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Abstract

The paper presents an application of
Structural Correspondence Learning
(SCL) (Blitzer et al., 2006) for domain
adaptation of a stochastic attribute-value
grammar (SAVG). So far, SCL has
been applied successfully in NLP for
Part-of-Speech tagging and Sentiment
Analysis (Blitzer et al., 2006; Blitzer
et al., 2007). An attempt was made
in the CoNLL 2007 shared task to ap-
ply SCL to non-projective dependency
parsing (Shimizu and Nakagawa, 2007),
however, without any clear conclusions.
We report on our exploration of applying
SCL to adapt a syntactic disambiguation
model and show promising initial results
on Wikipedia domains.

1 Introduction

Many current, effective natural language process-
ing systems are based on supervised Machine
Learning techniques. The parameters of such sys-
tems are estimated to best reflect the character-
istics of the training data, at the cost of porta-
bility: a system will be successful only as long
as the training material resembles the input that
the model gets. Therefore, whenever we have ac-
cess to a large amount of labeled data from some
“source” (out-of-domain), but we would like a
model that performs well on some new “target”
domain (Gildea, 2001; Daumé III, 2007), we face
the problem ofdomain adaptation.

The need for domain adaptation arises in many
NLP tasks: Part-of-Speech tagging, Sentiment
Analysis, Semantic Role Labeling or Statistical
Parsing, to name but a few. For example, the per-
formance of a statistical parsing system drops in
an appalling way when a model trained on the Wall
Street Journal is applied to the more varied Brown
corpus (Gildea, 2001).

The problem itself has started to get attention
only recently (Roark and Bacchiani, 2003; Hara et
al., 2005; Daumé III and Marcu, 2006; Daumé III,
2007; Blitzer et al., 2006; McClosky et al., 2006;
Dredze et al., 2007). We distinguish two main ap-
proaches to domain adaptation that have been ad-
dressed in the literature (Daumé III, 2007):super-
visedandsemi-supervised.

In supervised domain adaptation(Gildea, 2001;
Roark and Bacchiani, 2003; Hara et al., 2005;
Daumé III, 2007), besides the labeled source data,
we have access to a comparably small, but labeled
amount of target data. In contrast,semi-supervised
domain adaptation(Blitzer et al., 2006; McClosky
et al., 2006; Dredze et al., 2007) is the scenario in
which, in addition to the labeled source data, we
only haveunlabeledand no labeled target domain
data. Semi-supervised adaptation is a much more
realistic situation, while at the same time also con-
siderably more difficult.

Studies on the supervised task have shown that
straightforward baselines (e.g. models based on
source only, target only, or the union of the data)
achieve a relatively high performance level and are
“surprisingly difficult to beat” (Daumé III, 2007).
Thus, one conclusion from that line of work is that
as soon as there is a reasonable (often even small)
amount of labeled target data, it is often more fruit-
ful to either just use that, or to apply simple adap-
tation techniques (Daumé III, 2007; Plank and van
Noord, 2008).

2 Motivation and Prior Work

While several authors have looked at the super-
vised adaptation case, there are less (and espe-
cially less successful) studies on semi-supervised
domain adaptation (McClosky et al., 2006; Blitzer
et al., 2006; Dredze et al., 2007). Of these, Mc-
Closky et al. (2006) deal specifically with self-
training for data-driven statistical parsing. They
show that together with a re-ranker, improvements
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are obtained. Similarly, Structural Correspon-
dence Learning (Blitzer et al., 2006; Blitzer et
al., 2007; Blitzer, 2008) has proven to be suc-
cessful for the two tasks examined, PoS tagging
and Sentiment Classification. In contrast, Dredze
et al. (2007) report on “frustrating” results on
the CoNLL 2007 semi-supervised adaptation task
for dependency parsing, i.e. ”no team was able
to improve target domain performance substan-
tially over a state of the art baseline”. In the
same shared task, an attempt was made to ap-
ply SCL to domain adaptation for data-driven de-
pendency parsing (Shimizu and Nakagawa, 2007).
The system just ended up at rank 7 out of 8 teams.
However, based on annotation differences in the
datasets (Dredze et al., 2007) and a bug in their
system (Shimizu and Nakagawa, 2007), their re-
sults are inconclusive.1 Thus, the effectiveness of
SCL is rather unexplored for parsing.

So far, most previous work on domain adapta-
tion for parsing has focused ondata-drivensys-
tems (Gildea, 2001; Roark and Bacchiani, 2003;
McClosky et al., 2006; Shimizu and Nakagawa,
2007), i.e. systems employing (constituent or de-
pendency based)treebank grammars(Charniak,
1996). Parse selection constitutes an important
part of many parsing systems (Johnson et al.,
1999; Hara et al., 2005; van Noord and Malouf,
2005; McClosky et al., 2006). Yet, the adaptation
of parse selection models to novel domains is a far
less studied area. This may be motivated by the
fact that potential gains for this task are inherently
bounded by the underlying grammar. The few
studies on adapting disambiguation models (Hara
et al., 2005; Plank and van Noord, 2008) have fo-
cused exclusively on the supervised scenario.

Therefore, the direction we explore in this
study is semi-supervised domain adaptation for
parse disambiguation. We examine the effec-
tiveness ofStructural Correspondence Learning
(SCL) (Blitzer et al., 2006) for this task, a re-
cently proposed adaptation technique shown to be
effective for PoS tagging and Sentiment Analy-
sis. The system used in this study is Alpino, a
wide-coverage Stochastic Attribute Value Gram-
mar (SAVG) for Dutch (van Noord and Malouf,
2005; van Noord, 2006). For our empirical eval-

1As shown in Dredze et al. (2007), the biggest problem
for the shared task was that the provided datasets were an-
notated with different annotation guidelines, thus the gen-
eral conclusion was that the task was ill-defined (Nobuyuki
Shimizu, personal communication).

uation we explore Wikipedia as primary test and
training collection.

In the sequel, we first introduce the parsing sys-
tem. Section 4 reviews Structural Correspondence
Learning and shows our application of SCL to
parse selection, including all our design choices.
In Section 5 we present the datasets, introduce the
process of constructing target domain data from
Wikipedia, and discuss interesting initial empiri-
cal results of this ongoing study.

3 Background: Alpino parser

Alpino (van Noord and Malouf, 2005; van Noord,
2006) is a robust computational analyzer for Dutch
that implements the conceptual two-stage parsing
approach. The system consists of approximately
800 grammar rules in the tradition of HPSG, and
a large hand-crafted lexicon, that together with a
left-corner parser constitutes the generation com-
ponent. For parse selection, Alpino employs a dis-
criminative approach based on Maximum Entropy
(MaxEnt). The output of the parser is dependency
structure based on the guidelines of CGN (Oost-
dijk, 2000).

The Maximum Entropy model (Berger et al.,
1996; Ratnaparkhi, 1997; Abney, 1997) is a con-
ditional model that assigns a probability to every
possible parseω for a given sentences. The model
consists of a set ofm feature functionsfj(ω) that
describe properties of parses, together with their
associated weightsθj . The denominator is a nor-
malization term whereY (s) is the set of parses
with yield s:

pθ(ω|s; θ) =
exp(

∑m
j=1 θjfj(ω))

∑
y∈Y (s) exp(

∑m
j=1 θjfj(y)))

(1)

The parameters (weights)θj can be estimated
efficiently by maximizing the regularized condi-
tional likelihood of a training corpus (Johnson et
al., 1999; van Noord and Malouf, 2005):

θ̂ = arg max
θ

log L(θ) −

∑m
j=1 θ2

j

2σ2
(2)

whereL(θ) is the likelihood of the training data.
The second term is a regularization term (Gaus-
sian prior on the feature weights with mean zero
and varianceσ). The estimated weights determine
the contribution of each feature. Features appear-
ing in correct parses are given increasing (posi-
tive) weight, while features in incorrect parses are

38



given decreasing (negative) weight. Once a model
is trained, it can be applied to choose the parse
with the highest sum of feature weights.

The MaxEnt model consists of a large set of
features, corresponding to instantiations of feature
templates that model various properties of parses.
For instance, Part-of-Speech tags, dependency re-
lations, grammar rule applications, etc. The cur-
rent standard model uses about 11,000 features.
We will refer to this set of features as original fea-
tures. They are used to train the baseline model on
the given labeled source data.

4 Structural Correspondence Learning

SCL (Structural Correspondence Learn-
ing) (Blitzer et al., 2006; Blitzer et al., 2007;
Blitzer, 2008) is a recently proposed domain
adaptation technique which uses unlabeled data
from both source and target domain to learn
correspondences between features from different
domains.

Before describing the algorithm in detail, let us
illustrate the intuition behind SCL with an exam-
ple, borrowed from Blitzer et al. (2007). Suppose
we have a Sentiment Analysis system trained on
book reviews (domain A), and we would like to
adapt it to kitchen appliances (domain B). Fea-
tures such as “boring” and “repetitive” are com-
mon ways to express negative sentiment in A,
while “not working” or “defective” are specific to
B. If there are features across the domains, e.g.
“don’t buy”, with which the domain specific fea-
tures are highly correlated with, then we might
tentatively align those features.

Therefore, the key idea of SCL is to identify au-
tomatically correspondences among features from
different domains by modeling their correlations
with pivot features. Pivots are features occur-
ring frequently and behaving similarly in both do-
mains (Blitzer et al., 2006). They are inspired by
auxiliary problems from Ando and Zhang (2005).
Non-pivot features that correspond with many of
the same pivot-features are assumed to corre-
spond. Intuitively, if we are able to find good cor-
respondences among features, then the augmented
labeled source domain data should transfer better
to a target domain (where no labeled data is avail-
able) (Blitzer et al., 2006).

The outline of the algorithm is given in Figure 1.
The first step is to identifym pivot features oc-
curring frequently in the unlabeled data of both

Input: - labeled source data{(xs, ys)
Ns

s=1}
- unlabeled data from both source and
target domainxul = xs, xt

1. Selectm pivot features

2. Trainm binary classifiers (pivot predictors)

3. Create matrixWn×m of binary predictor
weight vectorsW = [w1, .., wm], wheren
is the number of nonpivot features inxul

4. Apply SVD to W : Wn×m =
Un×nDn×mV T

m×m where θ = UT
[1:h,:]

are theh top left singular vectors ofW .

5. Apply projectionxsθ and train a predictor
on the original and new features obtained
through the projection.

Figure 1: SCL algorithm (Blitzer et al., 2006).

domains. Then, a binary classifier is trained for
each pivot feature (pivot predictor) of the form:
“Does pivot featurel occur in this instance?”. The
pivots are masked in the unlabeled data and the
aim is to predict them using non-pivot features.
In this way, we obtain a weight vectorw for each
pivot predictor. Positive entries in the weight vec-
tor indicate that a non-pivot is highly correlated
with the respective pivot feature. Step 3 is to ar-
range them weight vectors in a matrixW , where
a column corresponds to a pivot predictor weight
vector. Applying the projectionW T x (wherex
is a training instance) would give usm new fea-
tures, however, for “both computational and sta-
tistical reasons” (Blitzer et al., 2006; Ando and
Zhang, 2005) a low-dimensional approximation of
the original feature space is computed by applying
Singular Value Decomposition (SVD) onW (step
4). Let θ = UT

h×n be the toph left singular vec-
tors of W (with h a dimension parameter andn
the number of non-pivot features). The resultingθ
is a projection onto a lower dimensional spaceR

h,
parameterized byh.

The final step of SCL is to train a linear predic-
tor on the augmented labeled source data〈x, θx〉.
In more detail, the original feature spacex is aug-
mented withh new features obtained by apply-
ing the projectionθx. In this way, we can learn
weights for domain-specific features, which oth-
erwise would not have been observed. Ifθ con-
tains meaningful correspondences, then the pre-
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dictor trained on the augmented data should trans-
fer well to the new domain.

4.1 SCL for Parse Disambiguation

A property of the pivot predictors is that they can
be trained from unlabeled data, as they represent
properties of the input. So far, pivot features on the
word levelwere used (Blitzer et al., 2006; Blitzer
et al., 2007; Blitzer, 2008), e.g. “Does the bigram
not buyoccur in this document?” (Blitzer, 2008).

Pivot features are the key ingredient for SCL,
and they should align well with the NLP task. For
PoS tagging and Sentiment Analysis, features on
the word level are intuitively well-related to the
problem at hand. For the task of parse disambigua-
tion based on a conditional model this is not the
case.

Hence, we actually introduce an additional and
new layer of abstraction, which, we hypothesize,
aligns well with the task of parse disambiguation:
we firstparsethe unlabeled data. In this way we
obtain full parses for given sentences as produced
by the grammar, allowing access to more abstract
representations of the underlying pivot predictor
training data (for reasons of efficiency, we here use
only the first generated parse as training data for
the pivot predictors, rather than n-best).

Thus, instead of using word-level features, our
features correspond to properties of the gener-
ated parses: application of grammar rules (r1,r2
features), dependency relations (dep), PoS tags
(f1,f2), syntactic features (s1), precedence (mf),
bilexical preferences (z), apposition (appos) and
further features for unknown words, temporal
phrases, coordination (h,in year and p1, respec-
tively). This allows us to get a possibly noisy,
but more abstract representation of the underlying
data. The set of features used in Alpino is further
described in van Noord and Malouf (2005).

Selection of pivot features As pivot features
should be common across domains, here we re-
strict our pivots to be of the typer1,p1,s1(the most
frequently occurring feature types). In more de-
tail, r1 indicates which grammar rule applied,p1
whether coordination conjuncts are parallel, and
s1whether topicalization or long-distance depen-
dencies occurred. We count how often each fea-
ture appears in the parsed source and target do-
main data, and select thoser1,p1,s1 features as
pivot features, whose count is> t, wheret is a
specified threshold. In all our experiments, we set

t = 5000. In this way we obtained on average 360
pivot features, on the datasets described in Sec-
tion 5.

Predictive features As pointed out by Blitzer et
al. (2006), each instance will actually contain fea-
tures which are totally predictive of the pivot fea-
tures (i.e. the pivot itself). In our case, we ad-
ditionally have to pay attention to ’more specific’
features, e.g.r2 is a feature that extendsr1, in the
sense that it incorporates more information than
its parent (i.e. which grammar rules applied in the
construction of daughter nodes). It is crucial to re-
move these predictive features when creating the
training data for the pivot predictors.

Matrix and SVD Following Blitzer et al. (2006)
(which follow Ando and Zhang (2005)), we only
use positive entries in the pivot predictors weight
vectors to compute the SVD. Thus, when con-
structing the matrixW , we disregard all nega-
tive entries inW and compute the SVD (W =
UDV T ) on the resulting non-negative sparse ma-
trix. This sparse representation saves both time
and space.

4.2 Further practical issues of SCL

In practice, there are more free parameters and
model choices (Ando and Zhang, 2005; Ando,
2006; Blitzer et al., 2006; Blitzer, 2008) besides
the ones discussed above.

Feature normalization and feature scaling.
Blitzer et al. (2006) found it necessary to normal-
ize and scale the new features obtained by the pro-
jectionθ, in order to “allow them to receive more
weight from a regularized discriminative learner”.
For each of the features, they centered them by
subtracting out the mean and normalized them to
unit variance (i.e. x − mean/sd). They then
rescaled the features by a factorα found on held-
out data:αθx.

Restricted Regularization.When training the
supervised model on the augmented feature space
〈x, θx〉, Blitzer et al. (2006) only regularize the
weight vector of the original features, but not
the one for the new low-dimensional features.
This was done to encourage the model to use
the new low-dimensional representation rather
than the higher-dimensional original representa-
tion (Blitzer, 2008).

Dimensionality reduction by feature type.An
extension suggested in Ando and Zhang (2005) is
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to compute separate SVDs for blocks of the matrix
W corresponding to feature types (as illustrated in
Figure 2), and then to apply separate projection
for every type. Due to the positive results in Ando
(2006), Blitzer et al. (2006) include this in their
standard setting of SCL and report results using
block SVDs only.

Figure 2: Illustration of dimensionality reduction
by feature type (Ando and Zhang, 2005). The grey
area corresponds to a feature type (submatrix of
W ) on which the SVD is computed (block SVD);
the white area is regarded as fixed to zero matrices.

5 Experiments and Results

5.1 Experimental design

The base (source domain) disambiguation model
is trained on the Alpino Treebank (van Noord,
2006) (newspaper text), which consists of ap-
proximately 7,000 sentences and 145,000 tokens.
For parameter estimation of the disambiguation
model, in all reported experiments we use the
TADM2 toolkit (toolkit for advanced discrimina-
tive training), with a Gaussian prior (σ2=1000)
and the (default) limited memory variable metric
estimation technique (Malouf, 2002).

For training the binary pivot predictors, we use
the MegaM3 Optimization Package with the so-
called ”bernoulli implicit” input format. To com-
pute the SVD, we use SVDLIBC.4

The output of the parser is dependency struc-
ture. A standard evaluation metric is to measure
the amount of generated dependencies that are
identical to the stored dependencies (correct la-
beled dependencies), expressed as f-score. An al-
ternative measure is concept accuracy (CA), which
is similar to f-score, but allows possible discrep-
ancy between the number of returned dependen-
cies (van Noord, 2006; Plank and van Noord,

2http://tadm.sourceforge.net/
3http://www.cs.utah.edu/∼hal/megam/
4http://tedlab.mit.edu/∼dr/svdlibc/

2008). CA is usually slightly lower than f-score.
Let Di

p be the number of dependencies produced
by the parser for sentencei. Di

g is the number of
dependencies in the treebank parse, andDi

o is the
number of correct dependencies produced by the
parser. Then,

CA =
Do∑

i max(Di
g,D

i
p)

If we want to compare the performance of dis-
ambiguation models, we can employ theφ mea-
sure (van Noord and Malouf, 2005; van Noord,
2007). Intuitively, it tells us how much of the dis-
ambiguation problem has been solved.

φ =
CA − base

oracle − base
× 100

In more detail, theφ measure incorporates an up-
per and lower bound:basemeasures the accu-
racy of a model that simply selects the first parse
for each sentence;oracle represents the accuracy
achieved by a model that always selects the best
parse from the set of potential parses (within the
coverage of the parser). In addition, we also re-
port relative error reduction(rel.er), which is the
relative difference inφ scores for two models.

As target domain, we consider the Dutch part
of Wikipedia as data collection, described in the
following.

5.2 Wikipedia as resource

In our experiments, we exploit Wikipedia both as
testset and as unlabeled data source. We assume
that in order to parse data from a very specific do-
main, say about the artist Prince, then data related
to that domain, like information about the New
Power Generation, the Purple rain movie, or other
American singers and artists, should be of help.
Thus, we exploit Wikipedia and its category sys-
tem to gather domain-specific target data.

Construction of target domain data In more
detail, we use the Dutch part of Wikipedia pro-
vided by WikiXML,5 a collection of Wikipedia ar-
ticles converted to XML format. As the corpus is
encoded in XML, we can exploit general purpose
XML Query Languages, such as XQuery, Xslt and
XPath, to extract relevant information from the
Wikipedia corpus.

Given a wikipagep, with c ∈ categories(p),
we can identify pages related top of various

5http://ilps.science.uva.nl/WikiXML/
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types of ’relatedness’: directly related pages (those
that share a category, i.e. allp′ where ∃c′ ∈
categories(p′) such thatc = c′), or alterna-
tively, pages that share a sub- or supercategory
of p, i.e. p′ wherec′ ∈ categories(p′) andc′ ∈
sub categories(p) or c′ ∈ super categories(p).
For example, Figure 3 shows the categories ex-
tracted for the Wikipedia article about pope Jo-
hannes Paulus II.

<wikipage id="6677">
<cat t="direct" n="Categorie:Paus"/>
<cat t="direct" n="Categorie:Pools_theoloog"/>
<cat t="super" n="Categorie:Religieus leider"/>
<cat t="super" n="Categorie:Rooms-katholiek persoon"/>
<cat t="super" n="Categorie:Vaticaanstad"/>
<cat t="super" n="Categorie:Bisschop"/>
<cat t="super" n="Categorie:Kerkgeschiedenis"/>
<cat t="sub" n="Categorie:Tegenpaus"/>
<cat t="super" n="Categorie:Pools persoon"/>

</wikipage>

Figure 3: Example of extracted Wikipedia cate-
gories for a given article (direct, sup- and subcats).

To create the set of related pages for a given ar-
ticle p, we proceed as follows:

1. Find sub- and supercategories ofp

2. Extract all pages that are related top (through
sharing a direct, sub or super category)

3. Optionally, filter out certain pages

In our empirical setup, we followed Blitzer et al.
(2006) and tried to balance the size of source and
target data. Thus, depending on the size of the re-
sulting target domain dataset, and the “broadness”
of the categories involved in creating it, we might
wish to filter out certain pages. We implemented
a filter mechanism that excludes pages of a cer-
tain category (e.g. a supercategory that is hypoth-
esized to be “too broad”). Alternatively, we might
have used a filter mechanism that excludes certain
pages directly.

In our experiments, we always included pages
that are directly related to a page of inter-
est, and those that shared a subcategory. Of
course, the page itself is not included in that
dataset. With regard to supercategories, we usu-
ally included all pages having a categoryc ∈
super categories(p), unless stated otherwise.

Test collection Our testset consists of a selection
of Wikipedia articles that have been manually cor-
rected in the course of the D-Coi/LASSY project.6

6Ongoing project, seehttp://www.let.rug.nl/
∼vannoord/Lassy/

An overview of the testset including size indica-
tions is given in Table 1. Table 2 provides infor-
mation on the target domain datasets constructed
from Wikipedia.

Wiki/DCOI ID Title Sents
6677/026563 Prince (musician) 358
6729/036834 Paus Johannes Paulus II 232
182654/041235 Augustus De Morgan 259

Table 1: Size of test datasets.

Related to Articles Sents Tokens Relationship
Prince 290 9,772 145,504 filtered super
Paus 445 8,832 134,451 all
De Morgan 394 8,466 132,948 all

Table 2: Size of related unlabeled data; relation-
ship indicates whether all related pages are used
or some are filtered out (see section 5.2).

5.3 Empirical Results

For all reported results, we randomly selectn =
200 maximum number of parses per sentence for
evaluation.

Baseline accuracies Table 3 shows the baseline
performance (of the standard Alpino model) on the
various Wikipedia testsets (CA, f-score). The third
and fourth column indicate the upper- and lower
bound measures (defined in section 5.1).

Title CA f-score base oracle
Prince (musician) 85.03 85.38 71.95 88.70
Paus Johannes Paulus II 85.72 86.32 74.30 89.09
Augustus De Morgan 80.09 80.61 70.08 83.52

Table 3: Baseline results.

While the parser normally operates on an accu-
racy level of roughly 88-89% (van Noord, 2007)
on its own domain (newspaper text), the accu-
racy on these subdomains drops to around 85%.
The biggest performance decrease (to 80%) was
on the article about the British logician and math-
ematician De Morgan. This confirms the intu-
ition that this specific subdomain is the “hardest”,
given that mathematical expressions might emerge
in the data (e.g. “Wet der distributiviteit : a(b+c)
= ab+ac” - distributivity law).

SCL results Table 4 shows the results of our in-
stantiation of SCL for parse disambiguation, with
varying h parameter (dimensionality parameter;
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h = 25 means that applying the projectionxθ re-
sulted in adding 25 new features to every source
domain instance).

CA f-score φ rel.er.
baseline Prince 85.03 85.38 78.06 0.00
SCL[+/-], h = 25 85.12 85.46 78.64 2.64
SCL[+/-], h = 50 85.29 85.63 79.66 7.29
SCL[+/-], h = 100 85.19 85.53 79.04 4.47
SCL[+/-], h = 200 85.21 85.54 79.18 5.10
baseline Paus 85.72 86.32 77.23 0.00
SCL[+/-], h = 25 85.87 86.48 78.26 4.52
SCL[+/-], h = 50 85.82 86.43 77.87 2.81
SCL[+/-], h = 100 85.87 86.49 78.26 4.52
SCL[+/-], h = 200 85.87 86.48 78.26 4.52
baseline DeMorgan 80.09 80.61 74.44 0.00
SCL[+/-], h = 25 80.15 80.67 74.92 1.88
SCL[+/-], h = 50 80.12 80.64 74.68 0.94
SCL[+/-], h = 100 80.12 80.64 74.68 0.94
SCL[+/-], h = 200 80.15 80.67 74.91 1.88

Table 4: Results of our instantiation of SCL (with
varying h parameter and no feature normaliza-
tion).

The results show a (sometimes) small but con-
sistent increase in absolute performance on all
testsets over the baseline system (up to+0.26
absolute CA score), as well as an increase inφ
measure (absolute error reduction). This corre-
sponds to a relative error reduction of up to 7.29%.
Thus, our first instantiation of SCL for parse dis-
ambiguation indeed shows promising results.

We can confirm that changing the dimensional-
ity parameterh has rather little effect (Table 4),
which is in line with previous findings (Ando and
Zhang, 2005; Blitzer et al., 2006). Thus we might
fix the parameter and prefer smaller dimensionali-
ties, which saves space and time.

Note that these results were obtainedwithout
any of the additional normalization, rescaling,
feature-specific regularization, or block SVD is-
sues, etc. (discussed in section 4.2). We used the
same Gaussian regularization term (σ2=1000) for
all features (original and new features), and did
not perform any feature normalization or rescal-
ing. This means our current instantiation of SCL
is an actuallysimplified version of the original
SCL algorithm, applied to parse disambiguation.
Of course, our results are preliminary and, rather
than warranting many definite conclusions, en-
courage further exploration of SCL and related
semi-supervised adaptation techniques.

5.4 Additional Empirical Results

In the following, we describe additional results ob-
tained by extensions and/or refinements of our cur-
rent SCL instantiation.

Feature normalization. We also tested fea-
ture normalization (as described in Section 4.2).
While Blitzer et al. (2006) found it necessary to
normalize (and scale) the projection features, we
did not observe any improvement by normalizing
them (actually, it slightly degraded performance in
our case). Thus, we found this step unnecessary,
and currently did not look at this issue any further.

A look at θ To gain some insight of which kind
of correspondences SCL learned in our case, we
started to examine the rows ofθ. Recall that ap-
plying a row of the projection matrixθi to a train-
ing instancex gives us a new real-valued fea-
ture. If features from different domains have sim-
ilar entries (scores) in the projection row, they
are assumed to correspond (Blitzer, 2008). Fig-
ure 4 shows example of correspondences that SCL
found in the Prince dataset. The first column rep-
resents the score of a feature. The labelswiki
andalp indicate the domain of the features, re-
spectively. For readability, we here grouped the
features obtaining similar scores.

0.00010248|dep35(’Chaka Khan’,name(’PER’),hd/su,verb,ben)|wiki
0.00010248|dep35(de,det,hd/det,adj,’Afro-Amerikaanse’)|wiki
0.00010248|dep35(’Yvette Marie Stevens’,name(’PER’),hd/app,

noun,zangeres)|wiki
0.000102772|dep34(leraar,noun,hd/su,verb)|alp

0.000161095|dep34(commissie,noun,hd/obj1,prep)|16|alp
0.00016113|dep34(’Confessions Tour’,name,hd/obj1,prep)|2|wiki
0.000161241|dep34(orgel,noun,hd/obj1,prep)|1|wiki

0.000217698|dep34(tournee,noun,hd/su,verb)|1|wiki
0.000223301|dep34(regisseur,noun,hd/su,verb)|15|wiki
0.000224517|dep34(voorsprong,noun,hd/su,verb)|2|alp
0.000224684|dep34(wetenschap,noun,hd/su,verb)|2|alp
0.000226617|dep34(pop_rock,noun,hd/su,verb)|1|wiki
0.000228918|dep34(plan,noun,hd/su,verb)|9|alp

Figure 4: Example projection fromθ (row 2).

SCL clustered information about ’Chaka Khan’,
an ’Afro-Amerikaanse’ ’zangeres’ (afro-american
singer) whose real name is ’Yvette Marie
Stevens’. She had close connections to Prince,
who even wrote one of her singles. These features
got aligned to the Alpino feature ’leraar’ (teacher).
Moreover, SCL finds that ’tournee’, ’regisseur’
and ’poprock’ in the Prince domain behave like
’voorsprong’ (advance), ’wetenschap’ (research)
and ’plan’ as possible heads in a subject relation
in the newspaper domain. Similarly, correspon-

43



dences between the direct object features ’Con-
fessions Tour’ and ’orgel’ (pipe organ) to ’com-
missie’ (commission) are discovered.

More unlabeled data In the experiments so far,
we balanced the amount of source and target data.
We started to examine the effect of more unla-
beled target domain data. For the Prince dataset,
we included all supercategories in constructing
the related target domain data. The so obtained
dataset contains: 859 articles, 29,186 sentences
and 385,289 tokens; hence, the size approximately
tripled (w.r.t. Table 2). Table 5 shows the effect of
using this larger dataset for SCL withh = 25. The
accuracy increases (from 85.12 to 85.25). Thus,
there seems to be a positive effect (to be investi-
gated further).

CA f-score φ rel.er.
baseline Prince 85.03 85.38 78.06 0.00
SCL[+/-], h = 25, all 85.25 85.58 79.42 6.20

Table 5: First result on increasing unlabeled data.

Dimensionality reduction by feature type We
have started to implement the extension discussed
in section 4.2, i.e. perform separate dimension-
ality reductions based on blocks of nonpivot fea-
tures. We clustered nonpivots (see section 4.1 for
a description) into 9 types (ordered in terms of
decreasing cluster size):dep, f1/f2 (pos), r1/r2
(rules),apposperson, mf, z, h1, in year, dist. For
each type, a separate SVD was computed on sub-
matrix Wt (illustrated in Figure 2). Then, sepa-
rate projections were applied to every training in-
stance.

The results of these experiments on the Prince
dataset are shown in Figure 5. Applying SCL with
dimensionality reduction by feature type (SCL
block) results in a model that performs better (CA
85.27,φ 79.52, rel.er. 6.65%) than the model with
no feature split (no block SVDs), thus obtaining a
relative error reduction of 6.65% over the baseline.
The same figure also shows what happens if we
remove a specific feature type at a time; the appo-
sition features contribute the most on this Prince
domain. As a fact, one third of the sentences in
the Prince testset contain constructions with appo-
sitions (e.g. about film-, album- and song titles).

6 Conclusions and Future Work

The paper presents an application of Structural
Correspondence Learning (SCL) to parse disam-

Figure 5: Results of dimensionality reduction by
feature type,h = 25; block SVD included all 9
feature types; the right part shows the accuracy
when one feature type was removed.

biguation. While SCL has been successfully
applied to PoS tagging and Sentiment Analy-
sis (Blitzer et al., 2006; Blitzer et al., 2007), its
effectiveness for parsing was rather unexplored.

The empirical results show that our instantiation
of SCL to parse disambiguation gives promising
initial results, even without the many additional
extensions on the feature level as done in Blitzer
et al. (2006). We exploited Wikipedia as pri-
mary resource, both for collecting unlabeled tar-
get domain data, as well as test suite for empirical
evaluation. On the three examined datasets, SCL
slightly but constantly outperformed the baseline.
Applying SCL involves many design choices and
practical issues, which we tried to depict here in
detail. A novelty in our application is that we
first actually parse the unlabeled data from both
domains. This allows us to get a possibly noisy,
but more abstract representation of the underlying
data on which the pivot predictors are trained.

In the near future, we plan to extend the work on
semi-supervised domain adaptation for parse dis-
ambiguation, viz. (1) further explore/refine SCL
(block SVDs, varying amount of target domain
data, other testsets, etc.), and (2) examine self-
training. Studies on the latter have focused mainly
on generative, constituent based, i.e. data-driven
parsing systems. Furthermore, from a machine
learning point of view, it would be interesting to
know a measure of corpus similarity to estimate
the success of porting an NLP system from one do-
main to another. This relates to the general ques-
tion of what is meant by domain.
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