(2), 113–137.

Canisius, Sander, Toine Bogers, Antal van den
Bosch, Jeroen Geertzen and Erik Tjong Kim
Sang (2006). Dependency parsing by infer-
ence over high-recall dependency predictions.
In Proceedings of CoNLL-X. New York.

Chen, Wenliang, Youzheng Wu and Hitoshi Isa-
hara (2008). Learning Reliable Information for
Dependency Parsing Adaptation. In Proceed-
ings of Coling 2008. Manchester.

Daelemans, Walter (1996). Abstraction Consid-
ered Harmful: Lazy Learning of Language Pro-
cessing. In Proceedings of the 6th Belgian-
Dutch Conference on Machine Learning. Maas-
tricht, The Netherlands.

200

Daelemans, Walter, Jakub Zavrel, Ko Van der
Sloot and Antal Van den Bosch (2007). TiMBL:
Tilburg Memory Based Learner, version 6.1,
Reference Guide. Tech. rep., ILK Research
Group. ILK Research Group Technical Report
Series no. 07-07.

Dickinson, Markus (2006). From Detecting Errors
to Automatically Correcting Them. In Proceed-
ings of EACL-06. Trento, Italy.

Dickinson, Markus (2007). Determining Ambigu-
ity Classes for Part-of-Speech Tagging. In Pro-
ceedings of RANLP-07. Borovets, Bulgaria.

Dickinson, Markus and W. Detmar Meurers
(2003). Detecting Inconsistencies in Treebanks.
In Proceedings of TLT-03. Växjö, Sweden.

Dickinson, Markus and W. Detmar Meurers
(2005). Detecting Errors in Discontinuous
Structural Annotation. In Proceedings of ACL-
05.

Einarsson, Jan (1976). Talbankens skrift-
sprøakskonkordans. Tech. rep., Lund Univer-
sity, Dept. of Scandinavian Languages.

Habash, Nizar, Ryan Gabbard, Owen Rambow,
Seth Kulick and Mitch Marcus (2007). Deter-
mining Case in Arabic: Learning Complex Lin-
guistic Behavior Requires Complex Linguistic
Features. In Proceedings of EMNLP-07.

Hogan, Deirdre (2007). Coordinate Noun Phrase
Disambiguation in a Generative Parsing Model.
In Proceedings of ACL-07. Prague.

Klein, Dan and Christopher D. Manning (2002). A
Generative Constituent-Context Model for Im-
proved Grammar Induction. In Proceedings of
ACL-02. Philadelphia, PA.

McDonald, Ryan, Kevin Lerman and Fernando
Pereira (2006). Multilingual Dependency Anal-
ysis with a Two-Stage Discriminative Parser. In
Proceedings of CoNLL-X. New York City.

McDonald, Ryan and Joakim Nivre (2007). Char-
acterizing the Errors of Data-Driven Depen-
dency Parsing Models. In Proceedings of
EMNLP-CoNLL-07. Prague, pp. 122–131.

McDonald, Ryan and Fernando Pereira (2006).
Online learning of approximate dependency
parsing algorithms. In Proceedings of EACL-
06. Trento.

Mintz, Toben H. (2006). Finding the verbs: dis-
tributional cues to categories available to young
learners. In K. Hirsh-Pasek and R. M. Golinkoff
(eds.), Action Meets Word: How Children Learn
Verbs, New York: Oxford University Press, pp.

31–63.
Nivre, Joakim (2006). Inductive Dependency

Parsing. Berlin: Springer.
Nivre, Joakim, Johan Hall, Jens Nilsson, Atanas

Chanev, Gulsen Eryigit, Sandra Kubler, Sve-
toslav Marinov and Erwin Marsi (2007). Malt-
Parser: A language-independent system for
data-driven dependency parsing. Natural Lan-
guage Engineering 13(2), 95–135.

Nivre, Joakim and Ryan McDonald (2008). Inte-
grating Graph-Based and Transition-Based De-
pendency Parsers. In Proceedings of ACL-08:
HLT . Columbus, OH.

Nivre, Joakim, Jens Nilsson and Johan Hall
(2006). Talbanken05: A Swedish Treebank
with Phrase Structure and Dependency Annota-
tion. In Proceedings of LREC-06. Genoa, Italy.

Osborne, Miles (2002). Shallow Parsing using
Noisy and Non-Stationary Training Material. In
JMLR Special Issue on Machine Learning Ap-
proaches to Shallow Parsing, vol. 2, pp. 695–
719.

Padro, Lluis and Lluis Marquez (1998). On the
Evaluation and Comparison of Taggers: the Ef-
fect of Noise in Testing Corpora. In Proceed-
ings of ACL-COLING-98. San Francisco, CA.

Taylor, Ann, Mitchell Marcus and Beatrice San-
torini (2003). The Penn Treebank: An
Overview. In Anne Abeillé (ed.), Treebanks:
Building and using syntactically annotated cor-
pora, Dordrecht: Kluwer, chap. 1, pp. 5–22.

Torres Martins, André Filipe, Dipanjan Das,
Noah A. Smith and Eric P. Xing (2008). Stack-
ing Dependency Parsers. In Proceedings of
EMNLP-08. Honolulu, Hawaii, pp. 157–166.

Zavrel, Jakub, Walter Daelemans and Jorn Veensta
(1997). Resolving PP attachment Ambiguities
with Memory-Based Learning. In Proceedings
of CoNLL-97. Madrid.

201

