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Preface

On behalf of the Programme Committee, we are pleased to present the proceedings of the Student
Research Workshop held at the 12th Conference of the European Chapter of the Association for
Computational Linguistics. Following the tradition of providing a forum for student researchers and
the success of the previous workshops held in Bergen (1999), Toulouse (2001), Budapest (2003) and
Trento (2006), a panel of senior researchers will take part in the presentation of the papers, providing
detailed comments on the work of the authors.

The Student Workshop will run as four parallel sessions, during which 11 papers will be presented. These
high standard papers were carefully chosen from a total of 38 submissions coming from 18 countries.

We would like to take this opportunity to thank the many people that have contributed in various ways
to the success of the Student Workshop: the members of the Programme Committee for their evaluation
of the submissions and for taking the time to provide useful detailed comments and suggestions for the
improvement of papers; the panelists for providing detailed feedback directly; and the students for their
hard work in preparing their submissions.

We are also very grateful to the EACL for providing sponsorship for students who would otherwise be
unable to attend the workshop and present their work. And finally, thanks to those who have given us
advice and assistance in planning this workshop (especially Nuria Bertomeu, Alex Lascarides, Joakim
Nivre, Konstantinos Stamatakis).

We hope you enjoy the Student Research Workshop.

Vera Demberg, University of Edinburgh
Yanjun Ma, Dublin City University
Nils Reiter, Heidelberg University
EACL 2009 Student Research Workshop Chairs
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Abstract 

 

This paper reports the on-going research of a 

thesis project investigating a computational 

model of early language acquisition. The 

model discovers word-like units from cross-

modal input data and builds continuously 

evolving internal representations within a cog-

nitive model of memory. Current cognitive 

theories suggest that young infants employ 

general statistical mechanisms that exploit the 

statistical regularities within their environment 

to acquire language skills. The discovery of 

lexical units is modelled on this behaviour as 

the system detects repeating patterns from the 

speech signal and associates them to discrete 

abstract semantic tags. In its current state, the 

algorithm is a novel approach for segmenting 

speech directly from the acoustic signal in an 

unsupervised manner, therefore liberating it 

from a pre-defined lexicon. By the end of the 

project, it is planned to have an architecture 

that is capable of acquiring language and 

communicative skills in an online manner, and 

carry out robust speech recognition. Prelimi-

nary results already show that this method is 

capable of segmenting and building accurate 

internal representations of important lexical 

units as ‘emergent’ properties from cross-

modal data.  

1 Introduction 

Conventional Automatic Speech Recognition 

(ASR) systems can achieve very accurate recog-

nition results, particularly when used in their op-

timal acoustic environment on examples within 

their stored vocabularies. However, when taken 

out of their comfort zone accuracy significantly 

deteriorates and does not come anywhere near 

human speech processing abilities for even the 

simplest of tasks. This project investigates novel 

computational language acquisition techniques 

that attempt to model current cognitive theories 

in order to achieve a more robust speech recogni-

tion system.  

Current cognitive theories suggest that our 

surrounding environment is rich enough to ac-

quire language through the use of simple statisti-

cal processes, which can be applied to all our 

senses. The system under development aims to 

help clarify this theory, implementing a compu-

tational model that is general across multiple 

modalities and has not been pre-defined with any 

linguistic knowledge. 

In its current form, the system is able to detect 

words directly from the acoustic signal and in-

crementally build internal representations within 

a memory architecture that is motivated by cog-

nitive plausibility. The algorithm proposed can 

be split into two main processes, automatic seg-

mentation and word discovery. Automatically 

segmenting speech directly from the acoustic 

signal is made possible through the use of dy-

namic programming (DP); we call this method 

acoustic DP-ngram’s. The second stage, key 

word discovery (KWD), enables the model to 

hypothesise and build internal representations of 

word classes that associates the discovered lexi-

cal units with discrete abstract semantic tags.  

Cross-modal input is fed to the system through 

the interaction of a carer module as an ‘audio’ 

and ‘visual’ stream. The audio stream consists of 

an acoustic signal representing an utterance, 

while the visual stream is a discrete abstract se-

mantic tag referencing the presence of a key 

word within the utterance.    

Initial test results show that there is significant 

potential with the current algorithm, as it seg-

ments in an unsupervised manner and does not 

rely on a predefined lexicon or acoustic phone 

models that constrain current ASR methods.  
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The rest of this paper is organized as follows. 

Section 2 reviews current developmental theories 

and computational models of early language ac-

quisition. In section 3, we present the current 

implementation of the system. Preliminary ex-

periments and results are described in sections 4 

and 5 respectively. Conclusions and further work 

are discussed in sections 6 and 7 respectively. 

2 Background 

2.1 Current Developmental Theories 

The ‘nature’ vs. ‘nurture’ debate has been fought 

out for many years now; are we born with innate 

language learning capabilities, or do we solely 

use the input from the environment to find struc-

ture in language? 

Nativists believe that infants have an innate 

capability for acquiring language. It is their view 

that an infant can acquire linguistic structure 

with little input and that it plays a minor role in 

the speed and sequence with which they learn 

language. Noam Chomsky is one of the most 

cited language acquisition nativists, claiming 

children can acquire language “On relatively 

slight exposure and without specific training” 

(Chomsky, 1975, p.4). 

On the other hand, non-nativists argue that the 

input contains much more structural information 

and is not as full of errors as suggested by nativ-

ists (Eimas et al., 1971; Best et al., 1988; Jusc-

zyk et al., 1993; Saffran et al., 1996; 

Christiansen et al., 1998; Saffran et al., 1999; 

Saffran et al., 2000; Kirkham et al., 2002; 

Anderson et al., 2003; Seidenberg et al., 2002; 

Kuhl, 2004; Hannon and Trehub, 2005). 

Experiments by Saffran et al. (1996, 1999) 

show that 8-month old infants use the statistical 

information in speech as an aid for word segmen-

tation with only two minutes of familiarisation.  

Inspired by these results, Kirkham et al. 

(2002) suggest that the same statistical processes 

are also present in the visual domain. Kirkham et 

al. (2002) carried out experiments showing that 

preverbal infants are able to learn patterns of vis-

ual stimuli with very short exposure.  

Other theories hypothesise that statistical and 

grammatical processes are both used when learn-

ing language (Seidenberg et al., 2002; Kuhl, 

2004). The hypothesis is that newborns begin life 

using statistical processes for simpler problems, 

such as learning the sounds of their native lan-

guage and building a lexicon, whereas grammar 

is learnt via non-statistical methods later on. Sei-

denberg et al. (2002) believe that learning 

grammar begins when statistical learning ends. 

This has proven to be a very difficult boundary 

to detect.  

2.2 Current Computational Models 

There has been a lot of interest in trying to seg-

ment speech in an unsupervised manner, there-

fore liberating it from the required expert knowl-

edge needed to predefine the lexical units for 

conventional ASR systems. This has led speech 

recognition researchers to delve into the cogni-

tive sciences to try and gain an insight into how 

humans achieve this without much difficulty and 

model it. 

Brent (1999) states that for a computational 

algorithm to be cognitively plausible it must: 

• Start with no prior knowledge of general 

language structure. 

• Learn in a completely unsupervised 

manner. 

• Segment incrementally. 

An automatic segmentation method similar to 

that of the acoustic DP-ngram method is segmen-

tal DTW. Park & Glass (2008) have adapted dy-

namic time warping (DTW) to find matching 

acoustic patterns between two utterances. The 

discovered units are then clustered, using an ad-

jacency graph method, to describe the topic of 

the speech data. 

Statistical Word Discovery (SWD) (ten Bosch 

and Cranen, 2007) and the Cross-channel Early 

Lexical Learning (CELL) model (Roy and Pent-

land, 2002), also similar methods to the one de-

scribed in this paper, discover word-like units 

and then updating internal representations 

through clustering processes. The downfall of the 

CELL approach is that it assumes speech is ob-

served as an array of phone probabilities.   

A more radical approach is Non-negative ma-

trix factorization (NMF) (Stouten et al., 2008). 

NMF detects words from ‘raw’ cross-modal in-

put without any kind of segmentation during the 

whole process, coding recurrent speech frag-

ments into to ‘word-like’ entities. However, the 

factorisation process removes all temporal in-

formation.  

3 The Proposed System 

3.1 ACORNS  

The computational model reported in this paper 

is being developed as part of a European project 

called ACORNS (Acquisition of Communication 
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and Recognition Skills). The ACORNS project 

intends to design an artificial agent (Little 

Acorns) that is capable of acquiring human ver-

bal communication skills. The main objective is 

to develop an end-to-end system that is biologi-

cally plausible; restricting the computational and 

mathematical methods to those that model be-

havioural data of human speech perception and 

production within five main areas: 

Front-end Processing: Research and devel-

opment of new feature representations guided by 

phonetic and psycho-linguistic experiments.  

Pattern Discovery: Little Acorns (LA) will 

start life without any prior knowledge of basic 

speech units, discovering them from patterns 

within the continuous input.       

Memory Organisation and Access: A mem-

ory architecture that approaches cognitive plau-

sibility is employed to store discovered units.  

Information Discovery and Integration: Ef-

ficient and effective techniques for retrieving the 

patterns stored in memory are being developed. 

Interaction and Communication: LA is 

given an innate need to grow his vocabulary and 

communicate with the environment. 

3.2 The Computational Model 

There are two key processes to the language ac-

quisition model described in this paper; auto-

matic segmentation and word discovery. The 

automatic segmentation stage allows the system 

to build a library of similar repeating speech 

fragments directly from the acoustic signal. The 

second stage associates these fragments with the 

observed semantic tags to create distinct key 

word classes.     

Automatic Segmentation 

The acoustic DP-ngram algorithm reported in 

this section is a modification of the preceding 

DP-ngram algorithm (Sankoff and Kruskal, 

1983; Nowell and Moore, 1995). The original 

DP-ngram model was developed by Sankoff and 

Kruskal (1983) to find two similar portions of 

gene sequences. Nowell and Moore (1995) then 

modified this model to find repeated patterns 

within a single phone transcription sequence 

through self-similarity. Expanding on these 

methods, the author has developed a variant that 

is able to segment speech, directly from the 

acoustic signal; automatically segmenting impor-

tant lexical fragments by discovering ‘similar’ 

repeating patterns. Speech is never the same 

twice and therefore impossible to find exact 

repetitions of importance (e.g. phones, words or 

sentences). 

The use of DP allows this algorithm to ac-

commodate temporal distortion through dynamic 

time warping (DTW). The algorithm finds partial 

matches, portions that are similar but not neces-

sarily identical, taking into account noise, speed 

and different pronunciations of the speech.  

Traditional template based speech recognition 

algorithms using DP would compare two se-

quences, the input speech vectors and a word 

template, penalising insertions, deletions and 

substitutions with negative scores. Instead, this 

algorithm uses quality scores, positive and nega-

tive, to reward matches and prevent anything 

else; resulting in longer, more meaningful sub-

sequences.  

 
Figure 1: Acoustic DP-ngram Processes. 

Figure 1 displays the simplified architecture of 

the acoustic DP-ngram algorithm. There are four 

main stages to the process:  

Stage 1: The ACORNS MFCC front-end is 

used to parameterise the raw speech signal of the 

two utterances being fed to the system. The de-

fault settings have been used to output a series of 

37-element feature vectors. The front-end is 

based on Mel-Frequency Coefficients (MFCC), 

which reflects the frequency sensitivity of the 

auditory system, to give 12 MFCC coefficients. 

A measure of the raw energy is added along with 

12 differential (∆) and 12 2
nd

 differential (∆∆) 

coefficients. The front-end also allows the option 

for cepstral mean normalisation (CMN) and cep-

stral mean and variance normalisation (CMVN). 

Stage 2: A local-match distance matrix is then 

calculated by measuring the cosine distance be-

Speech 

Utterance 1 (Ui)  

Utterance 2 (Uj)  

Get Feature Vectors 
Pre-Processing 

Create Distance Matrix 

Calculate Quality Scores 

Find Local Alignments 

 

Discovered Lexical Units 

DP-ngram 

Algorithm 
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tween each pair of frames ( )1 2,v v  from the two 

sequences, which is defined by: 

 1 2 1 2 1 2( , ) ( . ) / ( . )
TT

d v v v v v v=  (1) 

Stage 3: The distance matrix is then used to cal-

culate accumulative quality scores for successive 

frame steps. The recurrence defined in equation 

(2) is used to find all quality scores ,i jq .  

In order to maximize on quality, substitution 

scores must be positive and both insertion and 

deletion scores must be negative as initialised in 

equation (3). 
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The recurrence in equation (2) stops past dissimi-

larities causing global effects by setting all nega-

tive scores to zero, starting a fresh new homolo-

gous relationship between local alignments.  

 
Figure 2: Quality score matrix calculated from two 

different utterances. The plot also displays the optimal 

local alignment. 

Figure 2 shows the plot of the quality scores cal-

culated from two different utterances. The 

shaded areas show repeating structure; longer 

and more accurate fragments attain greater qual-

ity scores, indicated by the darker areas within 

the plot. 

Applying a substitution score of 1 will cause 

the accumulative quality score to grow as a linear 

function. The current settings defined by equa-

tion (3) use a substitution score greater than 1, 

thus allowing local accumulative quality scores 

to grow exponentially, giving longer alignments 

more importance.  

By setting insertion and deletion scores to val-

ues less than -1, the model will find closer 

matching acoustic repetitions; whereas a value 

greater than -1 and less than 0 allows the model 

to find repeated patterns that are longer and less 

accurate, therefore allowing control over the tol-

erance for temporal distortion. 

Stage 4: The final stage is to discover local 

alignments from within the quality score matrix. 

Backtracking pointers ( )bt  are maintained at 

each step of the recursion: 

 ,

( 1, ),        (Insertion)

( , 1),        (Deletion)

( 1, 1),   (Substitution)

(0,0)             (Initial pointer) 

i j

i j

i j
bt

i j

−


−
= 

− −


 (4) 

When the quality scores have been calculated 

through equation (2), it is possible to backtrack 

from the highest score to obtain the local align-

ments in order of importance with equation (4). 

A threshold is set so that only local alignments 

above a desired quality score are to be retrieved. 

Figure 2 presents the optimal local alignment 

that was discovered by the acoustic DP-ngram 

algorithm for the utterances “Ewan is shy” and 

“Ewan sits on the couch”.  

The discovered repeated pattern (the dark line 

in figure 2) is [y uw ah n]. Start and stop times 

are collected which allows the model to retrieve 

the local alignment from the original audio signal 

in full fidelity when required. 

Key Word Discovery 

The milestone set for all systems developed 

within the ACORNS project is for LA to learn 10 

key words. To carry out this task, the DP-ngram 

algorithm has been modified with the addition of 

a key word discovery (KWD) method that con-

tinues the theme of a general statistical learning 

mechanism. The acoustic DP-ngram algorithm 

exploits the co-occurrence of similar acoustic 

patterns within different utterances; whereas, the 
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KWD method exploits the co-occurrence of the 

associated discrete abstract semantic tags. This 

allows the system to associate cross-modal re-

peating patterns and build internal representa-

tions of the key words.  

KWD is a simple approach that creates a class 

for each key word (semantic tag) observed, in 

which all discovered exemplar units representing 

each key word are stored. With this list of epi-

sodic segments we can perform a clustering 

process to derive an ideal representation of each 

key word. 

For a single iteration of the DP-ngram algo-

rithm, the current utterance ( )
cur

Utt  is compared 

with another utterance in memory ( )nUtt . KWD 

hypothesises whether the segments found within 

the two utterances are potential key words, by 

simply comparing the associated semantic tags. 

There are three possible paths for a single itera-

tion:   

1: If the tag of 
curUtt  has never been seen then 

create a new key word class and store the whole 

utterance as an exemplar of it. Do not carry out 

the acoustic DP-ngram process and proceed to 

the next utterance in memory 
1( )nUtt +

. 

2: If both utterances share the same tag then 

proceed with the acoustic DP-ngram process and 

append discovered local alignments to the key 

word class representing that tag. Proceed to the 

next utterance in memory 
1( )nUtt +

. 

3: If both utterances contain different tags then 

do not carry out acoustic DP-ngram’s and pro-

ceed to the next utterance in memory 
1( )nUtt +

.    

By creating an exemplar list for each key word 

class we are able to carry out a clustering process 

that allows us to create a model of the ideal rep-

resentation. Currently, the clustering process im-

plemented simply calculates the ‘centroid’ ex-

emplar, finding the local alignment with the 

shortest distance from all the other local align-

ments within the same class. The ‘centroid’ is 

updated every time a new local alignment is 

added, therefore the system is creating internal 

representations that are continuously evolving 

and becoming more accurate with experience.  

For recognition tasks the system can be set to 

use either the ‘centroid’ exemplar or all the 

stored local alignments for each key word class.  

LA Architecture 

The algorithm runs within a memory structure 

(fig. 3) developed with inspiration from current 

cognitive theories of memory (Jones et al., 

2006). The memory architecture works as fol-

lows: 

Carer: The carer interacts with LA to con-

tinuously feed the system with cross-modal input 

(acoustic & semantic). 

 
Figure 3: Little Acorns’ memory architecture. 

Perception: The stimulus is processed by the 

‘perception’ module, converting the acoustic sig-

nal into a representation similar to the human 

auditory system. 

Short Term Memory (STM): The output of 

the ‘perception’ module is stored in a limited 

STM which acts as a circular buffer to store n 

past utterances. The n past utterances are com-

pared with the current input to discover repeated 

patterns in an incremental fashion. As a batch 

process LA can only run on a limited number of 

utterances as the search space is unbound. As an 

incremental process, LA could potentially handle 

an infinite number of utterances, thus making it a 

more cognitively plausible system.  

Long Term Memory (LTM): The ever in-

creasing lists of discovered units for each key 

word representation are stored in LTM. Cluster-

ing processes can then be applied to build and 

update internal representations. The representa-

tions stored within LTM are only pointers to 

where the segment lies within the very long term 

memory.  

Very Long Term Memory: The very long 

term memory is used to store every observed ut-

terance. It is important to note that unless there is 

a pointer for a segment of speech within LTM 

then the data cannot be retrieved. But, future 

work may be carried out to incorporate addi-

tional ‘sleeping’ processes on the data stored in 

VLTM to re-organise internal representations or 

carry out additional analysis. 

4 Experiments 

Accuracy of experiments within the ACORNS 

project is based on LA’s response to its carer. 

The correct response is for LA to predict the key 
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word tag associated with the current incoming 

utterance while only observing the speech signal. 

LA re-uses the acoustic DP-ngram algorithm to 

solve this task in a similar manner to traditional 

DP template based speech recognition. The rec-

ognition process is carried out by comparing ex-

emplars, of discovered key words, against the 

current incoming utterance and calculating a 

quality distance (as described in stage 3 of sec-

tion 3.2). Thus, the exemplar producing the high-

est quality score, by finding the longest align-

ment, is taken to be the match, with which we 

can predict its associated visual tag. 

A number of different experiments have been 

carried out: 

E1 - Optimal STM Window: This experi-

ment finds the optimal utterance window length 

for the system as an incremental process. Vary-

ing values of the utterance window length (from 

1 to 100) were used to obtain key word recogni-

tion accuracy results across the same data set.  

E2 - Batch vs. Incremental: The optimal 

window length chosen for the incremental im-

plementation is compared against the batch im-

plementation of the algorithm.  

E3 - Centroid vs. Exemplars: The KWD 

process stores a list of exemplars representing 

each key word class. For the recognition task we 

can either use all the exemplars in each key word 

list or a single ‘centroid’ exemplar that best 

represents the list. This experiment will compare 

these two methods for representing internal rep-

resentations of the key words. 

E4 – Speaker Dependency: The algorithm is 

tested on its ability to handle the variation in 

speech from different speakers with different 

feature vectors.  

1
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4

HTK MFCC's (no norm)

ACORNS MFCC's (no norm)

ACORNS MFCC's (Cepstral Mean Norm)
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V

V

=
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=

 

Using normalisation methods will reduce the 

information within the feature vectors, removing 

some of the speaker variation. Therefore, key 

word detection should be more accurate for a 

data set of multiple speakers with normalisation. 

4.1 Test Data 

The ACORNS English corpus is used for the 

above experiments. Sentences were created by 

combining a carrier sentence with a keyword. A 

total of 10 different carrier sentences, such as 

“Do you see the X”, “Where is the X”, etc., where 

X is a keyword, were combined with one of ten 

different keywords, such as “Bottle”, “Ball”, etc. 

This created 100 unique sentences which were 

repeated 10 times and recorded with 4 different 

speakers (2 male and 2 female) to produce 4000 

utterances.   

In addition to the acoustic data, each utterance 

is associated with an abstract semantic tag. As an 

example, the utterance “What matches this 

shoe” will contain the tag referring to “shoe”. 

The tag does not give any location or phonetic 

information about the key word within the utter-

ance.  

E1 and E2 use a sub-set of 100 different utter-

ances from a single speaker. E3 is carried out on 

a sub-set of 200 utterances from a single speaker 

and the database used for E4 is a sub-set of 200 

utterances from all four speakers (2 male and 2 

female) presented in a random order. 

5 Results 

E1: LA was tested on 100 utterances with vary-

ing utterance window lengths. The plot in figure 

4 shows the total key word detection accuracy 

for each window length used. The x-axis displays 

the utterance window lengths (1–100) and the y-

axis displays the total accuracy. 

The results are as expected. Longer window 

lengths achieve more accurate results. This is 

because longer window lengths produce a larger 

search space and therefore have more chance of 

capturing repeating events. Shorter window 

lengths are still able to build internal representa-

tions, but over a longer period. 

 
Figure 4: Single speaker key word accuracy using 

varying utterance window lengths of 1-100.  

Accuracy results reach a maximum with an ut-

terance window length of 21 and then stabilize at 

around 58% (±1%). From this we can conclude 
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that 21 is the minimum window length needed to 

build accurate internal representations of the 

words within the test set, and will be used for all 

subsequent experiments. 

E2:  The plot in figure 4 displays the total key 

word detection accuracy for the different utter-

ance window lengths and does not show the 

gradual word acquisition process. Figure 5 com-

pares the word detection accuracy of the system 

(y-axis) as a function of the number of utterances 

observed (x-axis). Accuracy is recorded as the 

percentage of correct replies for the last ten ob-

servations. The long discontinuous line in the 

plot shows the word detections accuracy for ran-

domly guessing the key word. 

 
Figure 5: Word detection accuracy LA running as a 

batch and incremental process. Results are plotted as a 

function of the past 10 utterances observed. 

It can be seen from the plot in figure 5 that the 

system begins life with no word representations. 

At the beginning, the system hypothesises new 

word units from which it can begin to bootstrap 

its internal representations.  

As an incremental process, with the optimal 

window length, the system is able to capture 

enough repeating patterns and even begins to 

outperform the batch process after 90 utterances. 

This is due to additional alignments discovered 

by the batch process that are temporarily distort-

ing a word representation, but the batch process 

would ‘catch up’ in time.  

Another important result to take into account 

is that only comparing the current incoming ut-

terance with the last observed utterance is 

enough to build word representations. Although 

this is very efficient, the problem is that there is a 

greater possibility that some words will never be 

discovered if they are not present in adjacent ut-

terances within the data set. 

E3: Currently the recognition process uses all the 

discovered exemplars within each key word 

class. This process causes the computational 

complexity to increase exponentially. It is also 

not suitable for an incremental process with the 

potential of running on an infinite data set. 

To tackle this problem, recognition was car-

ried out using the ‘centroid’ exemplar of each 

key word class. Figure 6 shows the word detec-

tion accuracy as a function of utterances ob-

served for both methods. 

 
Figure 6: Word detection accuracy using centroids 

and complete exemplar list for recognition.  

The results show that the ‘centroid’ method is 

quickly outperformed and that the word detection 

accuracy difference increases with experience. 

After 120 utterances performance seems to 

gradually decline. This is because the ‘centroid’ 

method cannot handle the variation in the acous-

tic speech data. Using all the discovered units for 

recognition allows the system to reach an accu-

racy of 90% at around 140 utterances, where it 

then seems to stabilise at around 88%. 

E4: The addition of multiple speakers will add 

greater variation to the acoustic signal, distorting 

patterns of the same underlying unit. Over the 

200 utterances observed, word detection accu-

racy of the internal representations increases, but 

at a much slower rate than the single speaker ex-

periments (fig. 7). 

The assumption that using normalisation meth-

ods would achieve greater word detection accu-

racy, by reducing speaker variation, does not 

hold true. On reflection this comes as no sur-

prise, as the system collects exemplar units with 

a larger relative fidelity for each speaker. 

This raises an important issue; the optimal ut-

terance window length for the algorithm as an 

incremental process was calculated for a single 
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speaker, therefore, increasing the search space 

will allow the model to find more repeating pat-

terns from the same speaker. Following this 

logic, it could be hypothesised that the optimal 

search space should be four times the size used 

for one speaker and that it will take four times as 

many observations to achieve the same accuracy. 

 
Figure 7: Total accuracy using different feature vec-

tors after 200 observed utterances. 

6 Conclusions  

Preliminary results indicate that the environment 

is rich enough for word acquisition tasks. The 

pattern discovery and word learning algorithm 

implemented within the LA memory architecture 

has proven to be a successful approach for build-

ing stable internal representations of word-like 

units. The model approaches cognitive plausibil-

ity by employing statistical processes that are 

general across multiple modalities. The incre-

mental approach also shows that the model is 

still able to learn correct word representations 

with a very limited working memory model.  

Additionally to the acquisition of words and 

word-like units, the system is able to use the dis-

covered tokens for speech recognition. An im-

portant property of this method, that differenti-

ates it from conventional ASR systems, is that it 

does not rely on a pre-defined vocabulary, there-

fore reducing language-dependency and out-of-

dictionary errors. 

Another advantage of this system, compared 

to systems such as NMF, is that it is able to give 

temporal information of the whereabouts of im-

portant repeating structure which can be used to 

code the acoustic signal as a lossless compres-

sion method.  

7 Discussion & Future Work 

A key question driving this research is whether 

modelling human language acquisition can help 

create a more robust speech recognition system. 

Therefore further development of the proposed 

architecture will continue to be limited to cogni-

tively plausible approaches and should exhibit 

similar developmental properties as early human 

language learners. In its current state, the system 

is fully operational and intends to be used as a 

platform for further development and experi-

ments.  

The experimental results are promising. How-

ever, it is clear to see that the model suffers from 

speaker-dependency issues. The problem can be 

split into two areas, front-end processing of the 

incoming acoustic signal and the representation 

of discovered lexical units in memory. 

Development is being carried out on various 

clustering techniques that build constantly evolv-

ing internal representations of internal lexical 

classes in an attempt to model speech variation. 

Additionally, a secondary update process, im-

plemented as a re-occurring ‘sleeping phase’ is 

being investigated. This phase is going to allow 

the memory organisation to re-structure itself by 

looking at events over a longer history, which 

could be carried out as a batch process.  

The processing of prosodic cues, such as 

speech rhythm and pitch intonation, will be in-

corporated within the algorithm to increase the 

key word detection accuracy and further exploit 

the richness of the learners surrounding envi-

ronment. Adults, when speaking to infants, will 

highlight words of importance through infant 

directed speech (IDS). During IDS adults place 

more pitch variance on words that they want the 

infant to attend to.  

Further experiments have been planned to see 

if the model exhibits similar patterns of learning 

behaviour as young multiple language learners. 

Experiments will be carried out with the multiple 

languages available in the ACORNS database 

(English, Finnish and Dutch).  
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Abstract

CCG, one of the most prominent grammar
frameworks, efficiently deals with deletion
under coordination in natural languages.
However, when we expand our attention
to more analytic languages whose degree
of pro-dropping is more free, CCG’s de-
composition rule for dealing with gapping
becomes incapable of parsing some pat-
terns of intra-sentential ellipses in serial
verb construction. Moreover, the decom-
position rule might also lead us to over-
generation problem. In this paper the
composition rule is replaced by the use
of memory mechanism, called CCG-MM.
Fillers can be memorized and gaps can be
induced from an input sentence in func-
tional application rules, while fillers and
gaps are associated in coordination and se-
rialization. Multimodal slashes, which al-
low or ban memory operations, are utilized
for ease of resource management. As a
result, CCG-MM is more powerful than
canonical CCG, but its generative power
can be bounded by partially linear indexed
grammar.

1 Introduction

Combinatory Categorial Grammar (CCG, Steed-
man (2000)) is a prominent categorial grammar
framework. Having a strong degree of lexical-
ism (Baldridge and Kruijff, 2003), its grammars
are encoded in terms of lexicons; that is, each lex-
icon is assigned with syntactic categories which
dictate the syntactic derivation. One of its strik-
ing features is the combinatory operations that al-
low coordination of incomplete constituents. CCG
is nearly context-free yet powerful enough for
natural languages as it, as well as TAG, LIG,
and HG, exhibits the lowest generative power in

the mildly context-sensitive grammar class (Vijay-
Shanker and Weir, 1994).

CCG accounts for gapping in natural languages
as a major issue. Its combinatory operations re-
solve deletion under coordination, such as right-
node raising (SV&SVO) and gapping (SVO&SO).
In case of gapping, a specialized rule called de-
composition is used to handle with forward gap-
ping (Steedman, 1990) by extracting the filler re-
quired by a gap from a complete constituent.

However, serial verb construction is a challeng-
ing topic in CCG when we expand our attention
to more analytic languages, such as Chinese and
Thai, whose degree of pro-dropping is more free.

In this paper, I explain how we can deal with
serial verb construction with CCG by incorpo-
rating memory mechanism and how we can re-
strict the generative power of the resulted hy-
brid. The integrated memory mechanism is mo-
tivated by anaphoric resolution mechanism in Cat-
egorial Type Logic (Hendriks, 1995; Moortgat,
1997), Type Logical Grammar (Morrill, 1994;
Jäger, 1997; Jäger, 2001; Oehrle, 2007), and CCG
(Jacobson, 1999), and gap resolution in Memory-
Inductive Categorial Grammar (Boonkwan and
Supnithi, 2008), as it is designed for associating
fillers and gaps found in an input sentence. Theo-
retically, I discuss how this hybrid efficiently helps
us deal with serial verb construction and how far
the generative power grows after incorporating the
memory mechanism.

Outline: I introduce CCG in §2, and then mo-
tivate the need of memory mechanism in dealing
with serial verb construction in CCG in §3. I de-
scribe the hybrid model of CCG and the filler-gap
memory in §4. I then discuss the margin of gener-
ative power introduced by the memory mechanism
in §5. Finally, I conclude this paper in §6.
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2 Combinatory Categorial Grammar

CCG is a lexicalized grammar; i.e. a grammar is
encoded in terms of lexicons assigned with one
or more syntactic categories. The syntactic cat-
egories may be atomic elements or curried func-
tions specifying linear directions in which they
seek their arguments. A word is assigned with a
syntactic category by the turnstile operator `. For
example, a simplified English CCG is given below.

(1) John ` np sandwiches ` np
eats ` s\np/np

The categories X\Y (and X/Y) denotes that X seeks
the argument Y from the left (right) side.

Combinatory rules are used to combine words
forming a derivation of a sentence. For basic
combination, forward (>) and backward (<) func-
tional applications, defined in (2), are used.

(2) X/Y Y ⇒ X [>]
Y X\Y ⇒ X [<]

We can derive the sentence John eats sandwiches
by the rules and the grammar in (1) as illustrated
in (3). CCG is semantic-transparent; i.e. a logical
form can be built compositionally in parallel with
syntactic derivation. However, semantic interpre-
tation is suppressed in this paper.

(3) John eats sandwiches

np s\np/np np

s\np
s

For coordination of two constituents, the coor-
dination rules are used. There are two types of
coordination rules regarding their directions: for-
ward coordination (> &) and backward coordina-
tion (< &), defined in (4).

(4) & X ⇒ [X]& [> &]
X [X]& ⇒ X [< &]

By the coordination rules, we can derive the sen-
tence John eats sandwiches and drinks coke in (5).

(5) John eats sandwiches and drinks coke

np s\np/np np & s\np/np np
> >

s\np s\np
>&

[s\np]&
<&

s\np
<

s

Beyond functional application and coordina-
tion, CCG also makes use of rules motivated by
combinators in combinatory logics: functional

composition (B), type raising (T), and substitution
(S), namely. Classified by directions, the func-
tional composition and type raising rules are de-
scribed in (6) and (7), respectively.

(6) X/Y Y/Z ⇒ X/Z [> B]
Y\Z X\Y ⇒ X\Z [< B]

(7) X ⇒ Y/(Y\X) [> T]
X ⇒ Y\(Y/X) [< T]

These rules permit associativity in derivation re-
sulting in that coordination of incomplete con-
stituents with similar types is possible. For ex-
ample, we can derive the sentence John likes but
Mary dislikes sandwiches in (8).

(8) John likes but Mary dislikes sandwiches

np s\np/np & np s\np/np np
>T >T

s/(s\np) s/(s\np)
>B >B

s/np s/np
>&

[s/np]&
<&

s/np
>

s

CCG also allows functional composition with
permutation called disharmonic functional com-
position to handle constituent movement such as
heavy NP shift and dative shift in English. These
rules are defined in (9).

(9) X/Y Y\Z ⇒ X\Z [> B×]
Y/Z X\Y ⇒ X/Z [< B×]

By disharmonic functional composition rules,
we can derive the sentence I wrote briefly a long
story of Sinbad as (10).

(10) I wrote briefly a long story of Sinbad

np s\np/np s\np\(s\np) np
>B×

s\np/np
>

np
<

s

To handle the gapping coordination SVO&SO,
the decomposition rule was proposed as a separate
mechanism from CCG (Steedman, 1990). It de-
composes a complete constituent into two parts for
being coordinated with the other incomplete con-
stituent. The decomposition rule is defined as fol-
lows.

(11) X ⇒ Y X\Y [D]

where Y and X\Y must be seen earlier in the deriva-
tion. The decomposition rule allows us to de-
rive the sentence John eats sandwiches, and Mary,
noodles as (12). Steedman (1990) stated that En-
glish is forward gapping because gapping always
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takes place at the right conjunct.

(12) John eats sandwiches and Mary noodles

np s\np/np np & np np
> >T <T

s\np s/VP VP\(VP/np)
< >B×

s s\(VP/np)
D >&

VP/np s\(VP/np) [s\(VP/np)]&
<&

s\(VP/np)
<

s

where VP = s\np.
A multimodal version of CCG (Baldridge,

2002; Baldridge and Kruijff, 2003) restricts gener-
ative power for a particular language by annotating
modalities to the slashes to allow or ban specific
combinatory operations. Due to the page limita-
tion, the multimodal CCG is not discussed here.

3 Dealing with Serial Verb Construction

CCG deals with deletion under coordination by
several combinatory rules: functional composi-
tion, type raising, disharmonic functional compo-
sition, and decomposition rule. This enables CCG
to handle a number of coordination patterns such
as SVO&VO, SV&SVO, and SVO&SO. However,
the decomposition rule cannot solve some patterns
of SVC in analytic languages such as Chinese and
Thai in which pro-dropping is prevalent.

The notion serial verb construction (SVC) in
this paper means a sequence of verbs or verb
phrases concatenated without connectives in a sin-
gle clause which expresses simultaneous or con-
secutive events. Each of the verbs is marked or un-
derstood to have the same grammatical categories
(such as tense, aspect, and modality), and shares
at least one argument, i.e. a grammatical subject.
As each verb is tensed, SVC is considered as coor-
dination with implicit connective rather than sub-
ordination in which either infinitivization or sub-
clause marker is made use. Motivated by Li and
Thompson (1981)’s generalized form of Chinese
SVC, the form of Chinese and Thai SVC is gener-
alized in (13).

(13) (Subj)V1(Obj1)V2(Obj2) . . . Vn(Objn)

The subject Subj and any objects Obji of the verb
Vi can be dropped. If the subject or one of the ob-
jects is not dropped, it will be understood as lin-
early shared through the sequence. Duplication of
objects in SVC is however questionable as it dete-
riorates the compactness of utterance.

In order to deal with SVC in CCG, I considered

it syntactically similar to coordination where the
connective is implicit. The serialization rule (Σ)
was initially defined by imitating the forward co-
ordination rule in (14).

(14) X ⇒ [X]& [Σ]

This rule allows us to derive by CCG some types
of SVC in Chinese and Thai as exemplified in (15)
and (16), respectively.

(15) wǒ
I

zhé
fold

zhı̌
paper

zuò
make

yı́
one

ge
CL

hézi
box

‘I fold paper to make a box.’

(16) kh�ao
he

r��:p
hurry

V��N
run

kh�a:m
cross

th�an�on
road

‘He hurriedly runs across the road.’

One can derive the sentence (15) by considering
zhé ‘fold’ and zuò ‘make’ as s\np/np and ap-
plying the serialization rule in (14). In (16), the
derivation can be done by assigning r��:p ‘hurry’
and V��N ‘run’ as s\np, and kh�a:m ‘cross’ as
s\np/np.

Since Chinese and Thai are pro-drop languages,
they allow some arguments of the verbs to be pro-
dropped, particularly in SVC. For example, let us
consider the following Thai sentence.

(17) kl�a:
Kla

p	aj
goDIR

t	a:m
followV1

h�a:
seekV2

n	aj
in

r�aj;P�Oi
cane-field

tc	@:
findV3

l	a:j
Laay

tc�a
FUT

d	@:n
walkV4

tc�a:k
leaveV5

p	aj
goDIR

Lit: ‘Kla goes out, he follows Laay (his cow), he
seeks it in the cane field, and he finds that it will
walk away.’
Sem: ‘Kla goes out to seek Laay in the cane field
and he finds that it is about to walk away.’

The sentence in (17) are split into two SVCs: the
series of V1 to V3 and the series of V4 to V5, be-
cause they do not share their tenses. The direc-
tional verb p	aj ‘go’ performs as an adverb identi-
fying the outward direction of the action.

Syntactically speaking, there are two possible
analyses of this sentence. First, we can consider
the SVC V4 to V5 as a complement of the SVC
V1 to V3. Pro-drops occur at the object positions
of the verbs V1, V2, and V3. On the other hand,
we can also consider the SVC V1 to V3 and the
SVC V4 to V5 as adjoining construction (Muan-
suwan, 2002) which indicates resultative events in
Thai (Thepkanjana, 1986) as exemplified in (18).

(18) p��t��
Piti

t	�:
hit

N	u:
snake

t�ok
fall

n�a:m
water

‘Piti hits a snake and it falls into the water.’
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In this case, the pro-drop occurs at the subject po-
sition of the SVC V4 to V5, and can therefore
be treated as object control (Muansuwan, 2002).
However, the sentence in (17) does not show resul-
tative events. I then assume that the first analysis
is correct and will follow it throughout this paper.

We have consequently reached the question that
the verb tc	@: ‘find’ should exhibit object control
by taking two arguments for the object and the
VP complementary, or it should take the entire
sentence as an argument. To explicate the prolif-
eration of arguments in SVC, we prefer the first
choice to the second one; i.e. the verb tc	@: ‘find’ is
preferably assigned as s\np/(s\np)/np. In (17),
the object l	a:j ‘Laay’ is dropped from the verbs V1

and V2 but appears as one of V3’s arguments.
Let us take a closer look on the CCG analysis

of (17). It is useful to focus on the SVCs of the
verbs V1-V2 and V3. It is shown below that the
decomposition rule fails to parse the tested sen-
tence through its application illustrated in (19).

(19) Kla go follow seek find Laay FUT walk
in cane-field leave go

np s\np/np s\np/(s\np)/np np s\np
>

s\np/(s\np)
>

s\np
D

∗ ∗ ∗ ∗ ∗

The verbs V1 and V2 are transitive and assigned
as s\np/np, while V4 and V5 are intransitive and
assigned as s\np. From the case (19), it follows
that the decomposition rule cannot capture some
patterns of intra-sentential ellipses in languages
whose degree of pro-dropping is more free. Both
types of intra-sentential ellipses which are preva-
lent in SVC of analytic languages should be cap-
tured for the sake of applicability.

The use of decomposition rule in analytic lan-
guages is not appealing for two main reasons.
First, the decomposition rule does not support cer-
tain patterns of intra-sentential ellipses which are
prevalent in analytic languages. As exemplified
in (19), the decomposition rule fails to parse the
Thai SVC whose object of the left conjunct is pro-
dropped, since the right conjunct cannot be de-
composed by (11). To tackle a broader coverage of
intra-sentential ellipses, the grammar should rely
on not only decomposition but also a supplement
memory mechanism. Second, the decomposition
rule allows arbitrary decomposition which leads to
over-generation. From their definitions the vari-
able Y can be arbitrarily substituted by any syn-

tactic categories resulting in ungrammatical sen-
tences generated. For example we can derive the
ungrammatical sentence *Mary eats noodles and
quickly by means of the decomposition rule in
(20).

(20) * Mary eats noodles and quickly

np s\np/np np & s\np\(s\np)
> >&

s\np [s\np\(s\np)]&
D

s\np s\np\(s\np)
<&

s\np\(s\np)
<

s\np
<

s

The issues of handling ellipses in SVC and
overgeneration of the decomposition rule can be
resolved by replacing the decomposition rule with
a memory mechanism that associates fillers to
their gaps. The memory mechanism also makes
grammar rules more manageable because it is
more straightforward to identify particular syn-
tactic categories allowed or banned from pro-
dropping. I will show how the memory mecha-
nism improves the CCG’s coverage of serial verb
construction in the next section.

4 CCG with Memory Mechanism
(CCG-MM)

As I have elaborated in the last section, CCG
needs a memory mechanism (1) to resolve intra-
sentential ellipses in serial verb construction of an-
alytic languages, and (2) to improve resource man-
agement for over-generation avoidance. To do so,
such memory mechanism has to extend the gener-
ative power of the decomposition rule and improve
the ease of resource management in parallel.

The memory mechanism used in this paper is
motivated by a wide range of previous work from
computer science to symbolic logics. The notion
of memory mechanism in natural language pars-
ing can be traced back to HOLD registers in ATN
(Woods, 1970) in which fillers (antecedents) are
held in registers for being filled to gaps found
in the rest of the input sentence. These regis-
ters are too powerful since they enable ATN to
recognize the full class of context-sensitive gram-
mars. In Type Logical Grammar (TLG) (Morrill,
1994; Jäger, 1997; Jäger, 2001; Oehrle, 2007),
Gentzen’s sequent calculus was incorporated with
variable quantification to resolve pro-forms and
VP ellipses to their antecedents. The variable
quantification in TLG is comparable to the use
of memory in storing antecedents and anaphora.
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In Categorial Type Logic (CTL) (Hendriks, 1995;
Moortgat, 1997), gap induction was incorporated.
Syntactic categories were modified with modal-
ities which permit or prohibit gap induction in
derivation. However, logical reasoning obtained
from TLG and CTL are an NP-complete prob-
lem. In CCG, Jacobson (1999) attempted to ex-
plicitly denote non-local anaphoric requirement
whereby she introduced the anaphoric slash (|) and
the anaphoric connective (Z) to connect anaphors
to their antecedents. However, this framework
does not support anaphora whose argument is
not its antecedent, such as possessive adjectives.
Recently, a filler-gap memory mechanism was
again introduced to Categorial Grammar, called
Memory-Inductive Categorial Grammar (MICG)
(Boonkwan and Supnithi, 2008). Fillers and gaps,
encoded as memory modalities, are modified to
syntactic categories, and they are associated by the
gap-resolution connective when coordination and
serialization take place. Though their framework
is successful in resolving a wide variety of gap-
ping, its generative power falls between LIG and
Indexed Grammar, theoretically too powerful for
natural languages.

The memory mechanism introduced in this pa-
per deals with fillers and gaps in SVC. It is similar
to anaphoric resolution in ATN, Jacobson’s model,
TLG, and CTL. However, it also has prominent
distinction from them: The anaphoric mechanisms
mentioned earlier are dealing with unbounded de-
pendency or even inter-sentential ellipses, while
the memory mechanism in this paper is dealing
only with intra-sentential bounded dependency in
SVC as generalized in (13). Moreover, choices of
filler-gap association can be pruned out by the use
of combinatory directionality because the word or-
der of analytic languages is fixed. It is notice-
able that we can simply determine the grammat-
ical function (subject or object) of arbitrary np’s
in (13) from the directionality (the subject on the
left and the object on the right). With these rea-
sons, I therefore adapted the notions of MICG’s
memory modalities and gap-resolution connective
(Boonkwan and Supnithi, 2008) for the backbone
of the memory mechanism.

In CCG with Memory Mechanism (CCG-MM),
syntactic categories are modalized with memory
modalities. For each functional application, a
syntactic category can be stored, or memorized,
into the filler storage and the resulted category is

modalized with the filler 2. A syntactic category
can also be induced as a gap in a unary deriva-
tion called induction and the resulted category is
modalized with the gap 3.

There are two constraint parameters in each
modality: the combinatory directionality d ∈ {<
,>} and the syntactic category c, resulting in the
filler and the gap denoted in the forms 2d

c and 3d
c ,

respectively. For example, the syntactic category
2<
np3

>
nps has a filler of type np on the left side and

a gap of type np on the right side.
The filler 2d

c and the gap 3d
c of the same di-

rectionality and syntactic categories are said to be
symmetric under the gap-resolution connective ⊕;
that is, they are matched and canceled in the gap
resolution process. Apart from MICG, I restrict
the associative power of ⊕ to match only a filler
and a gap, not between two gaps, so that the gener-
ative power can be preserved linear. This topic will
be discussed in §5. Given two strings of modali-
ties m1 and m2, the gap-resolution connective ⊕
is defined in (21).

(21) 2d
cm1 ⊕3d

cm2 ≡ m1 ⊕m2

3d
cm1 ⊕ 2d

cm2 ≡ m1 ⊕m2

ε⊕ ε ≡ ε

The notation ε denotes an empty string. It means
that a syntactic category modalized with an empty
modality string is simply unmodalized; that is, any
modalized syntactic categories εX are equivalent to
the unmodalized ones X.

Since the syntactic categories are modalized by
a modality string, all combinatory operations in
canonical CCG must preserve the modalities af-
ter each derivation step. However, there are two
conditions to be satisfied:

Condition A: At least one operands of functional
application must be unmodalized.

Condition B: Both operands of functional com-
position, disharmonic functional composi-
tion, and type raising must be unmodalized.

Both conditions are introduced to preserve the
generative power of CCG. This topic will be dis-
cussed in §5.

As adopted from MICG, there are two memory
operations: memorization and induction.

Memorization: a filler modality is pushed to
the top of the memory when an functional appli-
cation rule is applied, where the filler’s syntactic
category must be unmodalized. Let m be a modal-
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ity string, the memorization operation is defined in
(22).

(22) εX/Y mY ⇒ 2<
X/YmX [> MF ]

mX/Y εY ⇒ 2>
Y mX [> MA]

εY mX\Y ⇒ 2<
Y mX [< MA]

mY εX\Y ⇒ 2>
X\YmX [< MF ]

Induction: a gap modality is pushed to the top
of the memory when a gap of such type is induced
at either side of the syntactic category. Let m be a
modality string, the induction operation is defined
in (23).

(23) mX/Y ⇒ 3>
Y mX [> IA]

mY ⇒ 3<
X/YmX [> IF ]

mX\Y ⇒ 3<
Y mX [< IA]

mY ⇒ 3>
X\YmX [< IF ]

Because the use of memory mechanism eluci-
dates fillers and gaps hidden in the derivation, we
can then replace the decomposition rule of the
canonical CCG with the gap resolution process of
MICG. Fillers and gaps are associated in the co-
ordination and serialization by the gap-resolution
connective ⊕. For any given m1,m2, if m1 ⊕ m2

exists then always m1 ⊕ m2 ≡ ε. Given two
modality strings m1 and m2 such that m1 ⊕ m2

exists, the coordination rule (Φ) and serialization
rule (Σ) are redefined on ⊕ in (24).

(24) m1X & m2X ⇒ X [Φ]
m1X m2X ⇒ X [Σ]

At present, the memory mechanism was devel-
oped in Prolog for the sake of unification mecha-
nism. Each induction rule is nondeterministically
applied and variables are sometimes left uninstan-
tiated. For example, the sentence in (12) can be
parsed as illustrated in (25).

(25) John eats sandwiches and Mary noodles

np s\np/np np & np np
>MF >IF

2<
s\np/nps\np 3<

X1/np
X1

< <

2<
s\np/nps 3<

X2\np/np
X2

Φ
s

Let us consider the derivation in the right conjunct.
The gap induction is first applied on np resulting
in 3<

X1/npX1, where X1 is an uninstantiated vari-
able. Then the backward application is applied, so
that X1 is unified with X2\np. Finally, the left
and the right conjuncts are coordinated yielding
that X2 is unified with s and X1 with s\np. For
convenience of type-setting, let us suppose that we
can always choose the right type in each induction
step and suppress the unification process.

Table 1: Slash modalities for memory operations.

- Left + Left
- Right ? /

+ Right . ·

Once we instantiate X1 and X2, the derivation
obtained in (25) is quite more straightforward than
the derivation in (12). The filler eats is intro-
duced on the left conjunct, while the gap of type
s\np/np is induced on the right conjunct. The co-
ordination operation associates the filler and the
gap resulting in a complete derivation.

A significant feature of the memory mechanism
is that it handles all kinds of intra-sentential el-
lipses in SVC. This is because the coordination
and serialization rules allow pro-dropping in ei-
ther the left or the right conjunct. For example, the
intra-sentential ellipses pattern in Thai SVC illus-
trated in (19) can be derived as illustrated in (26).

(26) Kla go follow seek find Laay FUT walk
in cane-field leave go

np s\np/np s\np/(s\np)/np np s\np
>IA >MA

3>
nps\np 2>

nps\np/(s\np)
>

2>
nps\np

Σ
s\np

<
s

By replacing the decomposition rule with the
memory mechanism, CCG accepts all patterns of
pro-dropping in SVC. It should also be noted that
the derivation in (20) is per se prohibited by the
coordination rule.

Similar to canonical CCG, CCG-MM is also
resource-sensitive; that is, each combinatory op-
eration is allowed or prohibited with respect to the
resource we have (Baldridge and Kruijff, 2003).
Baldridge (2002) showed that we can obtain a
cleaner resource management in canonical CCG
by the use of modalized slashes to control combi-
natory behavior. His multimodal schema of slash
permissions can also be applied to the memory
mechanism in much the same way. I assume that
there are four modes of memory operations ac-
cording to direction and allowance of memory op-
erations as in Table 1.

The modes can be organized into the type hier-
archy shown in Figure 1. The slash modality ?,
the most limited mode, does not allow any mem-
ory operations on both sides. The slash modalities
/ and . allow memorization and induction on the
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Figure 1: Hierarchy of slash modalities for mem-
ory operations.

left and right sides, respectively. Finally, the slash
modality · allows memorization and induction on
both sides. In order to distinguish the memory op-
eration’s slash modalities from Baldridge’s slash
modalities, I annotate the first as a superscript
and the second as a subscript of the slashes. For
example, the syntactic category s\/

×np denotes
that s\np allows permutation in crossed functional
composition (×) and memory operations on the
left side (/). As with Baldridge’s multimodal
framework, the slash modality · can be omitted
from writing. By defining the slash modalities, it
follows that the memory operations can be defined
in (27).

(27) mX/.Y εY ⇒ 2>
Y mX [> MF ]

εX//Y mY ⇒ 2<
X//YmX [> MA]

εY mX\/Y ⇒ 2<
Y mX [< MA]

mY εX\.Y ⇒ 2>
X\.YmX [< MF ]

mX/.Y ⇒ 3>
Y mX [> IA]

mY ⇒ 3<
X//YmX [> IF ]

mX\/Y ⇒ 3<
Y mX [< IA]

mY ⇒ 3>
X\.YmX [< IF ]

When incorporating with the memory mech-
anism and the slash modalities, CCG becomes
flexible enough to handle all patterns of intra-
sentential ellipses in SVC which are prevalent in
analytic languages, and to manage its lexical re-
source. I will now show that CCG-MM extends
the generative power of the canonical CCG.

5 Generative Power

In this section, we will informally discuss the mar-
gin of generative power introduced by the memory
mechanism. Since Vijay-Shanker (1994) showed
that CCG and Linear Indexed Grammar (LIG)
(Gazdar, 1988) are weakly equivalent; i.e. they
generate the same sets of strings, we will first
compare the CCG-MM with the LIG. As will be
shown, its generative power is beyond LIG; we
will find the closest upper bound in order to locate
it in the Chomsky’s hierarchy.

We will follow the equivalent proof of Vijay-
Shanker and Weir (1994) to investigate the gen-
erative power of CCG-MM. Let us first assume
that we are going to construct an LIG G =
(VN , VT , VS , S, P ) that subsumes CCG-MM. To
construct G, let us define each of its component as
follows.

VN is a finite set of syntactic categories,
VT is a finite set of terminals,
VS is a finite set of stack symbols having the form
2d

c , 3d
c , /c, or \c,

S ∈ VN is the start symbol, and
P is a finite set of productions, having the form

A[] → a

A[◦ ◦ l] → A1[] . . . Ai[◦ ◦ l′] . . . An[]

where each Ak ∈ VN , d ∈ {<, >}, c ∈ VN ,
l, l′ ∈ VS , and a ∈ VT ∪ {ε}.

The notation for stacks uses [◦ ◦ l] to denote an ar-
bitrary stack whose top symbol is l. The linearity
of LIG comes from the fact that in each produc-
tion there is only one daughter that share the stack
features with its mother. Let us also define ∆(σ)
as the homomorphic function that converts each
modality in a modality string σ into its symmetric
counterpart, i.e. a filler 2d

c into a gap 3d
c , and vice

versa. The stack in this LIG is used for storing
(1) tailing slashes of a syntactic category for har-
monic/disharmonic functional composition rules,
and (2) modalities of a syntactic category for gap
resolution.

We start out by transforming the lexical item.
For every lexical item of the form w ` X where X is
a syntactic category, add the following production
to P :

(28) X[] → w

We add two unary rules for converting between
tailing slashes and stack values. For every syntac-
tic category X and Y1, . . . , Yn, the following rules
are added.

(29) X|1Y1 . . . |nYn[◦◦] → X[◦ ◦ |1Y1 . . . |nYn]
X[◦ ◦ |1Y1 . . . |nYn] → X|1Y1 . . . |nYn[◦◦]

where the top of ◦◦ must be a filler or a gap, or
◦◦ must be empty. This constraint preserves the
ordering of combinatory operations.

We then transform the functional application
rules into LIG productions. From Condition A,
we can generalize the functional application rules
in (2) as follows.
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(30) mX/Y Y ⇒ mX
X/Y mY ⇒ mX
mY X\Y ⇒ mX
Y mX\Y ⇒ mX

where m is a modality string. Condition A pre-
serves the linearity of the generative power in that
it prevents the functional application rules from in-
volving the two stacks of the daughters at once.
We can convert the rules in (30) into the following
productions.

(31) X[◦◦] → X[◦ ◦ /Y] Y[]
X[◦◦] → X[/Y] Y[◦◦]
X[◦◦] → Y[◦◦] X[\Y]
X[◦◦] → Y[] X[◦ ◦ \Y]

We can generalize the harmonic and dishar-
monic, forward and backward composition rules
in (6) and (9) as follows.

(32) X/Y Y|1Z1 . . . |nZn ⇒ X|1Z1 . . . |nZn
Y|1Z1 . . . |nZn X\Y ⇒ X|1Z1 . . . |nZn

where each |i ∈ {\, /}. By Condition B, we ob-
tain that all operands are unmodalized so that we
can treat only tailing slashes. That is, Condition
B prevents us from processing both tailing slashes
and memory modalities at once where the linear-
ity of the rules is deteriorated. We can therefore
convert these rules into the following productions.

(33) X[◦◦] → X[/Y] Y[◦◦]
X[◦◦] → Y[◦◦] X[\Y]

The memorization and induction rules de-
scribed in (27) are transformed into the following
productions.

(34) X[◦ ◦ 2<
X/Y] → X[/Y] Y[◦◦]

X[◦ ◦ 2>
Y ] → X[◦ ◦ /Y] Y[]

X[◦ ◦ 2<
Y ] → Y[] X[◦ ◦ \Y]

X[◦ ◦ 2>
X\Y] → Y[◦◦] X[\Y]

X[◦ ◦3>
Y ] → X[◦ ◦ /Y]

X[◦ ◦3<
X/Y] → Y[◦◦]

X[◦ ◦3<
Y ] → X[◦ ◦ \Y]

X[◦ ◦3>
X\Y] → Y[◦◦]

However, it is important to take into account the
coordination and serialization rules, because they
involve two stacks which have similar stack val-
ues if we convert one of them into the symmetric
form with ∆. Those rules can be transformed as
follows.

(35) X[] → X[◦◦] &[] X[∆(◦◦)]
X[] → X[◦◦] X[∆(◦◦)]

It is obvious that the rules in (35) are not LIG pro-
duction; that is, CCG-MM cannot be generated by
any LIGs; or more precisely, CCG-MM is prop-

erly more powerful than CCG. We therefore have
to find an upper bound of its generative power.

Though CCG-MM is more powerful than CCG
and LIG, the rules in (35) reveal a significant prop-
erty of Partially Linear Indexed Grammar (PLIG)
(Keller and Weir, 1995), an extension of LIG
whose productions are allowed to have two or
more daughters sharing stack features with each
other but these stacks are not shared with their
mother as shown in (36).

(36) A[] → A1[] . . . Ai[◦◦] . . . Aj [◦◦] . . . An[]

Whereby restricting the power of the gap-
resolution connective, the two stacks of the daugh-
ters are shared but not with their mother. An in-
teresting trait of PLIG is that it can generate the
language {wk|w is in a regular language and k ∈
N}. This is similar to the pattern of SVC in which
a series of verb phrase can be reduplicated.

To conclude this section, CCG-MM is more
powerful than LIG but less powerful than PLIG.
From (Keller and Weir, 1995), we can position the
CCG-MM in the Chomsky’s hierarchy as follows:
CFG < CCG = TAG = HG = LIG < CCG-MM ≤ PLIG

≤ LCFRS < CSG.

6 Conclusion and Future Work

I have presented an approach to treating serial
verb construction in analytic languages by incor-
porating CCG with a memory mechanism. In the
memory mechanism, fillers and gaps are stored
as modalities that modalize a syntactic category.
The fillers and the gaps are then associated in the
coordination and the serialization rules. This re-
sults in a more flexible way of dealing with intra-
sentential ellipses in SVC than the decomposition
rule in canonical CCG. Theoretically speaking, the
proposed memory mechanism increases the gen-
erative power of CCG into the class of partially
linear indexed grammars.

Future research remains as follows. First, I will
investigate constraints that reduce the search space
of parsing caused by gap induction. Second, I will
apply the memory mechanism in solving discon-
tinuous gaps. Third, I will then extend this frame-
work to free word-ordered languages. Fourth and
finally, the future direction of this research is to
develop a wide-coverage parser in which statistics
is also made use to predict memory operations oc-
curing in derivation.
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Abstract

Reading is known to be an essential task
in language learning, but finding the ap-
propriate text for every learner is far from
easy. In this context, automatic procedures
can support the teacher’s work. Some
tools exist for English, but at present there
are none for French as a foreign language
(FFL). In this paper, we present an origi-
nal approach to assessing the readability
of FFL texts using NLP techniques and
extracts from FFL textbooks as our cor-
pus. Two logistic regression models based
on lexical and grammatical features are
explored and give quite good predictions
on new texts. The results shows a slight
superiority for multinomial logistic re-
gression over the proportional odds model.

1 Introduction

The current massive mobility of people has put
increasing pressure on the language teaching sec-
tor, in terms of the availability of instructors and
suitable teaching materials. The development of
Intelligent Computer Aided Language Learning
(ICALL) has helped both these needs, while the
Internet has increasingly been used as a source of
exercises. Indeed, it allows immediate access to a
huge number of texts which can be used for edu-
cational purposes, either for classical reading com-
prehension tasks, or as a corpus for the creation of
various automatically generated exercises.

However, the strength of the Internet is also its
main flaw : there are so many texts available to the
teacher that he or she can get lost. Having gathered
some documents suitable in terms of subject mat-
ter, teachers still have to check if their readabil-
ity levels are suitable for their students : a highly
time-consuming task. This is where NLP applica-

tions able to classify documents according to their
reading difficulty level can be invaluable.

Related research will be discussed in Section 2.
In Section 3, the distinctive features of the cor-
pus used in this study and a difficulty scale suit-
able for FFL text classification are described. Sec-
tion 4 focuses on the independent linguistic vari-
ables considered in this research, while the statis-
tical techniques used for predictions are covered
in Section 5. Section 6 gives some details of the
implementations, and Section 7 presents the first
results of our models. Finally, Section 8 sums up
the contribution of this article before providing a
programme for future work and improvement of
the results.

2 Related research

The measurement of the reading difficulty of texts
has been a major concern in the English-speaking
literature since the 1920s and the first formula de-
veloped by Lively and Pressey (1923). The field
of readability has since produced many formulae
based on simple lexical and syntactic measures
such as the average number of syllables per word,
the average length of sentences in a piece of text
(Flesch, 1948; Kincaid et al., 1975), or the per-
centage of words not on a list combined with the
average sentence length (Chall and Dale, 1995).

French-speaking researchers discovered the
field of readability in 1956 through the work of
André Conquet,La lisibilit é (1971), and the first
two formulae for French were adapted from Flesch
(1948) by Kandel and Moles (1958) and de Land-
sheere (1963). Both of these researchers stayed
quite close to the Flesch formula, and in so doing
they failed to take into account some specificities
of the French language.

Henry (1975) was the first to introduce spe-
cific formulae for French. He used a larger set
of variables to design three formulae : a com-
plete, an automatic and a short one, each of which
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was adapted for three different educational lev-
els. His formulae are by far the best and most fre-
quently used in the French-speaking world. Later,
Richaudeau (1979) suggested a criteria of “lin-
guistic efficiency” based on experiments on short-
term memory, while Mesnager (1989) coined what
is still, to the best of our knowledge, the most re-
cent specific formula for French, with children as
its target.

Compared to the mass of studies in English,
readability in French has never enthused the re-
search community. The cultural reasons for this
are analysed by Bossé-Andrieu (1993) (who basi-
cally argues that the idea of measuring text diffi-
culty objectively seems far too pragmatic for the
French spirit). It follows that there is little cur-
rent research in this field: in Belgium, the Flesch
formula is still used to assess the readability of
articles in journalism studies. This example also
shows that the French-specific formulae are not
much used, probably because of their complexity
(Bossé-Andrieu, 1993).

Of course, if there is little work on French read-
ability, there is even less on French as a foreign
language. We only know the study of Cornaire
(1988), which tested the adaptation of Henry’s
short formula to French as a foreign language,
and that of Uitdenbogerd (2005), which developed
a new measure for English-speaking learners of
French, stressing the importance of cognates when
developing a new formula for a related language.

Therefore, we had to draw our inspiration from
the English-speaking world, which has recently
experienced a revival of interest in research on
readability. Taking advantage of the increasing
power of computers and the development of NLP
techniques, researchers have been able to exper-
iment with more complex variables. Collins-
Thompson et al. (2005) presented a variation of a
multinomial naive Bayesian classifier they called
the “Smoothed Unigram” model. We retained
from their work the use of language models in-
stead of word lists to measure lexical complex-
ity. Schwarm and Ostendorf (2005) developed
a SVM categoriser combining a classifier based
on trigram language models (one for each level
of difficulty), some parsing features such as av-
erage tree height, and variables traditionally used
in readability. Heilman et al. (2007) extended the
“Smoothed Unigram” model by the recognition of
syntactic structures, in order to assess L2 English

texts. Later, they improved the combination of
their various lexical and grammatical features us-
ing regression methods (Heilman et al., 2008). We
also found regression methods to be the most ef-
ficient of the statistical models with which we ex-
perimented. In this article, we consider some ways
to adapt these various ideas to the specific case of
FFL readability.

3 Corpus description

In the development of a new readability formula,
the first step is to collect a corpus labelled by
reading-difficulty level, a task that implies agree-
ment on the difficulty scale. In the US, a com-
mon choice is the 12 American grade levels corre-
sponding to primary and secondary school. How-
ever, this scale is less relevant for FFL education
in Europe. So, we looked for another scale.

Given that we are looking for an automatic way
of measuring text complexity for FFL learners par-
ticipating in an educational programme, an obvi-
ous choice was the difficulty scale used for assess-
ing students’ levels in Europe, that is theCom-
mon European Framework of Reference for Lan-
guages(CEFR) (Council of Europe, 2001) . The
CEFR has six levels: A1 (Breakthrough); A2
(Waystage); B1 (Threshold); B2 (Vantage); C1
(Effective Operational Proficiency) and C2 (Mas-
tery). However differences in learners’ skills can
be quite substantial at lower levels, so we divided
each of the A1, A2 and B1 grades in two, thus ob-
taining a total of nine levels.

We still needed to find a corpus labelled accord-
ing to these nine classes. Unlike traditional ap-
proaches, based on a limited set of texts usually
standardised by applying a closure test to a target
population, our NLP-oriented approach required a
large number of texts on which the statistical mod-
els could be trained. For that reason we opted for
FFL textbooks as a corpus. With the appearance of
the CEFR, FFL textbooks have undergone a kind
of standardisation and their levels have been clari-
fied. It is thus feasible to gather a large number of
documents already labelled in terms of the CEFR
scale by experts with an educational background.

However, not every textbook can be used as a
document source. Likewise, not all the material
from FFL textbooks is appropriate. We established
the following criteria for selecting textbooks and
texts:

• The CEFR was published in 2001, so only
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textbooks published since then were con-
sidered. This restriction also ensures that
the language resembles present-day spoken
French.

• The target population for our formula is
young people and adults. Therefore, only
textbooks intended for this public were used.

• We retained only those texts made up of com-
plete sentences, linked to a reading compre-
hension task. So, all the transcriptions of
listening comprehension tasks were ignored.
Similarly, all instructions to the students were
excluded, because there is no guarantee the
language employed there is the same as the
rest of the textbook material (metalinguistic
terms and so on can be found there).

Up to now, using these criteria, we have gath-
ered more than 1,500 documents containing about
440,000 tokens. Texts cover a wide variety of sub-
jects ranging from French literature to newspaper
articles, as well as numerous dialogues, extracts
from plays, cooking recipes, etc. The goal is to
have as wide a coverage as possible, to achieve
maximum generalisability of the formula, and also
to check what sort of texts it does not fit (e.g. sta-
tistical descriptive analyses have considered songs
and poems as outliers).

4 Selection of lexical and syntactic
variables

Any text classification tasks require an object
(here a text) to be parameterised into variables,
whether qualitative or quantitative. These inde-
pendent variables must correlate as strongly as
possible with the dependent variable represent-
ing difficulty in order to explain the text’s com-
plexity, and they should also account for the var-
ious dimensions of the readability phenomenon.
Traditional approaches to readability have been
sharply criticised with respect to this second re-
quirement by Kintsch and Vipond (1979) and
Kemper (1983), who both insist on the impor-
tance of including the conceptual properties of
texts (such as the relations between propositions
and the “inference load”). However, these new
approaches have not resulted in any easily repro-
ducible computational models, leading current re-
searchers to continue to use the classic semantic
and grammatical variables, enhancing them with
NLP techniques.

Because this research only spans the last year,
attempts to discover interesting variables are still
at an early stage. We explored the efficiency of
some traditional features such as the type-token
ratio, the number of letters per word, and the av-
erage sentence length, and found that, on our cor-
pus, only the word length and sentence length cor-
related significantly with difficulty. Then, we add
two NLP-oriented features, as described below: a
statistical language model and a measure of tense
difficulty.

4.1 The language model

The lexical difficulty of a text is quite an elaborate
phenomenon to parameterise. The logistic regres-
sion models we used in this study require us to re-
duce this complex reality to just one number, the
challenge being to achieve the most informative
number. Some psychological work (Howes and
Solomon, 1951; Gerhand and Barry, 1998; Brys-
baert et al., 2000) suggests that there is a strong re-
lationship between the frequency of words and the
speed with which they are recognised. We there-
fore opted to model the lexical difficulty for read-
ing as the global probability of a text T (with N
tokens) occurring:

P (T ) = P (t1)P (t2 | t1)

· · ·P (tn | t1, t2, . . . , tn−1) (1)

This equation raises two issues :

1. Estimating the conditional probabilities. It
is well-known that it is impossible to train
such a model on a corpus, even the largest
one, because some sequences in this equa-
tion are unlikely to be encountered more than
once. However, following Collins-Thompson
and Callan (2005), we found that a simple
smoothed unigram model could give good re-
sults for readability. Thus, we assumed that
the global probability of a text T could be re-
duced to:

P (T ) =

n∏

i=1

p(ti) (2)

wherep(ti) is the probability of meeting the
token ti in French; andn is the number of
tokens in a text.

2. Deciding what is the best linguistic unit to
consider. The equations introduced above use
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tokens, as is traditional in readability formu-
lae, but the inflected nature of French sug-
gests that lemmas may be a better alternative.
Using tokens means that words taking numer-
ous inflected forms (such as verbs), have their
overall probability split between these differ-
ent forms. Consequently, compared to sel-
dom – or never – inflected words (such as ad-
verbs, prepositions, conjunctions), they seem
less frequent than they really are. Second, us-
ing tokens presupposes a theoretical position
according to which learners are not able to
link an inflected form with its lemma. Such
a view seems highly questionable for the ma-
jority of regular forms.

In order to settle this issue, we trained three
language models: one with lemmas (LM1),
another with inflected forms disambiguated
according to their tags (LM2), and a third
one with inflected forms (LM3). The ex-
periment was not very conclusive, since the
models all correlated with the dependent vari-
able to a similar extent, having Pearson’sr

coefficients of−0.58, −0.58, and−0.59 re-
spectively. However, three factors militate in
favour of the lemma model: as well as the-
oretical likelihood, it is the model which is
most sensitive to outliers and most prone to
measurement error. This suggests that, if we
can reduce this error, the lemma model may
prove to be the best predictor of the three.

As a consequence of these considerations, we
decided to compute the difficulty of the text by us-
ing Equation 2 adapted for lemmas and, for com-
putational reasons, the logarithm of the probabili-
ties:

P (T ) = exp(
n∑

i=1

log[p(lemi)]) (3)

The resulting value is still correlated with the
length of the text, so it has to be normalised by
dividing it by N (the number of words in the text).
These operations give in a final value suitable for
the logistic regression model. More information
about the origin and smoothing of the probabilities
is given in Section 6.

4.2 Measuring the tense difficulty

Having considered the complexity of a text’s syn-
tactic structures through the traditional factor of

the “mean number of words per sentence”, we de-
cided to also take into account the difficulty of
the conjugation of the verbs in the text. For this
purpose, we created11 variables, each represent-
ing one tense or class of tenses: conditional, fu-
ture, imperative, imperfect, infinitive, past partici-
ple, present participle, present, simple past, sub-
junctive present and subjunctive imperfect.

The question then arose as to whether it would
be better to treat these variables as binary or con-
tinuous. Theoretical justifications for a binary pa-
rameterisation lie in the fact that a text becomes
more complex for a L2 language learner when
there is a large variety of tenses, especially dif-
ficult ones. The proportion of each tense seems
less significant. For this reason, we opted for bi-
nary variables. The other way of parameterising
the data should nevertheless be tested in further
research.

5 The regression models

By the end of the parameterisation stage, each text
of the corpus has been reduced to a vector com-
prising the 14 following predictive variables : the
result of the language model, the average number
of letters per word1, the average number of words
per sentence and the 11 binary variables for tense
complexity.

Each vector also has a label representing the
level of the text, which is the dependent variable
in our classification problem. From a statisti-
cal perspective, this variable may be considered
as a nominal, ordinal, or interval variable, each
level of measurement being linked to a particu-
lar regression technique: multiple linear regres-
sion for interval data; a popular cumulative logit
model called proportional odds for ordinal data;
and multinomial logistic regression for nominal
variables. Therefore, identifying the best scale of
measurement is an important issue for readability.

From a theoretical perspective, viewing the lev-
els of difficulty as an interval scale would imply
that they are ordered and evenly spaced. How-
ever, most FFL teachers would disagree with this
assumption: it is well known that the higher levels
take longer to complete than the earlier ones. So, a
more realistic position is to consider text difficulty
as an ordinal variable (since the CEFR levels are

1Pearson’sr coefficient between the language model and
the average number of letters in the words was−0.68. This
suggests that there is some independent information in the
length of the words that can be used for prediction.
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ordered). The third alternative, treating the levels
as a nominal scale, is not intuitively obvious to a
language teacher, because it suggests that there is
no particular order to the CEFR levels.

From a practical perspective, things are not so
clear. Traditional approaches have usually viewed
difficulty as an interval scale and applied mul-
tiple linear regression. Recent NLP perspective
have either considered difficulty as an ordinal vari-
able (Heilman et al., 2008), making use of logis-
tic regression, or as a nominal one, implementing
classifiers such as the naive Bayes, SVM or deci-
sion tree. Such a variety of practices convinced us
that we should experiment with all three scales of
measurement.

In an exploratory phase, we compared regres-
sion methods and decision tree classifiers on the
same corpus. We found that regression was more
precise and more robust, due to the current lim-
ited size of the corpus. Linear regression was
discarded because it gave poor results during the
test phase. So we retained two logistic regression
models, the PO model and the MLR model, which
are presented in the next section.

5.1 Proportional odds (PO) model

Logistic regression is a statistical technique first
developed for binary data. It generally de-
scribes the probability of a 0 or 1 outcome with
an S-shaped logistic function (see Hosmer and
Lemeshow (1989) for details). Adaptation of the
logistic regression forJ ordinal classes involves
a model withJ − 1 response curves of the same
shape. For a fixed classj, each of these response
functions is comparable to a logistic regression
curve for a binary response with outcomesY ≤ j

andY > j (Agresti, 2002), where Y is the depen-
dent variable.

The PO model can be expressed as:

logit[P (Y ≤ j | x)] = αj + β′
x (4)

In Equation 4,x is the vector containing the inde-
pendent variables,αj is the intercept parameter for
the jth level andβ is the vector of regression co-
efficients. From this formula, the particularity of
the PO model can be observed: it has the same set,
β, of parameters for each level. So, the response
functions only differ in their intercepts,αj. This
simplification is only possible under the assump-
tion of ordinality.

Using this cumulative model, when2 ≤ j ≤ J ,
the estimated probability of a textY belonging to

the classj can be computed as:

P (Y = j | x) = logit[P (Y ≤ j | x)]

−logit[P (Y ≤ j − 1 | x)] (5)

When j = 1,P (Y = 1 | x) is equal toP (Y ≤ j |
x).

We said above that this model involves a simpli-
fication, based on the proportional odds assump-
tion. This assumption needs to be tested with the
chi-squared form of the score test (Agresti, 2002).
The lower the chi-squared value, the better the PO
model fits the data.

5.2 Multinomial logistic regression

Multinomial logistic regression is also called
“baseline category”, because it compares each
class Y with a reference category, often the first
one (Y1), in order to regress to the binary case.
Each pair of classes (Yj , Y1) can then be described
by the ratio (Agresti, 2002, p. 268):

log
P (Y = j | x)

P (Y = 1 | x)
= αj + βj

′
x (6)

where the notation is as given above. On the ba-
sis of these J-1 regression equations, it is possible
to compute the probability of a text belonging to
difficulty level j using the values of its features
contained in the vectorx. This may be calculated
using the equation (Agresti, 2002, p. 271):

P (Y = j | x) =
exp(αj + βj

′
x)

1 +
∑J

h=2
exp(αh + βj

′
x)

(7)
Notice that for the baseline category (here,j = 1),
α1 andβ1 = 0. Thus, when looking for the proba-
bility of a text belonging to the baseline level, it is
easy to compute the numerator, sinceexp(0) = 1.
The value of the denominator is the same for each
j.

Heilman et al. (2008) drew attention to the fact
that the MLR model multiplies the number of pa-
rameters byJ − 1 compared to the PO model.
Because of this, they recommend using the PO
model.

6 Implementation of the models

Having covered the theoretical aspects of our
model, we will now describe some of the partic-
ularities of our implementation.
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6.1 The language model: probabilities and
smoothing

For our language model, we need a list of French
lemmas with their frequencies of occurrence. Get-
ting robust estimates for a large number of lem-
mas requires a very large corpus and is a time-
consuming process. We usedLexique3, a lexicon
provided by New et al. (2001) and developed from
two corpora: the literary corpusFrantextcontain-
ing about 15 million of words; and a corpus of film
subtitles (New et al., 2007), with about 50 million
words. The authors drew up a list of more than
50,000 tagged lemmas, each of which is associ-
ated with two frequency estimates, one from each
corpus.

We decided to use the frequencies from the sub-
title corpus, because we think it gives a more ac-
curate image of everyday language, which is the
language FFL teaching is mainly concerned with.
The frequencies were changed into probabilities,
and smoothed with the Simple Good-Turing al-
gorithm described by Gale and Sampson (1995).
This step is necessary to solve another well-known
problem in language models: the appearance in
a new text of previously unseen lemmas. In this
case, since the logarithm of probabilities is used,
an unseen lemma would result in a infinite value.
In order to prevent this, a smoothing process is
used to shift some of the model’s probability mass
from seen lemmas to unseen ones.

Once we had obtained a good estimate of the
probabilities, we could analyse the texts in the cor-
pus. Each of them was lemmatised and tagged us-
ing the TreeTagger (Schmid, 1994). This NLP tool
allows us to distinguish between homographs that
can represent different levels of difficulty. For in-
stance, the wordactif is quite common as an ad-
jective, but the noun is infrequent and is only used
in the business lexicon. This distinction is possible
becauseLexique3provides tagged lemmas.

6.2 Variable selection

Having gathered the values for the 14 dependent
variables, it was possible to train the two statis-
tical models.2 However, an essential requirement
prior to training is feature selection. This proce-
dure, described by Hosmer and Lemeshow (1989),
consists of examining models with one, two, three,

2All statistical computations were performed with the
MASS package (Venables and Ripley, 2002) of the R soft-
ware.

etc., variables and comparing them to the full
model according to some specified criteria so as
to select one that is both efficient and parsimo-
nious. For logistic regression, the criterion se-
lected is the AIC (Akaike’s Information Criterion)
of the model. This can be obtained from:

AIC = −2log-likelihood+ 2k (8)

wherek is the number of parameters in the model,
and the log-likelihood value is the result of a calcu-
lation detailed by Hosmer and Lemeshow (1989).

We applied the stepwise algorithm to our data,
trying both a backward and a forward procedure.
They converged to a simpler model containing
only 10 variables: the value obtained from our lan-
guage model, the number of letters per word, the
number of words per sentence, the past participle,
the present participle, and the imperfect, infinitive,
conditional, future and present subjunctive tenses.
Presumable the imperative and present tenses are
so common that they do not have much discrim-
inative power. On the other hand, the imperfect
subjunctive is so unusual that it is not useful for a
classification task. However, the non-appearance
of the simple past is surprising, since it is a nar-
rative tense which is not usually introduced until
an advanced stage in the learning of French. This
phenomenon deserves further investigation in the
future.

7 First results

To the best of our knowledge, no one has pre-
viously applied NLP technologies to the specific
issue of the readability of texts for FFL learn-
ers. So, any comparisons with previous studies are
somewhat flawed by the fact that neither the target
population nor the scale of difficulty is the same.
However, our results can be roughly compared to
some of the numerous studies on L1 English read-
ability presented in Section 2. Before making this
comparison, we will analyse the predictive ability
of the two models.

7.1 Models evaluation

The evaluation measures most commonly em-
ployed in the literature are Pearson’s product-
moment correlation coefficient, prediction accu-
racy as defined by Tan et al. (2005), and adjacent
accuracy. Adjacent accuracy is defined by Heil-
man et al. (2008) as “the proportion of predictions
that were within one level of the human-assigned
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Measure PO model MLR model
Results on training folds

Correl. 0.786 0.777

Exact Acc. 32.5% 38%

Adj. Acc. 70% 71.3%

Results on test folds
Correl. 0.783 0.772

Exact Acc. 32.4% 38%

Adj. Acc. 70% 71.2%

Table 1: Mean Pearson’sr coefficient, exact and
adjacent accuracies for both models with the ten-
fold cross-validation evaluation.

label for the given text”. They defended this mea-
sure by arguing that even human-assigned reading
levels are not always consistent. Nevertheless, it
should not be forgotten that it can give optimistic
values when the number of classes is small.

Exploratory analysis of the corpus highlighted
the importance of having a similar number of texts
per class. This requirement made it impossible
to use all the texts from the corpus. Some 465
texts were selected, distributed across the 9 levels
in such a way that each level contained about 50
texts. Within each class, an automatic procedure
discarded outliers located more than3σ from the
mean, leaving 440 texts. Both models were trained
on these texts.

The results on the training corpus were promis-
ing, but might be biased. So, we turned to a
ten-fold cross-validation process which guarantees
more reliable values for the three evaluation mea-
sures we had chosen, as well as a better insight
into the generalisability of the two models. The
resulting evaluation measures for training and test
folds are shown in Table 1. The similarity between
them clearly shows that, with 440 observations,
both the models were quite robust. On this corpus,
multinomial logistic regression was significantly
more accurate (with38% of texts correctly classi-
fied against32.4% for the PO model), while Pear-
son’s R was slightly higher for the PO model.

These results suggest that the exact accuracy
may be a better indicator of performance than the
correlation coefficient. However they conflict with
Heilman et al.’s (2008) conclusion that the PO
model performed better than the MLR one. This
discrepancy might arise because the PO model
was less accurate for exact predictions, but better
when the adjacent accuracy by level was taken into

account. However, the data in Table 2 do not sup-
port this hypothesis; rather they confirm the supe-
riority of the MLR model when adjacent accuracy
is considered. In fact, PO model’s lower perfor-
mance seems to be due to a lack of fit to the data,
as revealed by the result of the score test for the
proportional-odds assumption. This yielded a p-
value below0.0001, clearly showing that the PO
model was not a good fit to the corpus.

There remains one last issue to be discussed be-
fore comparing our results to those of other stud-
ies: the empirical evidence for tense being a good
predictor of reading difficulty. We selected tenses
because of our experience as FLE teacher rather
than on theoretical or empirical grounds. How-
ever we found that exact accuracy decreased by
10% when the tense variables were omitted from
the models. Further analysis showed that the tense
contributed significantly to the adjacent accuracy
of classifying the C1 and C2 texts.

7.2 Comparison with other studies

As stated above, it is not easy to compare our
results with those of previous studies, since the
scale, population of interest and often the lan-
guage are different. Furthermore, up till now, we
have not been able to run the classical formu-
lae for French (such as de Landsheere (1963) or
Henry (1975)) on our corpus. So we are limited to
comparing our evaluation measures with those in
the published literature.

With multinomial logistic regression, we ob-
tained a mean adjacent accuracy of71% for 9
classes. This result seems quite good compared
to similar research on L1 English by Heilman et
al. (2008). Using more complex syntactic fea-
tures, they obtained an adjacent accuracy of52%
with a PO model, and45% with a MLR model.
However, they worked with 12 levels, which may
explain their lower percentage.

For French, Collins-Thompson and Callan
(2005) reported a Pearson’s R coefficient of0.64
for a 5-classes naive Bayes classifier while we ob-
tained 0.77 for 9 levels with MLR. This differ-
ence might be explained by the tagging or the use
of better-estimated probabilities for the language
model. Further research on this point to determine
the specificities of an efficient approach to French
readability appears very promising.
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Level A1 A1+ A2 A2+ B1 B1+ B2 C1 C2 Mean
PO model 91% 91% 67% 68% 53% 55% 56% 86% 68% 70%

MLR model 93% 90% 69% 51% 59% 56% 64% 88% 73% 71%

Table 2: Mean adjacent accuracy per level for PO model and MLRmodel (on the test folds).

8 Discussion and future research

This paper has proposed the first readability “for-
mula” for French as a foreign language using NLP
and statistical models. It takes into account some
particularities of French such as its inflected na-
ture. A new scale to assess FFL texts within the
CECR framework, and a new criteria for the cor-
pus involving the use of textbooks, have also been
proposed. The two logistic models applied to a
440-text corpus gave results consistent with the lit-
erature. They also showed the superiority of the
MLR model over the PO model. Since Heilman
et al. (2008) found the opposite, and the intuitive
view is that levels should be described by an ordi-
nal scale of measurement, this issue clearly needs
further investigation.

This research is still in progress, and further
analyses are planned. The predictive capacity of
some other lexical and grammatical features will
be explored. At the lexical level, statistical lan-
guage models seems to be best, and tagging the
texts to work with lemmas turned out to be effi-
cient for French, although it has not been shown
to be superior to disambiguated inflected forms.
Moreover, due to their higher sensibility to con-
text, smoothed n-grams might represent an alter-
native to lemmas.

Once the best unit has been selected, some
other issues remain: it is not clear whether a
model using the probabilities of this unit in the
whole language or probabilities per level (Collins-
Thompson and Callan, 2005) would be more ef-
ficient. We also wonder whether the L1 frequen-
cies of words are similar to those in L2 ? FFL
textbooks use a controlled vocabulary, linked to
specific situational tasks, which suggests that it is
highly possible that the frequencies of words in
FFL differ from those in mother-tongue French.

Grammatical features have been taken into ac-
count through simple parameterisation. More
complex measures (such as the presence of some
syntactic structures (Heilman et al., 2007) or the
characteristics of a syntactic-parsing tree) have
been explored in the literature. We hope that in-

cluding such factors may result in improved accu-
racy for our model. However, these techniques are
probably dependent on the quality of the parser’s
results. Parsers for French are less accurate than
those for English, which may generate some noise
in the analysis.

Finally, we intend to explore the performance
of other classification techniques. Logistic regres-
sion was the most efficient of the statistical mod-
els we tested, but as our corpus grows, more and
more data is becoming available, and data min-
ing approaches may become applicable to the text-
categorization problem for FFL readability. Sup-
port vector machines have already been shown to
be useful for readability purposes (Schwarm and
Ostendorf, 2005). We also want to try aggregating
approaches such as boosting, bagging, and random
forests (Breiman, 2001), since they claim to be ef-
fective when the sample is not perfectly represen-
tative of the population (which could be true for
our data). These analyses would aim to illuminate
some of the assets and flaws of each of the statis-
tical models considered.
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de la formule courte d’Henry au français langue
étrangère. Canadian Modern Language Review,
44(2):261–273.

Council of Europe and Education Committee and
Council for Cultural Co-operation. 2001.Common
European Framework of Reference for Languages:
Learning, Teaching, Assessment. Press Syndicate of
the University of Cambridge.

G. De Landsheere. 1963. Pour une application des
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D.W. Hosmer and S. Lemeshow. 1989.Applied Logis-
tic Regression. Wiley, New York.

D.H. Howes and R.L. Solomon. 1951. Visual duration
threshold as a function of word probability.Journal
of Experimental Psychology, 41(40):1–4.

L. Kandel and A. Moles. 1958. Application de l’indice
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Abstract

This paper deals with the task of find-
ing generally applicable substitutions for a
given input term. We show that the output
of a distributional similarity system base-
line can be filtered to obtain terms that are
not simply similar but frequently substi-
tutable. Our filter relies on the fact that
when two terms are in a common entail-
ment relation, it should be possible to sub-
stitute one for the other in their most fre-
quent surface contexts. Using the Google
5-gram corpus to find such characteris-
tic contexts, we show that for the given
task, our filter improves the precision of a
distributional similarity system from 41%
to 56% on a test set comprising common
transitive verbs.

1 Introduction

This paper looks at the task of finding word substi-
tutions for simple statements in the context of KB
querying. Let us assume that we have a knowl-
edge base made of statements of the type ‘subject
– verb – object’:

1. Bank of America – acquire – Merrill Lynch

2. Lloyd’s – buy – HBOS

3. Iceland – nationalise – Kaupthing

Let us also assume a simple querying facility,
where the user can enter a word and be presented
with all statements containing that word, in a typ-
ical search engine fashion. If we want to return all
acquisition events present in the knowledge base
above (as opposed to nationalisation events), we
might search for ‘acquire’. This will return the
first statement (about the acquisition of Merrill
Lynch) but not the second statement about HBOS.

Ideally, we would like a system able to generate
words similar to our query, so that a statement
containing the verb ‘buy’ gets returned when we
search for ‘acquire’.

This problem is closely related to the clustering
of semantically similar terms, which has received
much attention in the literature. Systems that
perform such clustering usually do so under the
assumption of distributional similarity (Harris,
1954) which state that two words appearing
in similar contexts will be close in meaning.
This observation is statistically useful and has
contributed to successful systems within two
approaches: the pattern-based approach and the
feature vector approach (we describe those two
approaches in the next section). The definition
of similarity used by those systems is fairly
wide, however. Typically, a query on the verb
‘produce’ will return verbs such as ‘export’, ‘im-
port’ or ‘sell’, for instance (see DIRT demo from
http://demo.patrickpantel.com/Content/Lex

Sem/paraphrase.htm, Lin and Pantel, 2001.)

This fairly wide notion of similarity is not fully
appropriate for our word substitutions task: al-
though cats and dogs are similar types of enti-
ties, querying a knowledge base for ‘cat’ shouldn’t
return statements about dogs; statements about
Siamese, however, should be acceptable. So, fol-
lowing Dagan and Glickman (2004), we refine our
concept of similarity as that of entailment, defined
here as the relation whereby the meaning of a word
w1 is ‘included’ in the meaning of word w2 (prac-
tically speaking, we assume that the ‘meaning’ of
a word is represented by the contexts in which it
appears and require that if w1 entails w2, the con-
texts of w2 should be a subset of the contexts of
w1). Given an input term w, we therefore attempt
to extract words which either entail or are entailed
by w. (We do not extract directionality at this
stage.)
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The definition of entailment usually implies that
an entailing word must be substitutable for the en-
tailed one, in some contexts at least. Here, we con-
sider word substitution queries in cases where no
additional contextual information is given, so we
cannot assume that possible, but rare, substitutions
will fit the query intended by the user (‘believe’
correctly entails ‘buy’ in some cases but we can
be reasonably sure that the query ‘buy’ is meant
in the ‘purchase’ sense.) We thus require that our
output will fit the most common contexts. For in-
stance, given the query ‘kill’, we want to return
‘murder’ but not ‘stop’. Given ‘produce’, we want
to return both ‘release’ and ‘generate’ but not ‘fab-
ricate’ or ‘hatch’.1 Taking this into account, we
generally define substitutability as the ability of a
word to replace another one in a given sentence
without changing the meaning or acceptability of
the sentence, and this in the most frequent cases.
(By acceptability, we mean whether the sentence
is likely to be uttered by a native speaker of the
language under consideration.)

In order to achieve both entailment and general
substitutability, we propose to filter the output of
a conventional distributional similarity system us-
ing a check for lexical substitutability in frequent
contexts. The idea of the filter relies on the ob-
servation that entailing words tend to share more
frequent immediate contexts than just related ones.
For instance, when looking at the top 200 most fre-
quent Google 3-gram contexts (Brants and Franz,
2006) appearing after the terms ‘kill’, ‘murder’
and ‘abduct’, we find that ‘kill’ and ‘murder’ share
54 while ‘kill’ and ‘abduct’ only share 2, giving
us the indication that as far as usage is concerned,
‘murder’ is closer to ‘kill’ than ‘abduct’. Addi-
tionally, context frequency provides a way to iden-
tify substitutability for the most common uses of
the word, as required.

In what follows, we briefly present related
work, and introduce our corpus and algorithm, in-
cluding a discussion of our ‘immediate context
overlap’ filter. We then review the results of an
experiment on the extraction of entailment pairs

1In fact, we argue that even in systems where context is
available, searching for all entailing words is not necessary an
advantage: consider the query ‘What does Dole produce?’ to
a search engine. The verb ‘fabricate’ entails ‘produce’ in the
correct sense of the word, but because of its own polysemy,
and unless an expensive layer of WSD is added to the system,
it will return sentences such as ‘Dole fabricated stories about
her opponent’, which is clearly not the information that the
user was looking for.

for 30 input verbs.

2 Previous Work

2.1 Distributional Similarity

2.1.1 Principles

Systems using distributional similarity usually fall
under two approaches:

1. The pattern-based approach (e.g. Ravichad-
ran and Hovy, 2002). The most significant
contexts for an input seed are extracted as
features and those features used to discover
words related to the input (under the assump-
tion that words appearing in at least one sig-
nificant context are similar to the seed word).
There is also a non-distributional strand of
this approach: it uses Hearst-like patterns
(Hearst, 1992) which are supposed to indi-
cate the presence of two terms in a certain re-
lation - most often hyponymy or meronymy
(see Chklovski and Pantel, 2004).

2. The feature vector approach (e.g. Lin and
Pantel, 2001). This method fully embraces
the definition of distributional similarity by
making the assumption that two words ap-
pearing in similar sets of features must be re-
lated.

2.1.2 Limitations

The problems of the distributional similarity as-
sumption are well-known: the facts that ‘a bank
lends money’ and ‘Smith’s brother lent him
money’ do not imply that banks and brothers are
similar entities. This effect becomes particularly
evident in cases where antonyms are returned by
the system; in those cases, a very high distribu-
tional similarity actually corresponds to opposite
meanings. Producing an output ranked accord-
ing to distributional similarity scores (weeding out
anything under a certain threshold) is therefore
not sufficient to retain good precisions for many
tasks. Some work has thus focused on a re-ranking
strategies (see Geffet and Dagan, 2004 and Gef-
fet and Dagan, 2005, who improve the output of a
distributional similarity system for an entailment
task using a web-based feature inclusion check,
and comment that their filtering produces better
outputs than cutting off the similarity pairs with
the lowest ranking.)
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2.2 Extraction Systems

Prominent entailment rule acquisition systems in-
clude DIRT (Lin and Pantel, 2001), which uses
distributional similarity on a 1 GB corpus to iden-
tify semantically similar words and expressions,
and TEASE (Szpektor et al., 2004), which ex-
tracts entailment relations from the web for a given
word by computing characteristic contexts for that
word.

Recently, systems that combine both pattern-
based and feature vector approaches have also
been presented. Lin et al. (2003) and Pantel and
Ravichandran (2004) have proposed to classify the
output of systems based on feature vectors using
lexico-syntactic patterns, respectively in order to
remove antonyms from a related words list and to
name clusters of related terms.

Even more related to our work, Mirkin et al.
(2006) integrate both approaches by constructing
features for the output of both a pattern-based and
a vector-based systems, and by filtering incorrect
entries with a supervised SVM classifier. (The
pattern-based approach uses a set of manually-
constructed patterns applied to a web search.)

In the same vein, Geffet and Dagan (2005) fil-
ter the result of a pattern-based system using fea-
ture vectors. They get their features out of an 18
million word corpus augmented by a web search.
Their idea is that for any pair of potentially simi-
lar words, the features of the entailed one should
comprise all the features of the entailing one.

The main difference between our work and the
last two quoted papers is that we add a new layer
of verification: we extract pairs of verbs using au-
tomatically derived semantic patterns, perform a
first stage of filtering using the semantic signa-
tures of each word and apply a final stage of filter-
ing relying on surface substitutability, which we
name ‘immediate context overlap’ method. We
also experiment with a smaller size corpus to pro-
duce our distributional similarity baseline (a sub-
set of Wikipedia) in an attempt to show that a good
semantic parse and adequate filtering can provide
reasonable performance even on domains where
data is sparse. Our method does not need man-
ually constructed patterns or supervised classifier
training.

2.3 Evaluation

The evaluation of KB or ontology extraction sys-
tems is typically done by presenting human judges

with a subset of extracted data and asking them to
annotate it according to certain correctness crite-
ria. For entailment systems, the annotation usu-
ally relies on two tests: whether the meaning of
one word entails the other one in some senses of
those words, and whether the judges can come up
with contexts in which the words are directly sub-
stitutable. Szpektor et al. (2007) point out the dif-
ficulties in applying those criteria. They note the
low inter-annotator agreements obtained in previ-
ous studies and propose a new evaluation method
based on precise judgement questions applied to
a set of relevant contexts. Using their methods,
they evaluate the DIRT (Lin and Pantel, 2001) and
TEASE (Szpektor et al., 2004) algorithms and ob-
tain upper bound precisions of 44% and 38% re-
spectively on 646 entailment rules for 30 transitive
verbs. We follow here their methodology to check
the results obtained via the traditional annotation.

3 The Data

The corpus used for our distributional similar-
ity baseline consists of a subset of Wikipedia to-
talling 500 MB in size, parsed first with RASP2
(Briscoe et al., 2006) and then into a Robust Min-
imal Recursion Semantics form (RMRS, Copes-
take, 2004) using a RASP-to-RMRS converter.
The RMRS representation consists of trees (or tree
fragments when a complete parse is not possible)
which comprise, for each phrase in the sentence, a
semantic head and its arguments. For instance, in
the sentence ‘Lloyd’s rescues failing bank’, three
subtrees can be extracted:
lemma:rescue arg:ARG1 var:Lloyd’s

which indicates that ‘Lloyd’s’ is subject of the
head ‘rescue’,
lemma:rescue arg:ARG2 var:bank

which indicates that ‘bank’ is object of the head
‘rescue’, and
lemma:failing arg:ARG1 var:bank

which indicates that the argument of ‘failing’ is
‘bank’.

Note that any tree can be transformed into
a feature for a particular lexical item by re-
placing the slot containing the word with a
hole: lemma:rescue arg:ARG2 var:bank be-
comes lemma:hole arg:ARG2 var:bank, a po-
tentially characteristic context for ‘rescue’.

All the experiments reported in this paper con-
cern transitive verbs. In order to speed up
processing, we reduced the RMRS corpus to a
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list of relations with a verbal head and at least
two arguments: lemma:verb-query arg:ARG1

var:subject arg:ARG2 var:object. Note that
we did not force noun phrases in the second ar-
gument of the relations and for instance, the verb
‘say’ was both considered as taking a noun or a
clause as second argument (‘to say a word’, ‘to
say that the word is...’).

4 A Baseline

We describe here our baseline, a system based on
distributional similarity.

4.1 Step 1 - Pattern-Based Pair Extraction

The first step of our algorithm uses a pattern-based
approach to get a list of potential entailing pairs.
For each word w presented to the system, we ex-
tract all semantic patterns containing w. Those se-
mantic patterns are RMRS subtrees consisting of a
semantic head and its children (see Section 3). We
then calculate the Pointwise Mutual Information
between each pattern p and w:

pmi(p, w) = log
(

P (p, w)
P (p) P (w)

)
(1)

where P (p) and P (w) are the probabilities of oc-
currence of the pattern and the instance respec-
tively and P (p, w) is the probability that they ap-
pear together.

PMI is known to have a bias towards less fre-
quent events. In order to counterbalance that bias,
we apply a simple logarithm function to the results
as a discount:

d = log (cwp + 1) (2)

where cwp is the cooccurrence count of an instance
and a pattern.

We multiply the original PMI value by this dis-
count to find the final PMI. We then select the n
patterns with highest PMIs and use them as rele-
vant semantic contexts to find all terms t that also
appear in those contexts. The result of this step
is a list of potential entailment relations, w − t1
... w − tx (we do not know the direction of the
entailment).

4.2 Step 2 - Feature vector Comparison

This step takes the output of the pattern-based ex-
traction and applies a first filter to the potential en-
tailment pairs. The filter relies on the idea that

two words that are similar will have similar fea-
ture vectors (see Geffet and Dagan, 2005). We de-
fine here the feature vector of word w as the list of
semantic features containing w, together with the
PMI of each feature in relation to w as a weight.
For each pair of words (w1, w2) we extract the
feature vectors of both w1 and w2 and calculate
their similarity using the measure of Lin (1998).
Pairs with a similarity under a certain threshold are
weeded out. (We use 0.007 in our experiments –
the value was found by comparing precisions for
various thresholds in a set of initial experiments.)

As a check of how the Lin measure performed
on our Wikipedia subset using RMRS features,
we reproduced the Miller and Charles experi-
ment (1991) which consists in asking humans to
rate the similarity of 30 noun pairs. The experi-
ment is a standard test for semantic similarity sys-
tems (see Jarmasz and Szpakowicz, 2003; Lin,
1998; Resnik, 1995 and Hirst and St Onge, 1998
amongst others). The correlations obtained by pre-
vious systems range between the high 0.6 and the
high 0.8. Those systems rely on edge counting us-
ing manually-created resources such as WordNet
and the Roget’s Thesaurus. We are not actually
aware of results obtained on totally automated sys-
tems (apart from a baseline computed by Strube
and Ponzetto, 2006, using Google hits, which re-
turn a correlation of 0.26.)

Applying our feature vector step to the Miller
and Charles pairs, we get a correlation of 0.38,
way below the edge-counting systems. It turns out,
however, that this low result is at least partially due
to data sparsity: when ignoring the pairs contain-
ing at least one word with frequency under 200
(8 of them, which means ending up with 22 pairs
left out of the initial 30), the correlation goes up
to 0.69. This is in line with the edge-counting sys-
tems and shows that our baseline system produces
a decent approximation of human performance, as
long as enough data is supplied. 2

Two issues remain, though. First, fine-grained
results cannot be obtained over a general corpus:
we note that the pairs ‘coast-forest’ and ‘coast-
hill’ get very similar scores using distributional
similarity while the latter is ranked twice as high
as the former by humans. Secondly, distribu-

2It seems then that in order to maintain precision to a
higher level on our corpus, we could simply disregard pairs
with low-frequency words. (We decided here, however, that
this would be unacceptable from the point of view of recall
and did not attempt to do so.)
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tional methods promise to identify ‘semantically
similar’ words, as do the Miller and Charles ex-
periment and edge-counting systems. However,
as pointed out in the introduction, there is still
a gap between general similarity and entailment:
‘coast’ and ‘hill’ are indeed similar in some way
but never substitutable. Our baseline is therefore
constrained by a theoretical problem that further
modules must solve.

5 Immediate Context Overlap

Our immediate context overlap module acts as a
filter for the system described as our baseline. The
idea is that, out of all pairs of ‘similar’ words,
we want to find those that express entailment in
at least one direction. So for instance, given the
pairs ‘kill – murder’ and ‘kill – abduct’, we would
like to keep the former and filter the latter out. We
can roughly explain why the second pair is not ac-
ceptable by saying that, although the semantics of
the two words are close (they are both about an act
of violence conducted against somebody), they are
not substitutable in a given sentence.

To satisfy substitutability, we generally specify
that if w1 entails w2, then there should be surface
contexts where w2 can replace w1, with the substi-
tution still producing an acceptable utterance (see
our definition of acceptability in the introduction).
We further suggest that if one word can substitute
the other in frequent immediate contexts, we have
the basis to believe that entailment is possible in
at least one common sense of the words – while
if substitution is impossible or rare, we can doubt
the presence of an entailment relation, at least in
common senses of the terms. This can be made
clearer with an example. We show in Table 1 some
of the most frequent trigrams to appear after the
verbs ‘to kill’, ‘to murder’ and ‘to abduct’ (those
trigrams were collected from the Google 5-gram
corpus.) It is immediately noticeable that some
contexts are not transferable from one term to the
other: phrases such as ‘to murder and forcibly
recruit someone’, or ‘to abduct cancer cells’ are
impossible – or at least unconventional. We also
show in italic some common immediate contexts
between the three words. As pointed out in the in-
troduction, when looking at the top 200 most fre-
quent contexts for each term, we find that ‘kill’
and ‘murder’ share 54 while ‘kill’ and ‘abduct’
only share 2, giving us the indication that as far as
usage is concerned, ‘murder’ is closer to ‘kill’ than

‘abduct’. Furthermore, by looking at frequency of
occurrence, we partly answer our need to find sub-
stitutions that work in very frequent sentences of
the language.

The Google 5-gram corpus gives the frequency
of each of its n-grams, allowing us to check substi-
tutability on the 5-grams with highest occurrence
counts for each potential entailment pair returned
by our baseline. For each pair (w1, w2) we select
the m most frequent contexts for both w1 and w2
and simply count the overlap between both lists. If
there is any overlap, we keep the pair; if the over-
lap is 0, we weed it out (the low threshold helps
our recall to remain acceptable). We experiment
with left and right contexts, i.e. with the query
term at the beginning and the end of the n-gram,
and with various combinations (see Section 6).

6 Results

The results in this section are produced by ran-
domly selecting 30 transitive verbs out of the 500
most frequent in our Wikipedia corpus and using
our system to extract non-directional entailment
pairs for those verbs, following a similar experi-
ment by Szpektor et al. (2007). We use a list of
n = 30 features in Step 1 of the baseline. We eval-
uate the results by first annotating them according
to a broad definition of entailment: if the annota-
tor can think of any context where one word of
the pair could replace the other, preserving sur-
face form and semantics, then the two words are
in an entailment relation. (Note again that we do
not consider the directionality of entailment at this
stage.) We then re-evaluate our best score using
the Szpektor et al. method (2007), which we think
is more suited for checking true substitutability. 3

The baseline described in Section 4 produces
301 unique pairs, 124 of which we judge correct
using our broad entailment definition, yielding a
precision of 41%. The average number of rela-
tions extracted for each input term is thus 4.1.

Tables 2 and 3 show our results at the end of
the immediate context overlap step. Table 2 re-
port results using the m = 50 most frequent con-
texts for each word in the pair while Table 3 uses
an expanded list of 200 contexts. Precision is the

3Although no direct comparison with the works
of Szpektor et al. or Lin and Pantel is provided
in this paper, we are in the process of evaluating
our results against the TEASE output (available at
http://www.cs.biu.ac.il/∼szpekti/TEASE co
llection.zip) through a web-based annotation task.
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Table 1: Immediate Contexts for ‘kill’, ‘murder’ and ‘abduct’
kill murder abduct

two birds with babies that life her and make

cancer cells and his wife and an innocent man

a mocking bird thousands of innocent unsuspecting people and

or die for women and children suspects in foreign

or be killed her husband and a young girl

another human being in the name and forcibly recruit

thousands of people in connection with a teenage girl

in the name another human being and kill her

his wife and tens of thousands a child from

members of the the royal family women and children

number of correct relations amongst all those re-
turned. Recall is calculated with regard to the 124
pairs judged correct at the end of the previous step
(i.e., this is not true recall but recall relative to the
baseline results.)

We experimented with six different set-ups:

1- right context: the four words following the
query term are used as context

2- left context: the four words preceding the
query term are used as context

3- right and left contexts: the best contexts
(those with highest frequencies) are selected
out of the concatenation of both right and left
context lists

4- concatenation: the concatenation of the re-
sults obtained from 1 and 2

5- inclusion: the inclusion set of the results from
1 and 2, that is, the pairs judged correct by
both the right context and left context meth-
ods.

6- right context with ‘to’: identical to 1 but the
5-gram is required to start with ‘to’. This
ensures that only the verb form of the query
term is considered but has the disadvantage
of effectively transforming 5-grams into 4-
grams.

Our best overall results comes from using 50
immediate contexts starting with ‘to’, right con-
text only: we obtain 56% precision on a recall of
85% calculated on the results of the previous step.

Table 2: Results using 50 immediate contexts

Context Used Precision Recall F Returned Correct

Left 48% 63% 54% 164 78

Right 62% 26% 36% 52 32

Left and Right 53% 52% 52% 122 65

Concatenation 48% 70% 57% 181 87

Inclusion 67% 19% 30% 36 24

Right + ‘to’ 56% 85% 68% 187 105

Table 3: Results using 200 immediate contexts

Context Used Precision Recall F Returned Correct

Left 44% 86% 58% 244 107

Right 54% 60% 57% 137 74

Left and Right 46% 85% 60% 228 105

Concatenation 44% 92% 60% 260 114

Inclusion 55% 53% 54% 121 66

Right + ‘to’ 48% 97% 64% 248 120

6.1 Instance-Based Evaluation

We then recalculate our best precision following
the method introduced in Szpektor et al. (2007).
This approach consists in extracting, for each po-
tential entailment relation X-verb1-Y⇒X-verb2-
Y, 15 sentences in which verb1 appears and ask
annotators to provide answers to three questions:

1. Is the left-hand side of the relation entailed
by the sentence? If so...

2. When replacing verb1 with verb2, is the sen-
tence still likely in English? If so...
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3. Does the sentence with verb1 entail the sen-
tence with verb2?

We show in Table 4 some potential annotations
at various stages of the process.

For each pair, Szpektor et al. then calculate a
lower-bound precision as

Plb =
nEntailed

nLeftHandEntailed
(3)

where nEntailed is the number of entailed sentence
pairs (the annotator has answered ‘yes’ to the third
question) and nLeftHandEntailed is the number of
sentences where the left-hand relation is entailed
(the annotator has answered ‘yes’ to the first ques-
tion). They also calculate an upper-bound preci-
sion as

Pub =
nEntailed

nAcceptable
(4)

where nAcceptable is the number of acceptable
verb2 sentences (the annotator has answered ‘yes’
to the second question). A pair is deemed to con-
tain an entailment relation if the precision for that
particular pair is over 80%.

The authors comment that a large proportion of
extracted sentences lead to a ‘left-hand side not en-
tailed’ answer. In order to counteract that effect,
we only extract sentences without modals or nega-
tion from our Wikipedia corpus and consequently
only require 10 sentences per relation (only 11%
of our sentences have a ‘non-entailed’ left-hand
side relation against 43% for Szpektor et al.).

We obtain an upper bound precision of 52%,
which is slightly lower than the one initially cal-
culated using our broad definition of entailment,
showing that the more stringent evaluation is use-
ful when checking for general substitutability in
the returned pairs. When we calculate the lower
bound precision, however, we obtain a low 10%
precision due to the large number of sentences
judged as ‘unlikely English sentences’ after sub-
stitution (they amount to 33% of all examples with
a left-hand side judged ‘entailed’). This result il-
lustrates the need for a module able to check sen-
tence acceptability when applying the system to
true substitution tasks. Fortunately, as we explain
in the next section, it also takes into account re-
quirements that are only necessary for generation
tasks, and are therefore irrelevant to our querying
task.

7 Discussion

Our main result is that the immediate context over-
lap step dramatically increases our precision (from
41% to 56%), showing that a more stringent notion
of similarity can be achieved when adequately fil-
tering the output of a distributional similarity sys-
tem. However, it also turns out that looking at
the most frequent contexts of the word to substi-
tute does not fully solve the issue of surface ac-
ceptability (leading to a high number of ‘right-
hand side not entailed’ annotations). We argue,
though, that the issue of producing an acceptable
English sentence is a generation problem separate
from the extraction task. Some systems, in fact,
are dedicated to related problems, such as identi-
fying whether the senses of two synonyms are the
same in a particular lexical context (see Dagan et
al., 2006). As far as our needs are concerned in
the task of KB querying, we only require accurate
searching capabilities as opposed to generational
capabilities: the expansion of search terms to in-
clude impossible strings is not a problem in terms
of result.

Looking at the immediate context overlaps re-
turned for each pair by the system, we find that the
overlap (the similarity) can be situated at various
linguistic layers:

• in the semantics of the verb’s object: ‘a
new album’ is something that one would fre-
quently ‘record’ or ‘release’. The phrase
boosts the similarity score between ‘record’
and ‘release’ in their music sense.

• in the clausal information of the right context:
a context starting with a clause introduced by
‘that’ is likely to be preceded by a verb ex-
pressing cognition or discourse. The tri-gram
‘that there is’ increases the similarity of pairs
such as ‘say - argue’.

• in the prepositional information of the right
context: ‘about’ is the preposition of choice
after cognition verbs such as ‘think’ or ‘won-
der’. The context ‘about the future’ helps the
score of the pair ‘think - speculate’ in the cog-
nitive sense (note that ‘speculate’ in a finan-
cial sense would take the preposition ‘on’.)

Some examples of overlaps are shown in Ta-
ble 5.

We also note that the system returns a fair pro-
portion of vacuous contexts such as ‘one of the’ or
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Table 4: Annotation Examples Following the Szpektor et al. Method

Word Pair Sentence Question 1 Question 2 Question 3

acquire – buy Lloyds acquires HBOS yes yes (Lloyds buys HBOS) yes

acquire – praise Lloyds acquires HBOS yes yes (Lloyds praises HBOS) no

acquire – spend Lloyds acquires HBOS yes no (*Lloyds spends HBOS) –

acquire – buy Lloyds may acquire HBOS no – –

Table 5: Sample of Immediate Context Overlaps

think – speculate say – claim describe – characterise

about the future that it is the nature of

about what the that there is the effects of

about how the that it was it as a

that they were the effect of

that they have the role of

that it has the quality of

the impact of

the dynamics of

‘part of the’ which contribute to the score of many
pairs. Our precision would probably benefit from
excluding such contexts.

We note that as expected, using a larger set of
contexts leads to better recall and decreased pre-
cision. The best precision is obtained by return-
ing the inclusion set of both left and right contexts
results, but at a high cost in recall. Interestingly,
we find that the right context of the verb is far
more telling than the left one (potentially, objects
are more important than subjects). This is in line
with results reported by Alfonseca and Manandhar
(2002).

Our best results yield an average of 3.4 relations
for each input term. It is in the range reported
by the authors of the TEASE system (Szpektor et
al., 2004) but well below the extrapolated figures
of over 20 relations in Szpektor et al., 2007. We
point out, however, that we only search for sin-
gle word substitutions, as opposed to single and
multi-word substitutions for Szpektor et al.. Fur-
thermore, our experiments are performed on 500
MB of text only, against 1 GB of news data for
the DIRT system and the web for the TEASE al-
gorithm. More data may help our recall, as well as
bootstrapping over our best precision system.

We show a sample of our results in Table 6. The
pairs with an asterisk were considered incorrect at
human evaluation stage.

Table 6: Sample of Extracted Pairs

bring – attract make - earn

*call – form *name - delegate

change – alter offer - provide

create – generate *perform - discharge

describe – characterise produce – release

develop – generate record – count

*do – behave *release – announce

feature – boast *remain – comprise

*find – indicate require – demand

follow – adopt say – claim

*grow – contract tell – assure

*increase - decline think – believe

leave - abandon *use – abandon

8 Conclusion

We have presented here a system for the extrac-
tion of word substitutions in the context of KB
querying. We have shown that the output of a
distributional similarity baseline can be improved
by filtering it using the idea that two words in an
entailment relation are substitutable in immediate
surface contexts. We obtained a precision of 56%
(52% using our most stringent evaluation) on a test
set of 30 transitive verbs, and a yield of 3.4 rela-
tions per verb.

We also point out that relatively good precisions
can be obtained on a parsed medium-sized corpus
of 500 MB, although recall is certainly affected.

We note that our current implementation does
not always satisfy the requirement for substi-
tutability for generation tasks and point out that
the system is therefore limited to our intended use,
which involves search capabilities only.

We would like to concentrate in the future on
providing a direction for the entailment pairs ex-
tracted by the system. We also hope that recall
could possibly improve using a larger set of fea-
tures in the pattern-based step (this is suggested
also by Szpektor et al., 2004), together with ap-
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propriate bootstrapping.
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Abstract

The paper presents an application of
Structural Correspondence Learning
(SCL) (Blitzer et al., 2006) for domain
adaptation of a stochastic attribute-value
grammar (SAVG). So far, SCL has
been applied successfully in NLP for
Part-of-Speech tagging and Sentiment
Analysis (Blitzer et al., 2006; Blitzer
et al., 2007). An attempt was made
in the CoNLL 2007 shared task to ap-
ply SCL to non-projective dependency
parsing (Shimizu and Nakagawa, 2007),
however, without any clear conclusions.
We report on our exploration of applying
SCL to adapt a syntactic disambiguation
model and show promising initial results
on Wikipedia domains.

1 Introduction

Many current, effective natural language process-
ing systems are based on supervised Machine
Learning techniques. The parameters of such sys-
tems are estimated to best reflect the character-
istics of the training data, at the cost of porta-
bility: a system will be successful only as long
as the training material resembles the input that
the model gets. Therefore, whenever we have ac-
cess to a large amount of labeled data from some
“source” (out-of-domain), but we would like a
model that performs well on some new “target”
domain (Gildea, 2001; Daumé III, 2007), we face
the problem ofdomain adaptation.

The need for domain adaptation arises in many
NLP tasks: Part-of-Speech tagging, Sentiment
Analysis, Semantic Role Labeling or Statistical
Parsing, to name but a few. For example, the per-
formance of a statistical parsing system drops in
an appalling way when a model trained on the Wall
Street Journal is applied to the more varied Brown
corpus (Gildea, 2001).

The problem itself has started to get attention
only recently (Roark and Bacchiani, 2003; Hara et
al., 2005; Daumé III and Marcu, 2006; Daumé III,
2007; Blitzer et al., 2006; McClosky et al., 2006;
Dredze et al., 2007). We distinguish two main ap-
proaches to domain adaptation that have been ad-
dressed in the literature (Daumé III, 2007):super-
visedandsemi-supervised.

In supervised domain adaptation(Gildea, 2001;
Roark and Bacchiani, 2003; Hara et al., 2005;
Daumé III, 2007), besides the labeled source data,
we have access to a comparably small, but labeled
amount of target data. In contrast,semi-supervised
domain adaptation(Blitzer et al., 2006; McClosky
et al., 2006; Dredze et al., 2007) is the scenario in
which, in addition to the labeled source data, we
only haveunlabeledand no labeled target domain
data. Semi-supervised adaptation is a much more
realistic situation, while at the same time also con-
siderably more difficult.

Studies on the supervised task have shown that
straightforward baselines (e.g. models based on
source only, target only, or the union of the data)
achieve a relatively high performance level and are
“surprisingly difficult to beat” (Daumé III, 2007).
Thus, one conclusion from that line of work is that
as soon as there is a reasonable (often even small)
amount of labeled target data, it is often more fruit-
ful to either just use that, or to apply simple adap-
tation techniques (Daumé III, 2007; Plank and van
Noord, 2008).

2 Motivation and Prior Work

While several authors have looked at the super-
vised adaptation case, there are less (and espe-
cially less successful) studies on semi-supervised
domain adaptation (McClosky et al., 2006; Blitzer
et al., 2006; Dredze et al., 2007). Of these, Mc-
Closky et al. (2006) deal specifically with self-
training for data-driven statistical parsing. They
show that together with a re-ranker, improvements
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are obtained. Similarly, Structural Correspon-
dence Learning (Blitzer et al., 2006; Blitzer et
al., 2007; Blitzer, 2008) has proven to be suc-
cessful for the two tasks examined, PoS tagging
and Sentiment Classification. In contrast, Dredze
et al. (2007) report on “frustrating” results on
the CoNLL 2007 semi-supervised adaptation task
for dependency parsing, i.e. ”no team was able
to improve target domain performance substan-
tially over a state of the art baseline”. In the
same shared task, an attempt was made to ap-
ply SCL to domain adaptation for data-driven de-
pendency parsing (Shimizu and Nakagawa, 2007).
The system just ended up at rank 7 out of 8 teams.
However, based on annotation differences in the
datasets (Dredze et al., 2007) and a bug in their
system (Shimizu and Nakagawa, 2007), their re-
sults are inconclusive.1 Thus, the effectiveness of
SCL is rather unexplored for parsing.

So far, most previous work on domain adapta-
tion for parsing has focused ondata-drivensys-
tems (Gildea, 2001; Roark and Bacchiani, 2003;
McClosky et al., 2006; Shimizu and Nakagawa,
2007), i.e. systems employing (constituent or de-
pendency based)treebank grammars(Charniak,
1996). Parse selection constitutes an important
part of many parsing systems (Johnson et al.,
1999; Hara et al., 2005; van Noord and Malouf,
2005; McClosky et al., 2006). Yet, the adaptation
of parse selection models to novel domains is a far
less studied area. This may be motivated by the
fact that potential gains for this task are inherently
bounded by the underlying grammar. The few
studies on adapting disambiguation models (Hara
et al., 2005; Plank and van Noord, 2008) have fo-
cused exclusively on the supervised scenario.

Therefore, the direction we explore in this
study is semi-supervised domain adaptation for
parse disambiguation. We examine the effec-
tiveness ofStructural Correspondence Learning
(SCL) (Blitzer et al., 2006) for this task, a re-
cently proposed adaptation technique shown to be
effective for PoS tagging and Sentiment Analy-
sis. The system used in this study is Alpino, a
wide-coverage Stochastic Attribute Value Gram-
mar (SAVG) for Dutch (van Noord and Malouf,
2005; van Noord, 2006). For our empirical eval-

1As shown in Dredze et al. (2007), the biggest problem
for the shared task was that the provided datasets were an-
notated with different annotation guidelines, thus the gen-
eral conclusion was that the task was ill-defined (Nobuyuki
Shimizu, personal communication).

uation we explore Wikipedia as primary test and
training collection.

In the sequel, we first introduce the parsing sys-
tem. Section 4 reviews Structural Correspondence
Learning and shows our application of SCL to
parse selection, including all our design choices.
In Section 5 we present the datasets, introduce the
process of constructing target domain data from
Wikipedia, and discuss interesting initial empiri-
cal results of this ongoing study.

3 Background: Alpino parser

Alpino (van Noord and Malouf, 2005; van Noord,
2006) is a robust computational analyzer for Dutch
that implements the conceptual two-stage parsing
approach. The system consists of approximately
800 grammar rules in the tradition of HPSG, and
a large hand-crafted lexicon, that together with a
left-corner parser constitutes the generation com-
ponent. For parse selection, Alpino employs a dis-
criminative approach based on Maximum Entropy
(MaxEnt). The output of the parser is dependency
structure based on the guidelines of CGN (Oost-
dijk, 2000).

The Maximum Entropy model (Berger et al.,
1996; Ratnaparkhi, 1997; Abney, 1997) is a con-
ditional model that assigns a probability to every
possible parseω for a given sentences. The model
consists of a set ofm feature functionsfj(ω) that
describe properties of parses, together with their
associated weightsθj . The denominator is a nor-
malization term whereY (s) is the set of parses
with yield s:

pθ(ω|s; θ) =
exp(

∑m
j=1 θjfj(ω))

∑
y∈Y (s) exp(

∑m
j=1 θjfj(y)))

(1)

The parameters (weights)θj can be estimated
efficiently by maximizing the regularized condi-
tional likelihood of a training corpus (Johnson et
al., 1999; van Noord and Malouf, 2005):

θ̂ = arg max
θ

log L(θ) −

∑m
j=1 θ2

j

2σ2
(2)

whereL(θ) is the likelihood of the training data.
The second term is a regularization term (Gaus-
sian prior on the feature weights with mean zero
and varianceσ). The estimated weights determine
the contribution of each feature. Features appear-
ing in correct parses are given increasing (posi-
tive) weight, while features in incorrect parses are
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given decreasing (negative) weight. Once a model
is trained, it can be applied to choose the parse
with the highest sum of feature weights.

The MaxEnt model consists of a large set of
features, corresponding to instantiations of feature
templates that model various properties of parses.
For instance, Part-of-Speech tags, dependency re-
lations, grammar rule applications, etc. The cur-
rent standard model uses about 11,000 features.
We will refer to this set of features as original fea-
tures. They are used to train the baseline model on
the given labeled source data.

4 Structural Correspondence Learning

SCL (Structural Correspondence Learn-
ing) (Blitzer et al., 2006; Blitzer et al., 2007;
Blitzer, 2008) is a recently proposed domain
adaptation technique which uses unlabeled data
from both source and target domain to learn
correspondences between features from different
domains.

Before describing the algorithm in detail, let us
illustrate the intuition behind SCL with an exam-
ple, borrowed from Blitzer et al. (2007). Suppose
we have a Sentiment Analysis system trained on
book reviews (domain A), and we would like to
adapt it to kitchen appliances (domain B). Fea-
tures such as “boring” and “repetitive” are com-
mon ways to express negative sentiment in A,
while “not working” or “defective” are specific to
B. If there are features across the domains, e.g.
“don’t buy”, with which the domain specific fea-
tures are highly correlated with, then we might
tentatively align those features.

Therefore, the key idea of SCL is to identify au-
tomatically correspondences among features from
different domains by modeling their correlations
with pivot features. Pivots are features occur-
ring frequently and behaving similarly in both do-
mains (Blitzer et al., 2006). They are inspired by
auxiliary problems from Ando and Zhang (2005).
Non-pivot features that correspond with many of
the same pivot-features are assumed to corre-
spond. Intuitively, if we are able to find good cor-
respondences among features, then the augmented
labeled source domain data should transfer better
to a target domain (where no labeled data is avail-
able) (Blitzer et al., 2006).

The outline of the algorithm is given in Figure 1.
The first step is to identifym pivot features oc-
curring frequently in the unlabeled data of both

Input: - labeled source data{(xs, ys)
Ns

s=1}
- unlabeled data from both source and
target domainxul = xs, xt

1. Selectm pivot features

2. Trainm binary classifiers (pivot predictors)

3. Create matrixWn×m of binary predictor
weight vectorsW = [w1, .., wm], wheren
is the number of nonpivot features inxul

4. Apply SVD to W : Wn×m =
Un×nDn×mV T

m×m where θ = UT
[1:h,:]

are theh top left singular vectors ofW .

5. Apply projectionxsθ and train a predictor
on the original and new features obtained
through the projection.

Figure 1: SCL algorithm (Blitzer et al., 2006).

domains. Then, a binary classifier is trained for
each pivot feature (pivot predictor) of the form:
“Does pivot featurel occur in this instance?”. The
pivots are masked in the unlabeled data and the
aim is to predict them using non-pivot features.
In this way, we obtain a weight vectorw for each
pivot predictor. Positive entries in the weight vec-
tor indicate that a non-pivot is highly correlated
with the respective pivot feature. Step 3 is to ar-
range them weight vectors in a matrixW , where
a column corresponds to a pivot predictor weight
vector. Applying the projectionW T x (wherex
is a training instance) would give usm new fea-
tures, however, for “both computational and sta-
tistical reasons” (Blitzer et al., 2006; Ando and
Zhang, 2005) a low-dimensional approximation of
the original feature space is computed by applying
Singular Value Decomposition (SVD) onW (step
4). Let θ = UT

h×n be the toph left singular vec-
tors of W (with h a dimension parameter andn
the number of non-pivot features). The resultingθ
is a projection onto a lower dimensional spaceR

h,
parameterized byh.

The final step of SCL is to train a linear predic-
tor on the augmented labeled source data〈x, θx〉.
In more detail, the original feature spacex is aug-
mented withh new features obtained by apply-
ing the projectionθx. In this way, we can learn
weights for domain-specific features, which oth-
erwise would not have been observed. Ifθ con-
tains meaningful correspondences, then the pre-
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dictor trained on the augmented data should trans-
fer well to the new domain.

4.1 SCL for Parse Disambiguation

A property of the pivot predictors is that they can
be trained from unlabeled data, as they represent
properties of the input. So far, pivot features on the
word levelwere used (Blitzer et al., 2006; Blitzer
et al., 2007; Blitzer, 2008), e.g. “Does the bigram
not buyoccur in this document?” (Blitzer, 2008).

Pivot features are the key ingredient for SCL,
and they should align well with the NLP task. For
PoS tagging and Sentiment Analysis, features on
the word level are intuitively well-related to the
problem at hand. For the task of parse disambigua-
tion based on a conditional model this is not the
case.

Hence, we actually introduce an additional and
new layer of abstraction, which, we hypothesize,
aligns well with the task of parse disambiguation:
we firstparsethe unlabeled data. In this way we
obtain full parses for given sentences as produced
by the grammar, allowing access to more abstract
representations of the underlying pivot predictor
training data (for reasons of efficiency, we here use
only the first generated parse as training data for
the pivot predictors, rather than n-best).

Thus, instead of using word-level features, our
features correspond to properties of the gener-
ated parses: application of grammar rules (r1,r2
features), dependency relations (dep), PoS tags
(f1,f2), syntactic features (s1), precedence (mf),
bilexical preferences (z), apposition (appos) and
further features for unknown words, temporal
phrases, coordination (h,in year and p1, respec-
tively). This allows us to get a possibly noisy,
but more abstract representation of the underlying
data. The set of features used in Alpino is further
described in van Noord and Malouf (2005).

Selection of pivot features As pivot features
should be common across domains, here we re-
strict our pivots to be of the typer1,p1,s1(the most
frequently occurring feature types). In more de-
tail, r1 indicates which grammar rule applied,p1
whether coordination conjuncts are parallel, and
s1whether topicalization or long-distance depen-
dencies occurred. We count how often each fea-
ture appears in the parsed source and target do-
main data, and select thoser1,p1,s1 features as
pivot features, whose count is> t, wheret is a
specified threshold. In all our experiments, we set

t = 5000. In this way we obtained on average 360
pivot features, on the datasets described in Sec-
tion 5.

Predictive features As pointed out by Blitzer et
al. (2006), each instance will actually contain fea-
tures which are totally predictive of the pivot fea-
tures (i.e. the pivot itself). In our case, we ad-
ditionally have to pay attention to ’more specific’
features, e.g.r2 is a feature that extendsr1, in the
sense that it incorporates more information than
its parent (i.e. which grammar rules applied in the
construction of daughter nodes). It is crucial to re-
move these predictive features when creating the
training data for the pivot predictors.

Matrix and SVD Following Blitzer et al. (2006)
(which follow Ando and Zhang (2005)), we only
use positive entries in the pivot predictors weight
vectors to compute the SVD. Thus, when con-
structing the matrixW , we disregard all nega-
tive entries inW and compute the SVD (W =
UDV T ) on the resulting non-negative sparse ma-
trix. This sparse representation saves both time
and space.

4.2 Further practical issues of SCL

In practice, there are more free parameters and
model choices (Ando and Zhang, 2005; Ando,
2006; Blitzer et al., 2006; Blitzer, 2008) besides
the ones discussed above.

Feature normalization and feature scaling.
Blitzer et al. (2006) found it necessary to normal-
ize and scale the new features obtained by the pro-
jectionθ, in order to “allow them to receive more
weight from a regularized discriminative learner”.
For each of the features, they centered them by
subtracting out the mean and normalized them to
unit variance (i.e. x − mean/sd). They then
rescaled the features by a factorα found on held-
out data:αθx.

Restricted Regularization.When training the
supervised model on the augmented feature space
〈x, θx〉, Blitzer et al. (2006) only regularize the
weight vector of the original features, but not
the one for the new low-dimensional features.
This was done to encourage the model to use
the new low-dimensional representation rather
than the higher-dimensional original representa-
tion (Blitzer, 2008).

Dimensionality reduction by feature type.An
extension suggested in Ando and Zhang (2005) is
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to compute separate SVDs for blocks of the matrix
W corresponding to feature types (as illustrated in
Figure 2), and then to apply separate projection
for every type. Due to the positive results in Ando
(2006), Blitzer et al. (2006) include this in their
standard setting of SCL and report results using
block SVDs only.

Figure 2: Illustration of dimensionality reduction
by feature type (Ando and Zhang, 2005). The grey
area corresponds to a feature type (submatrix of
W ) on which the SVD is computed (block SVD);
the white area is regarded as fixed to zero matrices.

5 Experiments and Results

5.1 Experimental design

The base (source domain) disambiguation model
is trained on the Alpino Treebank (van Noord,
2006) (newspaper text), which consists of ap-
proximately 7,000 sentences and 145,000 tokens.
For parameter estimation of the disambiguation
model, in all reported experiments we use the
TADM2 toolkit (toolkit for advanced discrimina-
tive training), with a Gaussian prior (σ2=1000)
and the (default) limited memory variable metric
estimation technique (Malouf, 2002).

For training the binary pivot predictors, we use
the MegaM3 Optimization Package with the so-
called ”bernoulli implicit” input format. To com-
pute the SVD, we use SVDLIBC.4

The output of the parser is dependency struc-
ture. A standard evaluation metric is to measure
the amount of generated dependencies that are
identical to the stored dependencies (correct la-
beled dependencies), expressed as f-score. An al-
ternative measure is concept accuracy (CA), which
is similar to f-score, but allows possible discrep-
ancy between the number of returned dependen-
cies (van Noord, 2006; Plank and van Noord,

2http://tadm.sourceforge.net/
3http://www.cs.utah.edu/∼hal/megam/
4http://tedlab.mit.edu/∼dr/svdlibc/

2008). CA is usually slightly lower than f-score.
Let Di

p be the number of dependencies produced
by the parser for sentencei. Di

g is the number of
dependencies in the treebank parse, andDi

o is the
number of correct dependencies produced by the
parser. Then,

CA =
Do∑

i max(Di
g,D

i
p)

If we want to compare the performance of dis-
ambiguation models, we can employ theφ mea-
sure (van Noord and Malouf, 2005; van Noord,
2007). Intuitively, it tells us how much of the dis-
ambiguation problem has been solved.

φ =
CA − base

oracle − base
× 100

In more detail, theφ measure incorporates an up-
per and lower bound:basemeasures the accu-
racy of a model that simply selects the first parse
for each sentence;oracle represents the accuracy
achieved by a model that always selects the best
parse from the set of potential parses (within the
coverage of the parser). In addition, we also re-
port relative error reduction(rel.er), which is the
relative difference inφ scores for two models.

As target domain, we consider the Dutch part
of Wikipedia as data collection, described in the
following.

5.2 Wikipedia as resource

In our experiments, we exploit Wikipedia both as
testset and as unlabeled data source. We assume
that in order to parse data from a very specific do-
main, say about the artist Prince, then data related
to that domain, like information about the New
Power Generation, the Purple rain movie, or other
American singers and artists, should be of help.
Thus, we exploit Wikipedia and its category sys-
tem to gather domain-specific target data.

Construction of target domain data In more
detail, we use the Dutch part of Wikipedia pro-
vided by WikiXML,5 a collection of Wikipedia ar-
ticles converted to XML format. As the corpus is
encoded in XML, we can exploit general purpose
XML Query Languages, such as XQuery, Xslt and
XPath, to extract relevant information from the
Wikipedia corpus.

Given a wikipagep, with c ∈ categories(p),
we can identify pages related top of various

5http://ilps.science.uva.nl/WikiXML/
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types of ’relatedness’: directly related pages (those
that share a category, i.e. allp′ where ∃c′ ∈
categories(p′) such thatc = c′), or alterna-
tively, pages that share a sub- or supercategory
of p, i.e. p′ wherec′ ∈ categories(p′) andc′ ∈
sub categories(p) or c′ ∈ super categories(p).
For example, Figure 3 shows the categories ex-
tracted for the Wikipedia article about pope Jo-
hannes Paulus II.

<wikipage id="6677">
<cat t="direct" n="Categorie:Paus"/>
<cat t="direct" n="Categorie:Pools_theoloog"/>
<cat t="super" n="Categorie:Religieus leider"/>
<cat t="super" n="Categorie:Rooms-katholiek persoon"/>
<cat t="super" n="Categorie:Vaticaanstad"/>
<cat t="super" n="Categorie:Bisschop"/>
<cat t="super" n="Categorie:Kerkgeschiedenis"/>
<cat t="sub" n="Categorie:Tegenpaus"/>
<cat t="super" n="Categorie:Pools persoon"/>

</wikipage>

Figure 3: Example of extracted Wikipedia cate-
gories for a given article (direct, sup- and subcats).

To create the set of related pages for a given ar-
ticle p, we proceed as follows:

1. Find sub- and supercategories ofp

2. Extract all pages that are related top (through
sharing a direct, sub or super category)

3. Optionally, filter out certain pages

In our empirical setup, we followed Blitzer et al.
(2006) and tried to balance the size of source and
target data. Thus, depending on the size of the re-
sulting target domain dataset, and the “broadness”
of the categories involved in creating it, we might
wish to filter out certain pages. We implemented
a filter mechanism that excludes pages of a cer-
tain category (e.g. a supercategory that is hypoth-
esized to be “too broad”). Alternatively, we might
have used a filter mechanism that excludes certain
pages directly.

In our experiments, we always included pages
that are directly related to a page of inter-
est, and those that shared a subcategory. Of
course, the page itself is not included in that
dataset. With regard to supercategories, we usu-
ally included all pages having a categoryc ∈
super categories(p), unless stated otherwise.

Test collection Our testset consists of a selection
of Wikipedia articles that have been manually cor-
rected in the course of the D-Coi/LASSY project.6

6Ongoing project, seehttp://www.let.rug.nl/
∼vannoord/Lassy/

An overview of the testset including size indica-
tions is given in Table 1. Table 2 provides infor-
mation on the target domain datasets constructed
from Wikipedia.

Wiki/DCOI ID Title Sents
6677/026563 Prince (musician) 358
6729/036834 Paus Johannes Paulus II 232
182654/041235 Augustus De Morgan 259

Table 1: Size of test datasets.

Related to Articles Sents Tokens Relationship
Prince 290 9,772 145,504 filtered super
Paus 445 8,832 134,451 all
De Morgan 394 8,466 132,948 all

Table 2: Size of related unlabeled data; relation-
ship indicates whether all related pages are used
or some are filtered out (see section 5.2).

5.3 Empirical Results

For all reported results, we randomly selectn =
200 maximum number of parses per sentence for
evaluation.

Baseline accuracies Table 3 shows the baseline
performance (of the standard Alpino model) on the
various Wikipedia testsets (CA, f-score). The third
and fourth column indicate the upper- and lower
bound measures (defined in section 5.1).

Title CA f-score base oracle
Prince (musician) 85.03 85.38 71.95 88.70
Paus Johannes Paulus II 85.72 86.32 74.30 89.09
Augustus De Morgan 80.09 80.61 70.08 83.52

Table 3: Baseline results.

While the parser normally operates on an accu-
racy level of roughly 88-89% (van Noord, 2007)
on its own domain (newspaper text), the accu-
racy on these subdomains drops to around 85%.
The biggest performance decrease (to 80%) was
on the article about the British logician and math-
ematician De Morgan. This confirms the intu-
ition that this specific subdomain is the “hardest”,
given that mathematical expressions might emerge
in the data (e.g. “Wet der distributiviteit : a(b+c)
= ab+ac” - distributivity law).

SCL results Table 4 shows the results of our in-
stantiation of SCL for parse disambiguation, with
varying h parameter (dimensionality parameter;
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h = 25 means that applying the projectionxθ re-
sulted in adding 25 new features to every source
domain instance).

CA f-score φ rel.er.
baseline Prince 85.03 85.38 78.06 0.00
SCL[+/-], h = 25 85.12 85.46 78.64 2.64
SCL[+/-], h = 50 85.29 85.63 79.66 7.29
SCL[+/-], h = 100 85.19 85.53 79.04 4.47
SCL[+/-], h = 200 85.21 85.54 79.18 5.10
baseline Paus 85.72 86.32 77.23 0.00
SCL[+/-], h = 25 85.87 86.48 78.26 4.52
SCL[+/-], h = 50 85.82 86.43 77.87 2.81
SCL[+/-], h = 100 85.87 86.49 78.26 4.52
SCL[+/-], h = 200 85.87 86.48 78.26 4.52
baseline DeMorgan 80.09 80.61 74.44 0.00
SCL[+/-], h = 25 80.15 80.67 74.92 1.88
SCL[+/-], h = 50 80.12 80.64 74.68 0.94
SCL[+/-], h = 100 80.12 80.64 74.68 0.94
SCL[+/-], h = 200 80.15 80.67 74.91 1.88

Table 4: Results of our instantiation of SCL (with
varying h parameter and no feature normaliza-
tion).

The results show a (sometimes) small but con-
sistent increase in absolute performance on all
testsets over the baseline system (up to+0.26
absolute CA score), as well as an increase inφ
measure (absolute error reduction). This corre-
sponds to a relative error reduction of up to 7.29%.
Thus, our first instantiation of SCL for parse dis-
ambiguation indeed shows promising results.

We can confirm that changing the dimensional-
ity parameterh has rather little effect (Table 4),
which is in line with previous findings (Ando and
Zhang, 2005; Blitzer et al., 2006). Thus we might
fix the parameter and prefer smaller dimensionali-
ties, which saves space and time.

Note that these results were obtainedwithout
any of the additional normalization, rescaling,
feature-specific regularization, or block SVD is-
sues, etc. (discussed in section 4.2). We used the
same Gaussian regularization term (σ2=1000) for
all features (original and new features), and did
not perform any feature normalization or rescal-
ing. This means our current instantiation of SCL
is an actuallysimplified version of the original
SCL algorithm, applied to parse disambiguation.
Of course, our results are preliminary and, rather
than warranting many definite conclusions, en-
courage further exploration of SCL and related
semi-supervised adaptation techniques.

5.4 Additional Empirical Results

In the following, we describe additional results ob-
tained by extensions and/or refinements of our cur-
rent SCL instantiation.

Feature normalization. We also tested fea-
ture normalization (as described in Section 4.2).
While Blitzer et al. (2006) found it necessary to
normalize (and scale) the projection features, we
did not observe any improvement by normalizing
them (actually, it slightly degraded performance in
our case). Thus, we found this step unnecessary,
and currently did not look at this issue any further.

A look at θ To gain some insight of which kind
of correspondences SCL learned in our case, we
started to examine the rows ofθ. Recall that ap-
plying a row of the projection matrixθi to a train-
ing instancex gives us a new real-valued fea-
ture. If features from different domains have sim-
ilar entries (scores) in the projection row, they
are assumed to correspond (Blitzer, 2008). Fig-
ure 4 shows example of correspondences that SCL
found in the Prince dataset. The first column rep-
resents the score of a feature. The labelswiki
andalp indicate the domain of the features, re-
spectively. For readability, we here grouped the
features obtaining similar scores.

0.00010248|dep35(’Chaka Khan’,name(’PER’),hd/su,verb,ben)|wiki
0.00010248|dep35(de,det,hd/det,adj,’Afro-Amerikaanse’)|wiki
0.00010248|dep35(’Yvette Marie Stevens’,name(’PER’),hd/app,

noun,zangeres)|wiki
0.000102772|dep34(leraar,noun,hd/su,verb)|alp

0.000161095|dep34(commissie,noun,hd/obj1,prep)|16|alp
0.00016113|dep34(’Confessions Tour’,name,hd/obj1,prep)|2|wiki
0.000161241|dep34(orgel,noun,hd/obj1,prep)|1|wiki

0.000217698|dep34(tournee,noun,hd/su,verb)|1|wiki
0.000223301|dep34(regisseur,noun,hd/su,verb)|15|wiki
0.000224517|dep34(voorsprong,noun,hd/su,verb)|2|alp
0.000224684|dep34(wetenschap,noun,hd/su,verb)|2|alp
0.000226617|dep34(pop_rock,noun,hd/su,verb)|1|wiki
0.000228918|dep34(plan,noun,hd/su,verb)|9|alp

Figure 4: Example projection fromθ (row 2).

SCL clustered information about ’Chaka Khan’,
an ’Afro-Amerikaanse’ ’zangeres’ (afro-american
singer) whose real name is ’Yvette Marie
Stevens’. She had close connections to Prince,
who even wrote one of her singles. These features
got aligned to the Alpino feature ’leraar’ (teacher).
Moreover, SCL finds that ’tournee’, ’regisseur’
and ’poprock’ in the Prince domain behave like
’voorsprong’ (advance), ’wetenschap’ (research)
and ’plan’ as possible heads in a subject relation
in the newspaper domain. Similarly, correspon-
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dences between the direct object features ’Con-
fessions Tour’ and ’orgel’ (pipe organ) to ’com-
missie’ (commission) are discovered.

More unlabeled data In the experiments so far,
we balanced the amount of source and target data.
We started to examine the effect of more unla-
beled target domain data. For the Prince dataset,
we included all supercategories in constructing
the related target domain data. The so obtained
dataset contains: 859 articles, 29,186 sentences
and 385,289 tokens; hence, the size approximately
tripled (w.r.t. Table 2). Table 5 shows the effect of
using this larger dataset for SCL withh = 25. The
accuracy increases (from 85.12 to 85.25). Thus,
there seems to be a positive effect (to be investi-
gated further).

CA f-score φ rel.er.
baseline Prince 85.03 85.38 78.06 0.00
SCL[+/-], h = 25, all 85.25 85.58 79.42 6.20

Table 5: First result on increasing unlabeled data.

Dimensionality reduction by feature type We
have started to implement the extension discussed
in section 4.2, i.e. perform separate dimension-
ality reductions based on blocks of nonpivot fea-
tures. We clustered nonpivots (see section 4.1 for
a description) into 9 types (ordered in terms of
decreasing cluster size):dep, f1/f2 (pos), r1/r2
(rules),apposperson, mf, z, h1, in year, dist. For
each type, a separate SVD was computed on sub-
matrix Wt (illustrated in Figure 2). Then, sepa-
rate projections were applied to every training in-
stance.

The results of these experiments on the Prince
dataset are shown in Figure 5. Applying SCL with
dimensionality reduction by feature type (SCL
block) results in a model that performs better (CA
85.27,φ 79.52, rel.er. 6.65%) than the model with
no feature split (no block SVDs), thus obtaining a
relative error reduction of 6.65% over the baseline.
The same figure also shows what happens if we
remove a specific feature type at a time; the appo-
sition features contribute the most on this Prince
domain. As a fact, one third of the sentences in
the Prince testset contain constructions with appo-
sitions (e.g. about film-, album- and song titles).

6 Conclusions and Future Work

The paper presents an application of Structural
Correspondence Learning (SCL) to parse disam-

Figure 5: Results of dimensionality reduction by
feature type,h = 25; block SVD included all 9
feature types; the right part shows the accuracy
when one feature type was removed.

biguation. While SCL has been successfully
applied to PoS tagging and Sentiment Analy-
sis (Blitzer et al., 2006; Blitzer et al., 2007), its
effectiveness for parsing was rather unexplored.

The empirical results show that our instantiation
of SCL to parse disambiguation gives promising
initial results, even without the many additional
extensions on the feature level as done in Blitzer
et al. (2006). We exploited Wikipedia as pri-
mary resource, both for collecting unlabeled tar-
get domain data, as well as test suite for empirical
evaluation. On the three examined datasets, SCL
slightly but constantly outperformed the baseline.
Applying SCL involves many design choices and
practical issues, which we tried to depict here in
detail. A novelty in our application is that we
first actually parse the unlabeled data from both
domains. This allows us to get a possibly noisy,
but more abstract representation of the underlying
data on which the pivot predictors are trained.

In the near future, we plan to extend the work on
semi-supervised domain adaptation for parse dis-
ambiguation, viz. (1) further explore/refine SCL
(block SVDs, varying amount of target domain
data, other testsets, etc.), and (2) examine self-
training. Studies on the latter have focused mainly
on generative, constituent based, i.e. data-driven
parsing systems. Furthermore, from a machine
learning point of view, it would be interesting to
know a measure of corpus similarity to estimate
the success of porting an NLP system from one do-
main to another. This relates to the general ques-
tion of what is meant by domain.
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Abstract

Given the great amount of definite noun
phrases that introduce an entity into the
text for the first time, this paper presents a
set of linguistic features that can be used
to detect this type of definites in Span-
ish. The efficiency of the different fea-
tures is tested by building a rule-based and
a learning-based chain-starting classifier.
Results suggest that the classifier, which
achieves high precision at the cost of re-
call, can be incorporated as either a filter
or an additional feature within a corefer-
ence resolution system to boost its perfor-
mance.

1 Introduction

Although often treated together, anaphoric pro-
noun resolution differs from coreference resolu-
tion (van Deemter and Kibble, 2000). Whereas
the former attempts to find an antecedent for each
anaphoric pronoun in a discourse, the latter aims
to build full coreference chains, namely linking
all noun phrases (NPs) – whether pronominal or
with a nominal head – that point to the same en-
tity. The output of anaphora resolution1 are noun-
pronoun pairs (or pairs of a discourse segment and
a pronoun in some cases), whereas the output of
coreference resolution are chains containing a va-
riety of items: pronouns, full NPs, discourse seg-
ments... Thus, coreference resolution requires a
wider range of strategies in order to build the full
chains of coreferent mentions.2

1A different matter is the resolution of anaphoric full NPs,
i.e. those semantically dependent on a previous mention.

2We follow the ACE terminology (NIST, 2003) but in-
stead of talking of objects in the world we talk of objects in
the discourse model: we use entity for an object or set of ob-
jects in the discourse model, and mention for a reference to
an entity.

One of the problems specific to coreference res-
olution is determining, once a mention is encoun-
tered by the system, whether it refers to an entity
previously mentioned or it introduces a new entity
into the text. Many algorithms (Aone and Ben-
nett, 1996; Soon et al., 2001; Yang et al., 2003)
do not address this issue specifically, but implic-
itly assume all mentions to be potentially corefer-
ent and examine all possible combinations; only
if the system fails to link a mention with an al-
ready existing entity, it is considered to be chain
starting.3 However, such an approach is computa-
tionally expensive and prone to errors, since nat-
ural language is populated with a huge number of
entities that appear just once in the text. Even def-
inite NPs, which are traditionally believed to refer
to old entities, have been demonstrated to start a
coreference chain over 50% of the times (Fraurud,
1990; Poesio and Vieira, 1998).

An alternative line of research has considered
applying a filter prior to coreference resolution
that classifies mentions as either chain starting or
coreferent. Ng and Cardie (2002) and Poesio et al.
(2005) have tested the impact of such a detector
on the overall coreference resolution performance
with encouraging results. Our chain-starting clas-
sifier is comparable – despite some differences4

– to the detectors suggested by Ng and Cardie
(2002), Uryupina (2003), and Poesio et al. (2005)
for English, but not identical to strictly anaphoric
ones5 (Bean and Riloff, 1999; Uryupina, 2003),
since a non-anaphoric NP can corefer with a pre-
vious mention.

This paper presents a corpus-based study of def-
3By chain starting we refer to those mentions that are the

first element – and might be the only one – in a coreference
chain.

4Ng and Cardie (2002) and Uryupina (2003) do not limit
to definite NPs but deal with all types of NPs.

5Notice the confusing use of the term anaphoric in (Ng
and Cardie, 2002) for describing their chain-starting filtering
module.
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inite NPs in Spanish that results in a set of eight
features that can be used to identify chain-starting
definite NPs. The heuristics are tested by building
two different chain-starting classifiers for Spanish,
a rule-based and a learning-based one. The evalu-
ation gives priority to precision over recall in view
of the classifier’s efficiency as a filtering module.

The paper proceeds as follows. Section 2 pro-
vides a qualitative comparison with related work.
The corpus study and the empirically driven set of
heuristics for recognizing chain-starting definites
are described in Section 3. The chain-starting clas-
sifiers are built in Section 4. Section 5 reports on
the evaluation and discusses its implications. Fi-
nally, Section 6 summarizes the conclusions and
outlines future work.

2 Related Work

Some of the corpus-driven features here presented
have a precedent in earlier classifiers of this kind
for English while others are our own contribution.
In any case, they have been adapted and tested for
Spanish for the first time.

We build a list of storage units, which is in-
spired by research in the field of cognitive linguis-
tics. Bean and Riloff (1999) and Uryupina (2003)
have already employed a definite probability mea-
sure in a similar way, although the way the ratio
is computed is slightly different. The former use
it to make a “definite-only list” by ranking those
definites extracted from a corpus that were ob-
served at least five times and never in an indefi-
nite construction. In contrast, the latter computes
four definite probabilities – which are included
as features within a machine-learning classifier –
from the Web in an attempt to overcome Bean and
Riloff’s (1999) data sparseness problem. The defi-
nite probabilities in our approach are checked with
confidence intervals in order to guarantee the reli-
ability of the results, avoiding to draw any gener-
alization when the corpus does not contain a large
enough sample.

The heuristics concerning named entities and
storage-unit variants find an equivalent in the fea-
tures used in Ng and Cardie’s (2002) supervised
classifier that represent whether the mention is a
proper name (determined based on capitalization,
whereas our corpus includes both weak and strong
named entities) and whether a previous NP is an
alias of the current mention (on the basis of a rule-
based alias module that tries out different transfor-

mations). Uryupina (2003) and Vieira and Poesio
(2000) also take capital and low case letters into
account.

All four approaches exploit syntactic structural
cues of pre- and post- modification to detect com-
plex NPs, as they are considered to be unlikely to
have been previously mentioned in the discourse.
A more fine-grained distinction is made by Bean
and Riloff (1999) and Vieira and Poesio (2000)
to distinguish restrictive from non-restrictive post-
modification by ommitting those modifiers that
occur between commas, which should not be clas-
sified as chain starting. The latter also list a series
of “special predicates” including nouns like fact
or result, and adjectives such as first, best, only,
etc. A subset of the feature vectors used by Ng
and Cardie (2002) and Uryupina (2003) is meant
to code whether the NP is or not modified. In
this respect, our contribution lies in adapting these
ideas for the way modification occurs in Spanish
– where premodifiers are rare – and in introducing
a distinction between PP and AP modifiers, which
we correlate in turn with the heads of simple defi-
nites.

We borrow the idea of classifying definites oc-
curring in the first sentence as chain starting from
Bean and Riloff (1999).

The precision and recall results obtained by
these classifiers – tested on MUC corpora – are
around the eighties, and around the seventies in
the case of Vieira and Poesio (2000), who use the
Penn Treebank.

Luo et al. (2004) make use of both a linking
and a starting probability in their Bell tree algo-
rithm for coreference resolution, but the starting
probability happens to be the complementary of
the linking one. The chain-starting classifier we
build can be used to fine-tune the starting probabil-
ity used in the construction of coreference chains
in Luo et al.’s (2004) style.

3 Corpus-based Study

As fully documented by Lyons (1999), definite-
ness varies cross-linguistically. In contrast with
English, for instance, Spanish adds the article be-
fore generic NPs (1), within some fixed phrases
(2), and in postmodifiers where English makes use
of bare nominal premodification (3). Altogether
results in a larger number of definite NPs in Span-
ish and, by extension, a larger number of chain-
starting definites (Recasens et al., 2009).
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(1) Tardı́a
Late

incorporación
incorporation

de
of

la
the

mujer
woman

al
to the

trabajo.
work.

‘Late incorporation of � women into � work.’

(2) Villalobos
Villalobos

dio
gave

las
the

gracias
thanks

a
to

los
the

militantes.
militants.

‘Villalobos gave � thanks to the militants.’

(3) El
The

mercado
market

internacional
international

del
of the

café.
coffee.

‘The international � coffee market.’

Long-held claims that equate the definite arti-
cle with a specific category of meaning cannot be
hold. The present-day definite article is a cate-
gory that, although it did originally have a seman-
tic meaning of “identifiability”, has increased its
range of contexts so that it is often a grammati-
cal rather than a semantic category (Lyons, 1999).
Definite NPs cannot be considered anaphoric by
default, but strategies need to be introduced in or-
der to classify a definite as either a chain-starting
or a coreferent mention. Given that the extent
of grammaticization6 varies from language to lan-
guage, we considered it appropriate to conduct a
corpus study oriented to Spanish: (i) to check the
extent to which strategies used in previous work
can be extended to Spanish, and (ii) to explore ad-
ditional linguistic cues.

3.1 The corpus
The empirical data used in our corpus study come
from AnCora-Es, the Spanish corpus of AnCora
– Annotated Corpora for Spanish and Catalan
(Taule et al., 2008), developed at the University
of Barcelona and freely available from http:
//clic.ub.edu/ancora. AnCora-Es is a
half-million-word multilevel corpus consisting of
newspaper articles and annotated, among other
levels of information, with PoS tags, syntactic
constituents and functions, and named entities. A
subset of 320 000 tokens (72 500 full NPs7) was
used to draw linguistic features about definiteness.

3.2 Features
As quantitatively supported by the figures in Ta-
ble 1, the split between simple (i.e. non-modified)
and complex NPs seems to be linguistically rele-
vant. We assume that the referential properties of

6Grammaticization, or grammaticalization, is a process
of linguistic change by which a content word becomes part
of the grammar by losing its lexical and phonological load.

7By full NPs we mean NPs with a nominal head, thus
omitting pronouns, NPs with an elliptical head as well as co-
ordinated NPs.

simple NPs differ from complex ones, and this dis-
tinction is kept when designing the eight heuristics
for recognizing chain-starting definites that we in-
troduce in this section.

1. Head match. Ruling out those definites that
match an earlier noun in the text has proved
to be able to filter out a considerable num-
ber of coreferent mentions (Ng and Cardie,
2002; Poesio et al., 2005). We considered
both total and partial head match, but stuck
to the first as the second brought much noise.
On its own, namely if definite NPs are all
classified as chain starting only if no mention
has previously appeared with the same lexical
head, we obtain a precision (P) not less than
84.95% together with 89.68% recall (R). Our
purpose was to increase P as much as pos-
sible with the minimum loss in R: it is pre-
ferred not to classify a chain-starting instance
– which can still be detected by the corefer-
ence resolution module at a later stage – since
a wrong label might result in a missed coref-
erence link.

2. Storage units. A very grammaticized defi-
nite article accounts for the large number of
definite NPs attested in Spanish (column 2 in
Table 1): 46% of the total. In the light of
Bybee and Hopper’s (2001) claim that lan-
guage structure dynamically results from fre-
quency and repetition, we hypothesized that
specific simple definite NPs in which the ar-
ticle has fully grammaticized constitute what
Bybee and Hopper (2001) call storage units:
the more a specific chunk is used, the more
stored and automatized it becomes. These
article-noun storage units might well head a
coreference chain.

With a view to providing the chain-starting
classifier with a list of these article-noun
storage units, we extracted from AnCora-Es
all simple NPs preceded by a determiner8

(columns 2 and 3 in the second row of Table
1) and ranked them by their definite probabil-
ity, which we define as the number of simple
definite NPs with respect to the number of
simple determined NPs. Secondly, we set a
threshold of 0.7, considering as storage units

8Only noun types occurring a minimum of ten times were
included in this study. Singular and plural forms as well as
masculine and feminine were kept as distinct types.
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Definite NPs Other det. NPs Bare NPs Total
Simple NPs 12 739 6 642 15 183 34 564 (48%)
Complex NPs 20 447 9 545 8 068 38 060 (52%)
Total 33 186 (46%) 16 187 (22%) 23 251 (32%) 72 624 (100%)

Table 1: Overall distribution of full NPs in AnCora-Es (subset).

those definites above the threshold. In order
to avoid biased probabilities due to a small
number of observed examples in the corpus, a
95 percent confidence interval was computed.
The final list includes 191 storage units, such
as la UE ‘the EU’, el euro ‘the euro’, los con-
sumidores ‘the consumers’, etc.

3. Named entities (NEs). A closer look at the
list of storage units revealed that the higher
the definite probability, the more NE-like a
noun is. This led us to extrapolate that the
definite article has completely grammaticized
(i.e. lost its semantic load) before simple def-
inites which are NEs (e.g. los setenta ‘the
seventies’, el Congreso de Estados Unidos
‘the U.S. Congress’9), and so they are likely
to be chain-starting.

4. Storage-unit variants. The fact that some
of the extracted storage units were variants
of a same entity gave us an additional cue:
complementing the plain head_match feature
by adding a gazetteer with variants (e.g. la
Unión Europea ‘the European Union’ and la
UE ‘the EU’) stops the storage_unit heuris-
tic from classifying a simple definite as chain
starting if a previous equivalent unit has ap-
peared.

5. First sentence. Given that the probability
for any definite NP occurring in the first sen-
tence of a text to be chain starting is very
high, since there has not been time to intro-
duce many entities, all definites appearing in
the first sentence can be classified as chain
starting.

6. AP-preference nouns. Complex definites
represent 62% out of all definite NPs (Table
1). In order to assess to what extent the refer-
ential properties of a noun on its own depend
on its combinatorial potential to occur with

9The underscore represents multiword expressions.

either a prepositional phrase (PP) or an ad-
jectival phrase (AP), complex definites were
grouped into those containing a PP (49%) and
those containing an AP10 (27%). Next, the
probability for each noun to be modified by a
PP or an AP was computed. The results made
it possible to draw a distinction – and two re-
spective lists – between PP-preference nouns
(e.g. el inicio ‘the beginning’) and nouns that
prefer an AP modifier (e.g. las autoridades
‘the authorities’). Given that APs are not as
informative as PPs, they are more likely to
modify storage units than PPs. Nouns with
a preference for APs turned out to be storage
units or behave similarly. Thus, simple defi-
nites headed by such nouns are unlikely to be
coreferent.

7. PP-preference nouns. Nouns that prefer to
combine with a PP are those that depend on
an extra argument to become referential. This
argument, however, might not appear as a
nominal modifier but be recoverable from the
discourse context, either explicitly or implic-
itly. Therefore, a simple definite headed by
a PP-preference noun might be anaphoric but
not necessarily a coreferent mention. Thus,
grouping PP-preference nouns offers an em-
pirical way for capturing those nouns that are
bridging anaphors when they appear in a sim-
ple definite. For instance, it is not rare that,
once a specific company has been introduced
into the text, reference is made for the first
time to its director simply as el director ‘the
director’.

8. Neuter definites. Unlike English, the Span-
ish definite article is marked for grammati-
cal gender. Nouns might be either mascu-
line or feminine, but a third type of definite
article, the neuter one (lo), is used to nomi-
nalize adjectives and clauses, namely “to cre-
ate a referential entity” out of a non-nominal

10When a noun was followed by more than one modifier,
only the syntactic type of the first one was taken into account.
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Given a definite mention m,

1. If m is introduced by a neuter definite article, classify
as chain starting.

2. If m appears in the first sentence of the document, clas-
sify as chain starting.

3. If m shares the same lexical head with a previous men-
tion or is a storage-unit variant of it, classify as coref-
erent.

4. If the head of m is PP-preference, classify as chain
starting.

5. If m is a simple definite,

(a) and the head of m appears in the list of storage
units, classify as chain starting.

(b) and the head of m is AP-preference, classify as
chain starting.

(c) and m is an NE, classify as chain starting.
(d) Otherwise, classify as coreferent.

6. Otherwise (i.e. m is a complex definite), classify as
chain starting.

Figure 1: Rule-based algorithm.

item. Since such neuters have a low corefer-
ential capacity, the classification of these NPs
as chain starting can favour recall.

4 Chain-starting Classifier

In order to test the linguistic cues outlined above,
we build two different chain-starting classifiers: a
rule-based model and a learning-based one. Both
aim to detect those definite NPs for which there is
no need to look for a previous reference.

4.1 Rule-based approach
The first way in which the linguistic findings in
Section 3.2 are tested is by building a rule-based
classifier. The heuristics are combined and or-
dered in the most efficient way, yielding the hand-
crafted algorithm shown in Figure 1. Two main
principles underlie the algorithm: (i) simple defi-
nites tend to be coreferent mentions, and (ii) com-
plex definites tend to be chain starting (if their
head has not previously appeared). Accordingly,
Step 5 in Figure 1 finishes by classifying simple
definites as coreferent, and Step 6 complex def-
inites as chain starting. Before these last steps,
however, a series of filters are applied correspond-
ing to the different heuristics. The performance is
presented in Table 2.

4.2 Machine-learning approach
The second way in which the suggested linguistic
cues are tested is by constructing a learning-based
classifier. The Weka machine learning toolkit
(Witten and Frank, 2005) is used to train a J48
decision tree on a 10-fold cross-validation. A to-
tal of eight learning features are considered: (i)
head match, (ii) storage-unit variant, (iii) is a
neuter definite, (iv) is first sentence, (v) is a PP-
preference noun, (vi) is a storage unit, (vii) is
an AP-preference noun, (viii) is an NE. All fea-
tures are binary (either “yes” or “no”). We experi-
ment with different feature vectors, incrementally
adding one feature at a time. The performance is
presented in Table 3.

5 Evaluation

A subset of AnCora-CO-Es consisting of 60 Span-
ish newspaper articles (23 335 tokens, 5 747 full
NPs) is kept apart for the test corpus. AnCora-
CO-Es is the coreferentially annotated AnCora-Es
corpus, following the guidelines described in (Re-
casens et al., 2007). Coreference relations were
annotated manually with the aid of the PALinkA
(Orasan, 2003) and AnCoraPipe (Bertran et al.,
2008) tools. Interestingly enough, the test corpus
contains 2 575 definite NPs, out of which 1 889 are
chain-starting (1401 chain-starting definite NPs
are actually isolated entities), namely 73% defi-
nites head a coreference chain, which implies that
a successful classifier has the potential to rule out
almost three quarters of all definite mentions.

Given that chain starting is the majority class
and following (Ng and Cardie, 2002), we took the
“one class” classification as a naive baseline: all
instances were classified as chain starting, giving
a precision of 71.95% (first row in Tables 2 and 3).

5.1 Performance
Tables 2 and 3 show the results in terms of preci-
sion (P), recall (R), and F0.5-measure (F0.5). F0.5-
measure,11 which weights P twice as much as R,
is chosen since this classifier is designed as a filter
for a coreference resolution module and hence we
want to make sure that the discarded cases can be
really discarded. P matters more than R.

Each row incrementally adds a new heuristic to
the previous ones. The score is cumulative. No-
tice that the order of the features in Table 2 does

11F0.5 is computed as 1.5PR
0.5P+R .
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Cumulative Features P (%) R (%) F0.5 (%)
Baseline 71.95 100.0 79.37
+Head match 84.95 89.68 86.47
+Storage-unit variant 85.02 89.58 86.49
+Neuter definite 85.08 90.05 86.68
+First sentence 85.12 90.32 86.79
+PP preference 85.12 90.32 86.79
+Storage unit 89.65** 71.54** 82.67
+AP preference 89.70** 71.96** 82.89
+Named entity 89.20* 78.22** 85.21

Table 2: Performance of the rule-based classifier.

Cumulative Features P (%) R (%) F0.5 (%)
Baseline 71.95 100.0 79.37
+Head match 85.00 89.70 86.51
+Storage-unit variant 85.00 89.70 86.51
+Neuter definite 85.00 90.20 86.67
+First sentence 85.10 90.40 86.80
+PP preference 85.10 90.40 86.80
+Storage unit 83.80 93.50** 86.80
+AP preference 83.90 93.60** 86.90
+Named entity 83.90 93.60** 86.90

Table 3: Performance of the learning-based classi-
fier (J48 decision tree).

not directly map the order as presented in the algo-
rithm (Figure 1): the head_match heuristic and the
storage-unit_variant need to be applied first, since
the other heuristics function as filters that are ef-
fective only if head match between the mentions
has been first checked. Table 3 presents the incre-
mental performance of the learning-based classi-
fier for the different sets of features.

Diacritics ** (p<.01) and * (p<.05) indicate
whether differences in P and R between the re-
duced classifier (head_ match) and the extended
ones are significant (using a one-way ANOVA fol-
lowed by Tukey’s post-hoc test).

5.2 Discussion
Although the central role played by the
head_match feature has been emphasized by
prior work, it is striking that such a simple heuris-
tic achieves results over 85%, raising P by 13
percentage points. All in all, these figures can only
be slightly improved by some of the additional
features. These features have a different effect
on each approach: whereas they improve P (and
decrease R) in the hand-crafted algorithm, they
improve R (and decrease P) in the decision tree.
In the first case, the highest R is achieved with
the first four features, and the last three features

obtain an increase in P statistically significant yet
accompanied by a decrease in R also statistically
significant. We expected that the second block of
features would favour P without such a significant
drop in R.

The drop in P in the decision tree is not statis-
tically significant as it is in the rule-based classi-
fier. Our goal, however, was to increase P as much
as possible, since false positive errors harm the
performance of the subsequent coreference resolu-
tion system much more than false negative errors,
which can still be detected at a later stage. The
very same attributes might prove more efficient if
used as additional learning features within the vec-
tor of a coreference resolution system rather than
as an independent pre-classifier.

From a linguistic perspective, the fact that the
linguistic heuristics increase P provides support
for the hypotheses about the grammaticized def-
inite article and the existence of storage units.
We carried out an error analysis to consider those
cases in which the features are misleading in terms
of precision errors. The first_sentence feature, for
instance, results in an error in (4), where the first
sentence includes a coreferent NP.

(4) La expansión de la piraterı́a en el Sudeste de Asia
puede destruir las economı́as de la región.
‘The expansion of piracy in South-East Asia can de-
stroy the economies of the region.’

Classifying PP-preference nouns as chain starting
fails when a noun like el protagonista ‘the pro-
tagonist’, which could appear as the first mention
in a film critique, happens to be previously men-
tioned with a different head. Likewise, not using
the same head in cases such as la competición ‘the
competition’ and la Liga ‘the League’ accounts
for the failure of the storage_unit or named_entity
feature, which classify the second mention as
chain starting. On the other hand, some recall er-
rors are due to head_match, which might link two
NPs that despite sharing the same head point to a
different entity (e.g. el grupo Agnelli ‘the Agnelli
group’ and el grupo industrial Montedison ‘the in-
dustrial group Montedison’).

6 Conclusions and Future Work

The paper presented a corpus-driven chain-
starting classifier of definite NPs for Spanish,
pointing out and empirically supporting a series
of linguistic features to be taken into account.
Given that definiteness is very much language de-
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pendent, the AnCora-Es corpus was mined to in-
fer some linguistic hypotheses that could help in
the automatic identification of chain-starting def-
inites. The information from different linguistic
levels (lexical, semantic, morphological, syntac-
tic, and pragmatic) in a computationally not ex-
pensive way casts light on potential features help-
ful for resolving coreference links. Each resulting
heuristic managed to improve precision although
at the cost of a drop in recall. The highest improve-
ment in precision (89.20%) with the lowest loss
in recall (78.22%) translates into an F0.5-measure
of 85.21%. Hence, the incorporation of linguistic
knowledge manages to outperform the baseline by
17 percentage points in precision.

Priority is given to precision, since we want to
assure that the filter prior to coreference resolu-
tion module does not label as chain starting def-
inite NPs that are coreferent. The classifier was
thus designed to minimize false positives. No less
than 73% of definite NPs in the data set are chain
starting, so detecting 78% of these definites with
almost 90% precision could have substantial sav-
ings. From a linguistic perspective, the improve-
ment in precision supports the linguistic hypothe-
ses, even if at the expense of recall. However, as
this classifier is not a final but a prior module, ei-
ther a filter within a rule-based system or one ad-
ditional feature within a larger learning-based sys-
tem, the shortage of recall can be compensated
at the coreference resolution stage by considering
other more sophisticated features.

The results here presented are not comparable
with other existing classifiers of this type for sev-
eral reasons. Our approach would perform differ-
ently for English, which has a lower number of
definite NPs. Secondly, our classifier has been
evaluated on a corpus much larger than prior ones
such as Uryupina’s (2003). Thirdly, some classi-
fiers aim at detecting non-anaphoric NPs, which
are not the same as chain-starting. Fourthly, we
have empirically explored the contribution of the
set of heuristics with respect to the head_match
feature. None of the existing approaches com-
pares its final performance in relation with this
simple but extremely powerful feature. Some of
our heuristics do draw on previous work, but we
have tuned them for Spanish and we have also con-
tributed with new ideas, such as the use of storage
units and the preference of some nouns for a spe-
cific syntactic type of modifier.

As future work, we will adapt this chain-starting
classifier for Catalan, fine-tune the set of heuris-
tics, and explore to what extent the inclusion of
such a classifier improves the overall performance
of a coreference resolution system for Spanish.
Alternatively, we will consider using the sug-
gested attributes as part of a larger set of learning
features for coreference resolution.
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Bàrbara Soriano. 2008. AnCoraPipe: A tool for
multilevel annotation. Procesamiento del Lenguaje
Natural, 41:291-292.

Joan Bybee and Paul Hopper. 2001. Introduction to
frequency and the emergence of linguistic structure.
In J. Bybee and P. Hopper (eds.), Frequency and the
Emergence of Linguistic Structure. John Benjamins,
Amsterdam, 1-24.

Kari Fraurud. 1990. Definiteness and the processing
of NPs in natural discourse. Journal of Semantics,
7:395-433.

Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda
Kambhatla, and Salim Roukos. 2004. A mention-
synchronous coreference resolution algorithm based
on the Bell tree. In Proceedings of ACL 2004.

Christopher Lyons. 1999. Definiteness. Cambridge
University Press, Cambridge.

Vincent Ng and Claire Cardie. 2002. Identifying
anaphoric and non-anaphoric noun phrases to im-
prove coreference resolution. In Proceedings of
COLING 2002.

NIST. 2003. ACE Entity detection and tracking.
V.2.5.1.

52



Constantin Orasan. 2003. PALinkA: A highly cus-
tomisable tool for discourse annotation. In Proceed-
ings of the 4th SIGdial Workshop on Discourse and
Dialogue.

Massimo Poesio and Renata Vieira. 1998. A corpus-
based investigation of definite description use. Com-
putational Linguistics, 24(2):183-216.

Massimo Poesio, Mijail Alexandrov-Kabadjov, Renata
Vieira, Rodrigo Goulart, and Olga Uryupina. 2005.
Does discourse-new detection help definite descrip-
tion resolution? In Proceedings of IWCS 2005.
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2007. Where anaphora and coreference meet. An-
notation in the Spanish CESS-ECE corpus. In Pro-
ceedings of RANLP 2007. Borovets, Bulgaria.
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Abstract
We have adapted a classification approach
coming from optical character recognition
research to the task of speech emotion
recognition. The classification approach
enjoys the representational power of a syn-
tactic method and efficiency of statisti-
cal classification. The syntactic part im-
plements a tree grammar inference algo-
rithm. We have extended this part of the
algorithm with various edit costs to pe-
nalise more important features with higher
edit costs for being outside the interval,
which tree automata learned at the infer-
ence stage. The statistical part implements
an entropy based decision tree (C4.5). We
did the testing on the Berlin database of
emotional speech. Our classifier outper-
forms the state of the art classifier (Multi-
layer Perceptron) by 4.68% and a baseline
(C4.5) by 26.58%, which proves validity
of the approach.

1 Introduction

In a number of applications such as human-
computer interfaces, smart call centres, etc. it is
important to be able to recognise people’s emo-
tional state. An aim of a speech emotion recogni-
tion (SER) engine is to produce an estimate of the
emotional state of the speaker given a speech frag-
ment as an input. The standard way to do SER is
through a supervised machine learning procedure
(Sidorova et al., 2008). It also should be noted
that a number of alternative classification strate-
gies has been offered recently, such as unsuper-
vised learning (Liu et al., 2007) and numeric re-
gression (Grimm et al., 2007) etc, and which are
preferable under certain conditions.

Our contribution is a new algorithm of a
mixed design with syntactic and statistical learn-
ing, which we borrowed from optical character

recognition (Sempere, Lopez, 2003), extended,
and adapted for SER. The syntactic part imple-
ments tree grammar inference (Sakakibara, 1997),
and the statistical part implements C4.5 (Quinlan,
1993). The intuitive reasons underlying this solu-
tion are as follows. We would like to have a clas-
sification approach that enjoys the representational
power of a syntactic method and efficiency of sta-
tistical classification. First we model the objects
by means of a syntactic method, i.e. we map sam-
ples into their representations. A representation of
a sample is a set of seven numeric values, signi-
fying to which degree a given sample resembles
the averaged pattern of each of seven classes. Sec-
ond, we learn to classify the mappings of samples,
rather than feature vectors of samples, with a pow-
erful statistical method. We called the classifier
TGI+, which stands for Tree Grammar Inference
and the plus is for the statistical learning enhance-
ment. In this paper we present the second version
of TGI+, which extends TGI+.1 (Sidorova et al.,
2008) and the difference is that we have added var-
ious edit costs to penalise more important features
with higher edit costs for being outside the inter-
val, which tree automata learned at the inference
stage. We evaluated TGI+ against a state of the art
classifier. To obtain a state of the art performance,
we constructed a speech emotion recogniser, fol-
lowing the classical supervised learning approach
with a top performer out of more than 20 classi-
fiers from the weka package, which turned out to
be multilayer perceptron (MLP) (Witten, Frank,
2005). Experimental results showed that TGI+
outperforms MLP by 4.68%.

The structure of this paper is as follows: in this
section below we explain construction of a clas-
sical speech emotion recognizer, in Section 2 we
explain TGI+; Section 3 reports testing results for
both, the state of the art recogniser and TGI+. Sec-
tion 4 and 5 is discussion and conclusions.
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1.1 Classical Speech Emotion Recogniser
A classical speech emotion recognizer is com-
prised of three modules: Feature Extraction, Fea-
ture Selection, and Classification. Their perfor-
mance will serve as a baseline for TGI+ recog-
nizer.

1.1.1 Feature Extraction and Selection
In the literature there is a consensus that global
statistics features lead to higher accuracies com-
pared to the dynamic classification of multivariate
time-series (Schuller et al., 2003). The feature ex-
traction module extracts 116 global statistical fea-
tures, both prosodic and segmental, a full list and
explanations for which can be found in (Sidorova,
2007).

The feature selection module implements a
wrapper approach with forward selection (Witten,
Frank, 2005) in order to automatically select the
most relevant features extracted by the previous
module.

1.1.2 Classification
The classification module takes an input as a fea-
ture vector created by the feature selector, and ap-
plies the Multilayer Perceptron classifier (MLP)
(Witten, Frank, 2005), in order to assign a class
label to it. The labels are the emotional states to
discriminate among. For our data, MLP turned
out to be the top performer among more than 20
other different classifiers; details of this compara-
tive testing can be found in (Sidorova, 2007).

2 TGI+ classifier

The organisation of this section is as follows. In
paragraph 2.1 we explain the TGI+.1 classifier and
show how its parts work together. TGI+.2 is an
extension of TGI+.1 and we explain it right af-
terwards. In paragraph 2.2 we briefly remind the
C4.5 algorithm. Further in the paper in paragraph
4.1 we show that our TGI+ algorithm was cor-
rectly constructed and that we arrived to a mean-
ingful combination of methods from different pat-
tern recognition paradigms.

2.1 TGI+
TGI+.1 is comprised of four major steps we ex-
plain below. Fig 1 graphically depicts the proce-
dure.

Step 1: In order to perform tree grammar
inference we represent samples by tree structures.
Divide the training set into two subsets T1 (39%

of training data) and T2 (the rest of training
data). Utterances from T1 are converted into tree
structures, the skeleton of which is defined by the
grammar below. S denotes a start symbol of the
formal grammar (in the sense of a term-rewriting
system):
{S−→ ProsodicFeatures SegmentalFeatures;
ProsodicFeatures −→ Pitch Intensity Jitter
Shimer;
SegmentalFeatures −→ Energy Formants;
Pitch −→ Min Max Quantile Mean Std MeanAb-
soluteSlope;
etc. }

The etc. stands for further terminating produc-
tions, i.e. the productions which have low level
features on their right hand side. All trees have
116 leaves, each corresponding to one of the 116
features from the sample feature vector. We put
trees from one class into one set. In our dataset
we have the following seven classes to recognise
among: fear, disgust, happiness, boredom, neutral,
sadness and anger. Therefore, we have seven sets
of trees. We put trees from one class into one set.

Step 2: Apply tree grammar inference to learn
seven automata accepting a different type of emo-
tional utterance each. Grammar inference is a
method to learn a grammar from examples. In our
case, it is tree grammar inference, because we deal
with trees representing utterances. The result of
this step is seven automata, one for each of seven
emotions to be recognised.

Step 3: Calculate edit distances between ob-
tained tree automata and trees in the training set.
Edit distances are then calculated between each
automaton obtained at step two and each tree rep-
resenting utterances from the training set (T1∪T2).
The calculated edit distances are put into a matrix
of size: (cardinality of the training set) × 7 (the
number of classes).

Step 4: Run C4.5 over the matrix to obtain a
decision tree. The C4.5 algorithm is run over this
matrix in order to obtain a decision tree, classify-
ing each utterance into one of the seven emotions,
according to edit distances between a given utter-
ance and the seven tree automata. The accuracies
obtained from testing this decision tree are the ac-
curacies of TGI+.1.

TGI+.2 Our extension of the algorithm as pro-
posed in (Sempere, Lopez, 2003) has to do with
Step 3. In TGI+.1 all edit costs equated to 1. In
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Figure 1: TGI+ steps. Step 1: In order to perform tree grammar inference, represent samples by tree
structures. Step 2: Apply tree grammar inference to learn seven automata accepting a different type of
emotional utterance each. Step 3: Calculate edit distances between obtained tree automata and trees in
the training set. While calculating edit distances, penalise more important features with higher costs for
being outside its interval. The set of such features is determined exclusively for every class through a
feature selection procedure. Step 4: Run C4.5 over the matrix to obtain a decision tree.
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other words, if a feature value fits the interval a
tree automaton has learned for it, the acceptance
cost of the sample is not altered. If a feature value
is outside the interval the automaton has learnt for
it, the acceptance cost of the sample processed is
incremented by one. In TGI+.2 some edit costs
have a coefficient greater than 1 (1.5 in the cur-
rent version). In other words, more important fea-
tures are penalised with higher costs for being out-
side its interval. The set of these more important
features is determined exclusively for every class
(anger, neutral, etc.) through a feature selection
procedure. The feature selection procedure imple-
ments a wrapper approach with forward selection.

Concluding the algorithm description, let us ex-
plain how TGI+ classifiers an input sample, which
is fed to the automata in the form a 116 dimen-
sional feature vector. Firstly TGI+ calculates dis-
tances from the sample to seven tree automata (the
automata learnt 116 feature intervals at the infer-
ence step). Secondly TGI+ uses the C 4.5 deci-
sion tree to classify the sample (the decision tree
was learnt from the table, where distances to seven
automata to all the training samples had been put).

2.2 C4.5 Learning algorithm
C4.5 belongs to the family of algorithms that em-
ploy a topdown greedy search through the space
of possible decision trees. A decision tree is a rep-
resentation of a finite set of if-then-else rules. The
main characteristics of decision trees are the fol-
lowing:

1. The examples can be defined as a set of nu-
merical and symbolic attributes.

2. The examples can be incomplete or contain
noisy data.

3. The main learning algorithms work under
Minimum Description Length approaches.

The main learning algorithms for decision trees
were proposed by Quinlan (Quinlan, 1993). First,
he defined ID3 algorithm based on the information
gain principle. This criterion is performed by cal-
culating the entropy that produces every attribute
of the examples and by selecting the attributes that
save more decisions in information terms. C4.5
algorithm is an evolution of ID3 algorithm. The
main characteristics of C4.5 are the following:

1. The algorithm can work with continuous at-
tributes.

2. Information gain is not the only learning cri-
terion.

3. The trees can be post-pruned in order to re-
fine the desired output.

3 Experimental work

We did the testing on acted emotional speech from
the Berlin database (Burkhardt el al., 2005). Al-
though acted material has a number of well known
drawbacks, it was used to establish a proof of con-
cept for the methodology proposed and is a bench-
mark database for SER. In the future work we plan
to do the testing on real emotions. The Berlin
Emotional Database (EMO-DB) contains the set
of emotions from the MPEG-4 standard (anger,
joy, disgust, fear, sadness, surprise and neutral).
Ten German sentences of emotionally undefined
content have been acted in these emotions by ten
professional actors, five of them female. Through-
out perception tests by twenty human listeners 488
phrases have been chosen that were classified as
more than 60% natural and more than 80% clearly
assignable. The database is recorded in 16 bit, 16
kHz under studio noise conditions.

As for the testing protocol, 10-fold cross-
validation was used. Recall, precision and F mea-
sure per class are given in Tables 3, 4.1 and 4.2 for
C4.5, MLP and TGI+, respectively. The overall
accuracy of MLP, the state of the art recogniser, is
73.9% and the overall accuracy of the TGI+ based
recogniser is 78.58%, which is a 4.68% ± 3.45%
in favour of TGI+. The confidence interval was

calculated as follows: Z

√
p(1− p)

n
, where p is

accuracy, n is cardinality of the data set, and Z
is a constant for the confidence level of 95%, i.e.
Z = 1.96. The proposed TGI+ has also been eval-
uated against C4.5 to find out which is the con-
tribution of moving from the feature vector repre-
sentation of samples to the distance to automata
one. C4.5 performs with 52.9% of acuracy, which
is 25.68% less than TGI+. The positive outcome
of such contrastive testing in favour of TGI+ was
expected, because TGI+ was designed to enjoy
strengths of two paradigms: syntactic and statis-
tical, while MLP (or C4.5) is a powerful single
paradigm statistical method.
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class precision recall F measure
fear 0.49 0.44 0.46
disgust 0.26 0.24 0.26
happiness 0.35 0.36 0.35
boredom 0.49 0.55 0.52
neutral 0.51 0.46 0.49
sadness 0.71 0.82 0.76
anger 0.69 0.7 0.7

Table 1: Baseline recognition with C4.5 on the
Berlin emotional database. The overall accuracy is
52.9%, which is 25.68% less accurate than TGI+.

class precision recall F measure
fear 0.82 0.74 0.77
disgust 0.72 0.74 0.73
happiness 0.52 0.49 0.51
boredom 0.73 0.75 0.74
neutral 0.71 0.78 0.75
sadness 0.88 0.94 0.91
anger 0.75 0.76 0.75

Table 2: State of the art recognition with MLP on
the Berlin emotional database. The overall accu-
racy is 73.9%, which is 4.68% less accurate than
TGI+.

4 Discussion

4.1 Correctness of algorithm construction

While constructing TGI+, it is of critical impor-
tance that the following condition holds: The ac-
curacy of TGI+ is better than that of tree accep-
tors and C4.5. If this condition holds, then TGI+
is well constructed. We tested TGI+, tree automata
as acceptors and C4.5 on the same Berlin database
under the same experimental settings. The tree
automata and C4.5 perform with 43% and 52.9%
of accuracy respectively, which is 35.58% and
25.68% worse than the accuracy of TGI+. There-
fore the condition is met and we can state that we
arrived to a meaningful combination of methods
from different pattern recognition paradigms.

4.2 A combination of statistical and syntactic
recognition

Syntactic recognition is a form of pattern recogni-
tion, where items are presented as pattern struc-
tures, which take account of more complex in-
terrelationships between features than simple nu-
meric feature vectors used in statistical classifica-
tion. One way to represent such structure is strings

class precision recall F measure
fear 0.66 0.66 0.66
disgust 0.6 0.6 0.6
happiness 0.86 0.73 0.81
boredom 0.81 0.72 0.77
neutral 0.64 0.79 0.71
sadness 0.83 0.83 0.83
anger 0.89 0.93 0.91

Table 3: Performance of the TGI+ based emotion
recognizer on the Berlin emotional database. The
overall accuracy is 78.58%.

(or trees) of a formal language. In this case differ-
ences in the structures of the classes are encoded
as different grammars. In our case, we have nu-
meric data in place of a finite alphabet, which is
more traditional for syntactic learning. The syn-
tactic method does the mapping of objects into
their models, which can be classified more accu-
rately than objects themselves.

4.3 Why tree structures?

Looking at the algorithm, it might seem redundant
to have tree acceptors, when the same would be
possible to handle with a finite state automaton
(that accepts the class of regular string languages).
Yet tree structures will serve well to add different
weights to tree branches. The motivation behind
is that acoustically some emotions are transmitted
with segmental features and others with prosodic,
e.g. prosody can be prioritised over segmental fea-
tures or vice versa (see also Section 4.5).

4.4 Selection of C4.5 as a base classifier in
TGI+

A natural question is: given that MLP outperforms
C4.5, which are the reasons for having C4.5 as
a base classifier in TGI+ and not the top statisti-
cal classifier? We followed the idea of (Sempere,
Lopez, 2003), where C4.5 was the base classifier.
We also considered the possibility of having MLP
in place of C4.5. The accuracies dramatically went
down and we abandoned this alternative.

4.5 Future work

I. Tuning parameters. There are two tuning pa-
rameters. To exclude the possibility of overfitting,
the testing settings should be changed to the pro-
tocol with disjoint training, validation and testing
sets. We have not done the experiments under the
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new training/testing settings, yet we can use the
old 10-f cross validation mode to see the trends.
Tuning parameter 1 is the point of division of the
training set into the two subsets T1 and T2, i.e. a
division of the training data to train the statistical
and syntactic classifier. The division point should
be shifted from 5% for syntactic and 100% for sta-
tistical to 100% to train both syntactic and statis-
tical models. The point of division of the training
data is an accuracy sensitive parameter. Our rough
analysis showed that the resulting function (point
of division for abscissa and accuracy for ordinate)
has a hill shape with one absolute maximum, and
we made a division roughly at this point: 39% of
the training data for the syntactic model. Finding
the best division in fair experimental settings re-
mains for future work.

Tuning parameter 2 is a set of edit costs as-
signed to different branches of the tree acceptors.
A linguistic approach is an alternative to the fea-
ture selection we followed so far. This is the point
at which finite state automata cease to be an alter-
native modelling device. The motivation behind
is that acoustically some emotions are transmitted
with segmental features and others with prosodic
(Barra, et al., 1993). A coefficient of 1.5 on the
prosodic branches brought 2% of improvement of
recognition for boredom, neutral and sadness.

II. Testing TGI+ on authentic emotions. It
has been shown that authentic corpora have very
different distributions compared to acted speech
emotions (Vogt, Andre, 2005). We must check
whether TGI+ is also a top performer, when con-
fronted with authentic corpora.

III. Complexity and computational time. A
number of classifiers, like MLP (but not C4.5) re-
quire a prior feature selection step, while TGI+
always uses a complete set of features, therefore
better accuracies come at the cost of higher com-
putational complexity. We must analyse such ad-
vantages and disadvantages of TGI+ compared to
other popular classifiers.

5 Conclusions

We have adapted a classification approach com-
ing from optical character recognition research to
the task of speech emotion recognition. The gen-
eral idea was that we would like a classification
approach to enjoy the representational power of
a syntactic method and the efficiency of statisti-
cal classification. The syntactic part implements

a tree grammar inference algorithm. The statisti-
cal part implements an entropy based decision tree
(C4.5). We did the testing on the Berlin database
of emotional speech. Our classifier outperforms
state of the art classifier (Multilayer Perceptron)
by 4.68% and a baseline (C4.5) by 26.58%, which
proves validity of the approach.
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Abstract

In this article, compound processing for
translation into German in a factored sta-
tistical MT system is investigated. Com-
pounds are handled by splitting them prior
to training, and merging the parts after
translation. I have explored eight merging
strategies using different combinations of
external knowledge sources, such as word
lists, and internal sources that are carried
through the translation process, such as
symbols or parts-of-speech. I show that
for merging to be successful, some internal
knowledge source is needed. I also show
that an extra sequence model for part-of-
speech is useful in order to improve the
order of compound parts in the output.
The best merging results are achieved by a
matching scheme for part-of-speech tags.

1 Introduction

In German, as in many other languages, com-
pounds are normally written as single words with-
out spaces or other word boundaries. Compounds
can be binary, i.e., made up of two parts (1a), or
have more parts (1b). There are also coordinated
compound constructions (1c). In a few cases com-
pounds are written with a hyphen (1d), often when
one of the parts is a proper name or an abbrevia-
tion.

(1) a. Regierungskonferenz
intergovernmental conference

b. Fremdsprachenkenntnisse
knowledge of foreign languages

c. See- und Binnenhäfen
sea and inland ports

d. Kosovo-Konflikt
Kosovo conflict

e. Völkermord
genocide

German compounds can have English trans-
lations that are compounds, written as separate
words (1a), other constructions, possibly with in-
serted function words and reordering (1b), or sin-
gle words (1e). Compound parts sometimes have
special compound forms, formed by addition or
truncations of letters, by umlaut or by a combi-
nation of these, as in (1a), where the letter -s is
added to the first part, Regierung. For an overview
of German compound forms, see Langer (1998).

Compounds are productive and common in Ger-
man and other Germanic languages, which makes
them problematic for many applications includ-
ing statistical machine translation. For translation
into a compounding language, fewer compounds
than in normal texts are often produced, which can
be due to the fact that the desired compounds are
missing in the training data, or that they have not
been aligned correctly. Where a compound is the
idiomatic word choice in the translation, a MT sys-
tem can instead produce separate words, genitive
or other alternative constructions, or only translate
one part of the compound.

The most common way to integrate compound
processing into statistical machine translation is to
split compounds prior to training and translation.
Splitting of compounds has received a lot of focus
in the literature, both for machine translation, and
targeted at other applications such as information
retrieval or speech recognition.

When translating into a compounding language
there is a need to merge the split compounds af-
ter translation. In order to do this we have to
identify which words that should be merged into
compounds, which is complicated by the fact that
the translation process is not guaranteed to pro-
duce translations where compound parts are kept
together.
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In this article I explore the effects of merging in
a factored phrase-based statistical machine trans-
lation system. The system uses part-of-speech as
an output factor. This factor is used as a knowl-
edge source for merging and to improve word
order by using a part-of-speech (POS) sequence
model.

There are different knowledge sources for
merging. Some are external, such as frequency
lists of words, compounds, and compound parts,
that could be compiled at split-time. It is also
possible to have internal knowledge sources, that
are carried through the translation process, such
as symbols on compound parts, or part-of-speech
tags. Choices made at split-time influence which
internal knowledge sources are available at merge-
time. I will explore and compare three markup
schemes for compound parts, and eight merg-
ing algorithms that use different combinations of
knowledge sources.

2 Related Work

Splitting German compounds into their parts prior
to translation has been suggested by many re-
searchers. Koehn and Knight (2003) presented an
empirical splitting algorithm that is used to im-
prove translation from German to English. They
split all words in all possible places, and consid-
ered a splitting option valid if all the parts are ex-
isting words in a monolingual corpus. They al-
lowed the addition of -s or -es at all splitting
points. If there were several valid splitting options
they chose one based on the number of splits, the
geometric mean of part frequencies or based on
alignment data. Stymne (2008) extended this al-
gorithm in a number of ways, for instance by al-
lowing more compound forms. She found that for
translation into German, it was better to use the
arithmetic mean of part frequencies than the geo-
metric mean. Using the mean of frequencies can
result in no split, if the compound is more frequent
than its parts.

Merging has been much less explored than split-
ting since it is common only to discuss translation
from compounding languages. However, Popović
et al. (2006) used merging for translation into Ger-
man. They did not mark compound parts in any
way, so the merging is based on two word lists,
with compound parts and full compounds found
at split-time. All words in the translation output
that were possible compound parts were merged

with the next word if it resulted in a known com-
pound. They only discussed merging of binary
compounds. The drawback of this method is that
novel compounds cannot be merged. Neverthe-
less, this strategy led to improved translation mea-
sured by three automatic metrics.

In a study of translation between English and
Swedish, Stymne and Holmqvist (2008) suggested
a merging algorithm based on part-of-speech,
which can be used in a factored translation sys-
tem with part-of-speech as an output factor. Com-
pound parts had special part-of-speech tags based
on the head of the compound, and merging was
performed if that part-of-speech tag matched that
of the following word. When compound forms
had been normalized the correct compound form
was found by using frequency lists of parts and
words compiled at split-time. This method can
merge unseen compounds, and the tendency to
merge too much is reduced by the restriction that
POS-tags need to match. In addition coordinated
compounds were handled by the algorithm. This
strategy resulted in improved scores on automatic
metrics, which were confirmed by an error analy-
sis.

Koehn et al. (2008) discussed treatment of hy-
phened compounds in translation into German by
splitting at hyphens and treat the hyphen as a sep-
arate token, marked by a symbol. The impact on
translation results was small.

There are also other ways of using compound
processing to improve SMT into German. Popović
et al. (2006) suggested using compound splitting
to improve alignment, or to merge English com-
pounds prior to training.

Some work has discussed merging of not only
compounds, but of all morphs. Virpioja et al.
(2007) merged translation output that was split
into morphs for Finnish, Swedish and Danish.
They marked split parts with a symbol, and
merged every word in the output which had this
symbol with the next word. If morphs were
misplaced in the translation output, they were
merged anyway, possibly creating non-existent
words. This system was worse than the baseline
on Bleu (Papineni et al., 2002), but an error analy-
sis showed some improvements.

El-Kahlout and Oflazer (2006), discuss merg-
ing of morphs in Turkish. They also mark
morphs with a symbol, and in addition normal-
ize affixes to standard form. In the merging
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phase, surface forms were generated following
morphographemic rules. They found that morphs
were often translated out of order, and that merg-
ing based purely on symbols gave bad results. To
reduce this risk, they constrained splitting to allow
only morphologically correct splits, and by group-
ing some morphemes. This lead to less ordering
problems in the translation output and gave im-
provements over the baseline.

Compound recombination have also been ap-
plied to German speech recognition, e.g. by
(Berton et al., 1996), who performed a lexical
search to extend the word graph that is output by
the speech recogniser.

3 Compound Processing

German compounds are split in the training data
and prior to translation. After translation, the parts
are merged to form full compounds. The knowl-
edge sources available to the merging process de-
pend on which information is carried through the
translation process.

The splitting algorithm of Stymne (2008) will
be used throughout this study. It is slightly mod-
ified such that only the 10 most common com-
pound forms from a corpus study of Langer (1998)
are allowed, and the hyphen in hyphened com-
pounds is treated as a compound form, analogous
to adding for instance the letter s to a part.

The annotation of compound parts influences
the merging process. Choices have to be made
concerning the form, markup and part-of-speech
of compound parts. For the form two options
have been considered, keeping the original com-
pound form, or normalizing it so that it coincides
with a normal word. Three types of marking have
been investigated, no marking at all (unmarked), a
marking symbol that is concatenated to all parts
but the last (marked), or using a separate sym-
bol between parts (sepmarked). The sepmarked
scheme has different symbols for parts of coordi-
nated compounds than for other compounds. Parts
are normalized in the unmarked and sepmarked
schemes, but left in their compound form in the
marked scheme, since the symbol separates them
from ordinary words in any case.

There is also the issue of which part-of-speech
tag to use for compound parts. The last part of the
compound, the head, always has the same part-of-
speech tag as the full compound. Two schemes
are explored for the other parts. For the marked

and unmarked system, a part-of-speech tag that is
derived from that of the last part of the word is
used. For the sepmarked scheme the most com-
mon part-of-speech tag of the part from the tagged
monolingual corpus is used.

In summary, the three markup schemes use the
following combinations, exemplified by the result
of splitting the word begrüßenswert (welcome, lit-
erally worth to welcome)

• Unmarked: no symbol, normalization, spe-
cial POS-tags

begrüßen ADJ-PART wert ADJ

• Marked: symbol on parts, no normalization,
special POS-tags

begrüßens# ADJ-PART wert ADJ

• Sepmarked: symbol as separate token, nor-
malization, ordinary POS-tags

begrüßen VV @#@ COMP wert ADJ

3.1 Merging
There is no guarantee that compound parts appear
in a correct context in the translation output. This
fact complicates merging, since there is a general
choice between only merging those words that we
know are compounds, and merging all occurrences
of compound parts, which will merge unseen com-
pounds, but probably also merge parts that do not
form well-formed compounds. There is also the
issue of parts possibly being part of coordinated
compounds.

The internal knowledge sources that can be used
for merging depends on the markup scheme used.
The available internal sources are markup sym-
bols, part-of-speech tags, and the special tags for
compound parts. The external resources are fre-
quency lists of words, compounds and parts, pos-
sibly with normalization, compiled at split-time.

For the unmarked and sepmarked scheme, re-
verse normalization, i.e., mapping normalized
compound parts into correct compound forms, has
to be applied in connection with merging. As in
Stymne and Holmqvist (2008), all combinations
of compound forms that are known for each part
are looked up in the word frequency list, and the
most frequent combination is chosen. If there are
no known combinations, the parts are combined
from left to right, at each step choosing the most
frequent combination.

Three main types of merging algorithms are in-
vestigated in this study. The first group, inspired
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Name Description
word-list Merges all tokens that have been seen as compound parts with the next part if it results in a known

word, from the training corpus
word-list + head-pos As word-list, but only merges words where the last part is a noun, adjective or verb
compound-list As word-list, but for known compounds from split-time, not for all known words
symbol Merges all tokens that are marked with the next token
symbol + head-pos As symbol, but only merges words where the last part is a noun, adjective or verb
symbol + word-list A mix of symbol and word-list, where marked compounds are merged, if it results in a known word
POS-match Merges all tokens with a compound part-of-speech tag, if the tag match the tag of the next token
POS-match + coord As POS-match, but also adds a hyphen to parts that are followed by the conjunction und (and)

Table 1: Merging algorithms

by Popović et al. (2006), is based only on exter-
nal knowledge sources, frequency lists of words
or compounds, and of parts, compiled at split-
time. Novel compounds cannot be merged by
these algorithms. The second group uses sym-
bols to guide merging, inspired by work on mor-
phology merging (Virpioja et al., 2007). In the
unmarked scheme where compound parts are not
marked with symbols, the special POS-tags are
used to identify parts instead1. The third group
is based on special part-of-speech tags for com-
pounds (Stymne and Holmqvist, 2008), and merg-
ing is performed if the part-of-speech tags match.
This group of algorithms cannot be applied to the
sepmarked scheme.

In addition a restriction that the head of the
compound should have a compounding part-of-
speech, that is, a noun, adjective, or verb, and a
rule to handle coordinated compounds are used.
By using these additions and combinations of the
main algorithms, a total of eight algorithms are ex-
plored, as summarized in Table 1. For all algo-
rithms, compounds can have an arbitrary number
of parts.

If there is a marked compound part that cannot
be combined with the next word, in any of the al-
gorithms, the markup is removed, and the part is
left as a single word. For the sepmarked system,
coordinated compounds are handled as part of the
symbol algorithms, by using the special markup
symbol that indicates them.

3.2 Merging Performance

To give an idea of the potential of the merging al-
gorithms, they are evaluated on the split test refer-
ence corpus, using the unmarked scheme. The cor-
pus has 55580 words, of which 4472 are identified
as compounds by the splitting algorithm. Of these
4160 are known from the corpus, 245 are novel,

1For the marked scheme using POS-tags to identify com-
pound parts is equivalent to using symbols.

and 67 are coordinated. For the methods based
on symbols or part-of-speech, this merging task is
trivial, except for reverse normalization, since all
parts are correctly ordered.

Table 2 shows the number of errors. The POS-
match algorithm with treatment of coordination
makes 55 errors, 4 of which are due to coordinated
compounds that does not use und as the conjunc-
tion. The other errors are due to errors in the re-
verse normalization of novel compounds, which
has an accuracy of 79% on this text. The POS-
match and symbol algorithms make additional er-
rors on coordinated compounds. The head-pos
restriction blocks compounds with an adverb as
head, which gave better results on translation data,
but increased the errors on this evaluation. The
word list method both merges many words that
are not compounds, and do not merge any novel
compounds. Using a list of compounds instead of
words reduces the errors slightly.

4 System Description

The translation system used is a factored phrase-
based translation system. In a factored transla-
tion model other factors than surface form can
be used, such as lemma or part-of-speech (Koehn
and Hoang, 2007). In the current system part-of-
speech is used only as an output factor in the target
language. Besides the standard language model a
sequence model on part-of-speech is used, which
can be expected to lead to better word order in the
translation output. There are no input factors, so
no tagging has to be performed prior to translation,
only the training corpus needs to be tagged. In ad-
dition, the computational overhead is small. One
possible benefit gained by using part-of-speech as
an output factor is that ordering, both in general,
and of compound parts, can be improved. This hy-
pothesis is tested by trying two system setups, with
and without the part-of-speech sequence model.
In addition part-of-speech is used for postprocess-
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wlist wlist+head-pos clist symbol symbol+head-pos symbol+wlist POS-match POS-match+coord
2393 1656 2257 118 205 330 118 55

Table 2: Number of merging errors on the split reference corpus

Tokens Types
English baseline 15158429 63692

German

baseline 14356051 184215
marked 15674728 93746
unmarked 15674728 81806
sepmarked 17007929 81808

Table 3: Type and token counts for the 701157
sentence training corpus

ing, both for uppercasing German nouns and as a
knowledge source for compound merging.

The tools used are the Moses toolkit (Koehn et
al., 2007) for decoding and training, GIZA++ for
word alignment (Och and Ney, 2003), and SRILM
(Stolcke, 2002) for language models. A 5-gram
model is used for surface form, and a 7-gram
model is used for part-of-speech. To tune feature
weights minimum error rate training is used (Och,
2003), optimized against the Neva metric (Fors-
bom, 2003). Compound splitting is performed on
the training corpus, prior to training. Merging is
performed after translation, both for test, and in-
corporated into the tuning step.

4.1 Corpus

The system is trained and tested on the Europarl
corpus (Koehn, 2005). The training corpus is fil-
tered to remove sentences longer than 40 words
and with a length ratio of more than 1 to 7. The fil-
tered training corpus contains 701157 sentences.
500 sentences are used for tuning and 2000 sen-
tences for testing2. The German side of the train-
ing corpus is part-of-speech tagged using TreeTag-
ger (Schmid, 1994).

The German corpus has nearly three times as
many types, i.e., unique tokens, as the English cor-
pus despite having a somewhat lower token count,
as shown for the training corpus in Table 3. Com-
pound splitting drastically reduces the number of
types, to around half or less, even though it is still
larger than for English. Marking on parts gives
15% more types than no marking.

2The test set is test2007 from the ACL 2008 Workshop on
Statistical Machine Translation, http://www.statmt.
org/wmt08/shared-task.html

5 Evaluation

Two types of evaluation are performed. The in-
fluence of the different merging algorithms on the
overall translation quality is evaluated, using two
automatic metrics. In addition the performance
of the merging algorithms are analysed in some
more detail. In both cases the effect of the POS
sequence model is also discussed. Even when the
POS sequence model is not used, part-of-speech
is carried through the translation process, so that it
can be used in the merging step.

5.1 Evaluation of Translation

Translations are evaluated on two automatic met-
rics: Bleu (Papineni et al., 2002) and PER, posi-
tion independent error-rate (Tillmann et al., 1997).
Case-sensitive versions of the metrics are used.
PER does not consider word order, it evaluates
the translation as a bag-of-word, and thus the sys-
tems without part-of-speech sequence models can
be expected to do well on PER. Note that PER is
an error-rate, so lower scores are better, whereas
higher scores are better for Bleu.

These metrics have disadvantages, for instance
because the same weight is given to all tokens,
both to complex compounds, and to function
words such as und (and). Bleu has been criticized,
see e.g. (Callison-Burch et al., 2006; Chiang et al.,
2008).

Table 4 and 5 shows the translation results using
the different merging algorithms. For the systems
with POS sequence models the baseline performs
slightly better on Bleu, than the best systems with
merging. Without the POS sequence model, how-
ever, merging often leads to improvements, by up
to 0.48 Bleu points. For all systems it is advanta-
geous to use the POS sequence model.

For the baseline, the PER scores are higher
for the system without a POS sequence model,
which, compared to the Bleu scores, confirms
the fact that word order is improved by the se-
quence model. The systems with merging are
better than the baseline with the POS sequence
model. In all cases, however, the systems with
merging performs worse when not using a POS
sequence model, indicating that the part-of-speech
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with POS-model without POS-model
unmarked sepmarked marked unmarked sepmarked marked

word-list 17.93 17.66 18.92 17.70 17.29 18.69
word-list + head-pos 19.34 19.07 19.60 19.13 18.63 19.38
compound-list 18.94 17.77 18.13 18.56 17.40 17.86
symbol 20.02 19.57 20.03 19.66 19.14 19.79
symbol + head-pos 20.02 19.55 20.01 19.75 19.12 19.78
symbol + word-list 20.03 19.72 20.02 19.76 19.29 19.79
POS-match 20.12 – 20.03 19.84 – 19.80
POS-match + coord 20.10 – 19.97 19.85 – 19.80

Table 4: Translation results for Bleu. Baseline with POS: 20.19, without POS: 19.66. Results that are
better than the baseline are marked with bold face.

with POS-model without POS-model
unmarked sepmarked marked unmarked sepmarked marked

word-list 29.88 28.64 28.19 30.27 29.94 28.71
word-list + head-pos 27.49 26.07 27.26 27.78 27.22 27.84
compound-list 26.92 27.99 29.25 27.46 29.07 29.74
symbol 27.21 26.13 26.95 27.70 27.40 27.61
symbol + head-pos 27.11 26.10 26.92 27.34 27.35 27.54
symbol + word-list 26.86 25.54 26.80 27.15 26.72 27.39
POS-match 26.99 – 26.93 27.17 – 27.53
POS-match + coord 27.10 – 26.93 27.28 – 27.53

Table 5: Translation results for PER. Baseline with POS: 27.22, without POS: 26.49. Results that are
better than the baseline are marked with bold face.

sequence model improves the order of compound
parts.

When measured by PER, the best results when
using merging are achieved by combining sym-
bols and word lists, but when measured by Bleu,
the POS-based algorithms are best. The simpler
symbol-based methods, often have similar scores,
and in a few cases even better. Adding treatment
of coordinated compounds to the POS-match al-
gorithm changes scores marginally in both direc-
tions. The word list based methods, however, gen-
erally give bad results. Using the head-pos restric-
tion improves it somewhat and using a compound
list instead of a word list gives different results in
the different markup schemes, but is still worse
than the best systems. This shows that some kind
of internal knowledge source, either symbols or
part-of-speech, is needed in order for merging to
be successful.

On both metrics, the marked and unmarked sys-
tem perform similarly. They are better than the
sepmarked system on Bleu, but the sepmarked sys-
tem is a lot better on PER, which is an indication
of that word order is problematic in the sepmarked
system, with its separate tokens to indicate com-
pounds.

5.2 Evaluation of Merging
The results of the different merging algorithms are
analysed to find the number of merges and the type

and quality of the merges. In addition I investigate
the effect of using a part-of-speech model on the
merging process.

Table 6 shows the reduction of words3 achieved
by applying the different algorithms. The word
list based method produces the highest number
of merges in all cases, performing many merges
where the parts are not recognized as such by the
system. The number of merges is greatly reduced
by the head-pos restriction. An investigation of the
output of the word list based method shows that
it often merges common words that incidentally
form a new word, such as bei (at) and der (the)
to beider (both). Another type of error is due to
errors in the corpus, such as the merge of umwelt
(environment) and und (and), which occurs in the
corpus, but is not a correct German word. These
two error types are often prohibited by the head-
pos restrictions. The compound list method avoids
these errors, but it does not merge compounds that
were not split by the splitting algorithm, due to a
high frequency, giving a very low number of splits
in some cases. There are small differences be-
tween the POS-match and symbol algorithms. Not
using the POS sequence model results in a higher
number of merges for all systems.

A more detailed analysis was performed of the
3The reduction of words is higher than the number of pro-

duced compounds, since each compound can have more than
two parts.
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with POS-model without POS-model
unmarked sepmarked marked unmarked sepmarked marked

word-list 5275 5422 4866 5897 5589 5231
word-list + head-pos 4161 4412 4338 4752 4601 4661
compound-list 4460 4669 3253 5116 4850 3534
symbol 4431 4712 4332 5144 4968 4702
symbol + head-pos 4323 4671 4279 4832 4899 4594
symbol + word-list 4178 4436 4198 4753 4656 4530
POS-match 4363 – 4310 4867 – 4618
POS-match + coord 4361 – 4310 4865 – 4618

Table 6: Reduction of number of words by using different merging algorithms

with POS-model without POS-model
unmarked sepmarked marked unmarked sepmarked marked

Known 3339 3594 3375 3747 3762 3587

Novel Good 168 176 105 104 245 93
Bad 20 97 8 10 64 7

Coordinated Good 43 43 42 42 37 44
Bad 9 9 3 22 7 5

Single part Good 6 – 5 136 – 33
Bad 11 – 16 52 – 46

Total 3596 3919 3554 4113 4115 3815

Table 7: Analysis of merged compounds

compounds parts in the output. The result of merg-
ing them are classified into four groups: merged
compounds that are known from the training cor-
pus (2a) or that are novel (2b), parts that were
not merged (2c), and parts of coordinated com-
pounds (2d). They are classified as bad if the com-
pound/part should have been merged with the next
word, does not fit into its context, or has the wrong
form.

(2) a. Naturschutzpolitik
nature protection policy

b. UN-Friedensplan
UN peace plan

c. * West- zulassen
west allow

d. Mittel- und Osteuropa
Central and Eastern Europe

For the unmarked and sepmarked systems, the
classification was based on the POS-match con-
straint, where parts are not merged if the POS-tags
do not match. POS-match cannot be used for the
sepmarked scheme, which has standard POS-tags.

Table 7 shows the results of this analysis. The
majority of the merged compounds are known
from the training corpus for all systems. There
is a marked difference between the two systems
that use POS-match, and the sepmarked system
that does not. The sepmarked system found the
highest number of novel compounds, but also have
the highest error rate for these, which shows that

it is useful to match POS-tags. The other two sys-
tems find fewer novel compounds, but also make
fewer mistakes. The marked system has more er-
rors for single parts than the other systems, mainly
beacuse the form of compound parts were not nor-
malized. Very few errors are due to reverse nor-
malization. In the unmarked system with a POS
sequence model, there were only three such errors,
which is better than the results on split data in Sec-
tion 3.2.

Generally the percentage of bad parts or com-
pounds is lower for the systems with a POS se-
quence model, which shows that the sequence
model is useful for the ordering of compound
parts. The number of single compound parts is
also much higher for the systems without a POS
sequence model. 80% of the merged compounds
in the unmarked system are binary, i.e., have two
parts, and the highest number of parts in a com-
pound is 5. The pattern for the other systems is
similar.

All systems produce fewer compounds than the
4472 in the German reference text. However, there
might also be compounds in the output, that were
not split and merged. These numbers are not di-
rectly comparable to the baseline system, and ap-
plying the POS-based splitting algorithm to trans-
lation output would not give a fair comparison.

An indication of the number of compounds in a
text is the number of long words. In the reference
text there are 351 words with at least 20 characters,
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which will be used as the limit for long words. A
manual analysis showed that all these words are
compounds. The baseline system produces 209
long words. The systems with merging, discussed
above, all produce more long words than the base-
line, but less than the reference, between 263 and
307, with the highest number in the marked sys-
tem. The trend is the same for the systems with-
out a POS sequence model, but with slightly fewer
long words than for the systems with merging.

6 Discussion

The choice of merging method has a large impact
on the final translation result. For merging to be
successful some internal knowledge source, such
as part-of-speech or symbols is needed. The pure
word list based method performed the worst of
all systems on both metrics in most cases, which
was not surprising, considering the evaluation of
the merging algorithms on split data, where it was
shown that the word-list based methods merged
many parts that were not compounds.

The combination of symbols and word lists gave
good results on the automatic metrics. An advan-
tage of this method is that it is applicable for trans-
lation systems that do not use factors. However,
it has the drawback that it does not merge novel
compounds, and finds fewer compounds than most
other algorithms. The error analysis shows that
many valid compounds are discarded by this algo-
rithm. A method that both find novel compounds,
and that works well is that based on POS-match.
In its current form it needs a decoder that can han-
dle factored translation models. It would, how-
ever, be possible to use more elaborate symbols
with part-of-speech information, which would al-
low a POS-matching scheme, without the need of
factors.

The error analysis of merging performance
showed that merging works well, especially for
the two schemes where POS-matching is possi-
ble, where the proportion of errors is low. It
also showed that using a part-of-speech sequence
model was useful in order to get good results,
specifically since it increased the number of com-
pound parts that were placed correctly in the trans-
lation output.

The sepmarked scheme is best on the PER met-
ric it is worse on Bleu, and the error analysis
shows that it performs worse on merging than the
other systems. This could probably be improved

by the use of special POS-tags and POS-matching
for this scheme as well. It is hard to judge which
is best of the unmarked and marked scheme. They
perform similarly on the metrics, and there is no
clear difference in the error analysis. The un-
marked scheme does produce a somewhat higher
number of novel compounds, though. A disadvan-
tage of the marked scheme is that the compound
form is kept for single parts. A solution for this
could be to normalize parts in this scheme as well,
which could improve performance, since reverse
normalization performance is good on translation
data.

The systems with splitting and merging have
more long words than the baseline, which indi-
cates that they are more successful in creating
compounds. However, they still have fewer long
words than the reference text, indicating the need
of more work on producing compounds.

7 Conclusion and Future Work

In this study I have shown that the strategy used
for merging German compound parts in transla-
tion output influences translation results to a large
extent. For merging to be successful, it needs
some internal knowledge source, carried through
the translation process, such as symbols or part-
of- speech. The overall best results were achieved
by using matching for part-of-speech.

One factor that affects merging, which was not
explored in this work, is the quality of splitting.
If splitting produces less erroneously split com-
pounds than the current method, it is possible
that merging also can produce better results, even
though it was not clear from the error analysis that
bad splits were a problem. A number of more ac-
curate splitting strategies have been suggested for
different tasks, see e.g. Alfonseca et al. (2008),
that could be explored in combination with merg-
ing for machine translation.

I have compared the performance of different
merging strategies in one language, German. It
would be interesting to investigate these meth-
ods for other compounding languages as well. I
also want to explore translation between two com-
pounding languages, where splitting and merging
would be performed on both languages, not only
on one language as in this study.
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Abstract

Generalized Vector Space Models
(GVSM) extend the standard Vector
Space Model (VSM) by embedding addi-
tional types of information, besides terms,
in the representation of documents. An
interesting type of information that can
be used in such models is semantic infor-
mation from word thesauri like WordNet.
Previous attempts to construct GVSM
reported contradicting results. The most
challenging problem is to incorporate the
semantic information in a theoretically
sound and rigorous manner and to modify
the standard interpretation of the VSM.
In this paper we present a new GVSM
model that exploits WordNet’s semantic
information. The model is based on a new
measure of semantic relatedness between
terms. Experimental study conducted
in three TREC collections reveals that
semantic information can boost text
retrieval performance with the use of the
proposed GVSM.

1 Introduction

The use of semantic information into text retrieval
or text classification has been controversial. For
example in Mavroeidis et al. (2005) it was shown
that a GVSM using WordNet (Fellbaum, 1998)
senses and their hypernyms, improves text clas-
sification performance, especially for small train-
ing sets. In contrast, Sanderson (1994) reported
that even90% accurate WSD cannot guarantee
retrieval improvement, though their experimental
methodology was based only on randomly gen-
erated pseudowords of varying sizes. Similarly,
Voorhees (1993) reported a drop in retrieval per-
formance when the retrieval model was based on
WSD information. On the contrary, the construc-
tion of a sense-based retrieval model by Stokoe

et al. (2003) improved performance, while sev-
eral years before, Krovetz and Croft (1992) had
already pointed out that resolving word senses can
improve searches requiring high levels of recall.

In this work, we argue that the incorporation
of semantic information into a GVSM retrieval
model can improve performance by considering
the semantic relatedness between the query and
document terms. The proposed model extends
the traditional VSM with term to term relatedness
measured with the use of WordNet. The success of
the method lies in three important factors, which
also constitute the points of our contribution: 1) a
new measure for computing semantic relatedness
between terms which takes into account relation
weights, and senses’ depth; 2) a new GVSM re-
trieval model, which incorporates the aforemen-
tioned semantic relatedness measure; 3) exploita-
tion of all the semantic information a thesaurus
can offer, including semantic relations crossing
parts of speech (POS). Experimental evaluation
in three TREC collections shows that the pro-
posed model can improve in certain cases the
performance of the standard TF-IDF VSM. The
rest of the paper is organized as follows: Section
2 presents preliminary concepts, regarding VSM
and GVSM. Section 3 presents the term seman-
tic relatedness measure and the proposed GVSM.
Section 4 analyzes the experimental results, and
Section 5 concludes and gives pointers to future
work.

2 Background

2.1 Vector Space Model

The VSM has been a standard model of represent-
ing documents in information retrieval for almost
three decades (Salton and McGill, 1983; Baeza-
Yates and Ribeiro-Neto, 1999). LetD be a docu-
ment collection andQ the set of queries represent-
ing users’ information needs. Let alsoti symbol-
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ize termi used to index the documents in the col-
lection, with i = 1, .., n. The VSM assumes that
for each termti there exists a vector~ti in the vector
space that represents it. It then considers the set of
all term vectors{~ti} to be the generating set of the
vector space, thus the space basis. If eachdk,(for
k = 1, .., p) denotes a document of the collection,
then there exists a linear combination of the term
vectors{~ti} which represents eachdk in the vector
space. Similarly, any queryq can be modelled as
a vector~q that is a linear combination of the term
vectors.

In the standard VSM, the term vectors are con-
sidered pairwise orthogonal, meaning that they are
linearly independent. But this assumption is un-
realistic, since it enforces lack of relatedness be-
tween any pair of terms, whereas the terms in a
language often relate to each other. Provided that
the orthogonality assumption holds, the similarity
between a document vector~dk and a query vec-
tor ~q in the VSM can be expressed by the cosine
measure given in equation 1.

cos( ~dk, ~q) =

∑n
j=1 akjqj

√

∑n
i=1 a2

ki

∑n
j=1 q2

j

(1)

whereakj , qj are real numbers standing for the
weights of termj in the documentdk and the
queryq respectively. A standard baseline retrieval
strategy is to rank the documents according to their
cosine similarity to the query.

2.2 Generalized Vector Space Model

Wong et al. (1987) presented an analysis of the
problems that the pairwise orthogonality assump-
tion of the VSM creates. They were the first to
address these problems by expanding the VSM.
They introduced term to term correlations, which
deprecated the pairwise orthogonality assumption,
but they kept the assumption that the term vectors
are linearly independent1, creating the first GVSM
model. More specifically, they considered a new
space, where each term vector~ti was expressed as
a linear combination of2n vectors ~mr, r = 1..2n.
The similarity measure between a document and a
query then became as shown in equation 2, where
~ti and~tj are now term vectors in a2n dimensional
vector space,~dk, ~q are the document and the query

1It is known from Linear Algebra that if every pair of vec-
tors in a set of vectors is orthogonal, then this set of vectors
is linearly independent, but not the inverse.

vectors, respectively, as before,áki, q́j are the new
weights, and́n the new space dimensions.

cos( ~dk, ~q) =

∑ń
j=1

∑ń
i=1 ákiq́j

~ti~tj
√

∑ń
i=1 áki

2 ∑ń
j=1 q́j

2
(2)

From equation 2 it follows that the term vectors
~ti and ~tj need not be known, as long as the cor-
relations between termsti and tj are known. If
one assumes pairwise orthogonality, the similarity
measure is reduced to that of equation 1.

2.3 Semantic Information and GVSM

Since the introduction of the first GVSM model,
there are at least two basic directions for em-
bedding term to term relatedness, other than ex-
act keyword matching, into a retrieval model:
(a) compute semantic correlations between terms,
or (b) compute frequency co-occurrence statistics
from large corpora. In this paper we focus on the
first direction. In the past, the effect of WSD infor-
mation in text retrieval was studied (Krovetz and
Croft, 1992; Sanderson, 1994), with the results re-
vealing that under circumstances, senses informa-
tion may improve IR. More specifically, Krovetz
and Croft (1992) performed a series of three exper-
iments in two document collections, CACM and
TIMES. The results of their experiments showed
that word senses provide a clear distinction be-
tween relevant and nonrelevant documents, reject-
ing the null hypothesis that the meaning of a word
is not related to judgments of relevance. Also, they
reached the conclusion that words being worth
of disambiguation are either the words with uni-
form distribution of senses, or the words that in
the query have a different sense from the most
popular one. Sanderson (1994) studied the in-
fluence of disambiguation in IR with the use of
pseudowords and he concluded that sense ambi-
guity is problematic for IR only in the cases of
retrieving from short queries. Furthermore, his
findings regarding the WSD used were that such
a WSD system would help IR if it could perform
with very high accuracy, although his experiments
were conducted in the Reuters collection, where
standard queries with corresponding relevant doc-
uments (qrels) are not provided.

Since then, several recent approaches have
incorporated semantic information in VSM.
Mavroeidis et al. (2005) created a GVSM ker-
nel based on the use of noun senses, and their
hypernyms from WordNet. They experimentally
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showed that this can improve text categorization.
Stokoe et al. (Stokoe et al., 2003) reported an im-
provement in retrieval performance using a fully
sense-based system. Our approach differs from
the aforementioned ones in that it expands the
VSM model using the semantic information of a
word thesaurus to interpret the orthogonality of
terms and to measure semantic relatedness, in-
stead of directly replacing terms with senses, or
adding senses to the model.

3 A GVSM Model based on Semantic
Relatedness of Terms

Synonymy (many words per sense) and polysemy
(many senses per word) are two fundamental prob-
lems in text retrieval. Synonymy is related with
recall, while polysemy with precision. One stan-
dard method to tackle synonymy is the expansion
of the query terms with their synonyms. This in-
creases recall, but it can reduce precision dramat-
ically. Both polysemy and synonymy can be cap-
tured on the GVSM model in the computation of
the inner product between~ti and~tj in equation 2,
as will be explained below.

3.1 Semantic Relatedness

In our model, we measure semantic relatedness us-
ing WordNet. It considers the path length, cap-
tured bycompactness(SCM), and the path depth,
captured bysemantic path elaboration(SPE),
which are defined in the following. The two mea-
sures are combined to forsemantic relatedness
(SR) beetween two terms. SR, presented in defini-
tion 3, is the basic module of the proposed GVSM
model. The adopted method of building seman-
tic networks and measuring semantic relatedness
from a word thesaurus is explained in the next sub-
section.

Definition 1 Given a word thesaurusO, a weight-
ing scheme for the edges that assigns a weighte ∈
(0, 1) for each edge, a pair of sensesS = (s1, s2),
and a path of lengthl connecting the two senses,
the semantic compactness ofS (SCM(S, O)) is
defined as

∏l
i=1 ei, where e1, e2, ..., el are the

path’s edges. Ifs1 = s2 SCM(S, O) = 1. If there
is no path betweens1 ands2 SCM(S, O) = 0.

Note thatcompactnessconsiders the path length
and has values in the set [0, 1]. Highercom-
pactnessbetween senses declares higher seman-
tic relatedness and larger weight are assigned to

stronger edge types. The intuition behind the as-
sumption of edges’ weighting is the fact that some
edges provide stronger semantic connections than
others. In the next subsection we propose a can-
didate method of computing weights. Thecom-
pactnessof two sensess1 ands2, can take differ-
ent values for all the different paths that connect
the two senses. All these paths are examined, as
explained later, and the path with the maximum
weight is eventually selected (definition 3). An-
other parameter that affects term relatedness is the
depth of the sense nodes comprising the path. A
standard means of measuring depth in a word the-
saurus is the hypernym/hyponym hierarchical re-
lation for the noun and adjective POS and hyper-
nym/troponym for the verb POS. A path with shal-
low sense nodes is more general compared to a
path with deep nodes. This parameter of seman-
tic relatedness between terms is captured by the
measure ofsemantic path elaborationintroduced
in the following definition.

Definition 2 Given a word thesaurusO and a
pair of sensesS = (s1, s2), wheres1,s2 ∈ O
and s1 6= s2, and a path between the two senses
of lengthl, the semantic path elaboration of the
path (SPE(S,O)) is defined as

∏l
i=1

2didi+1

di+di+1
· 1
dmax

,
wheredi is the depth of sensesi according toO,
and dmax the maximum depth ofO. If s1 = s2,
andd = d1 = d2, SPE(S, O) = d

dmax
. If there is

no path froms1 to s2, SPE(S, O) = 0.

Essentially, SPE is the harmonic mean of the
two depths normalized to the maximum thesaurus
depth. The harmonic mean offers a lower upper
bound than the average of depths and we think
is a more realistic estimation of the path’s depth.
SCM and SPE capture the two most important
parameters of measuring semantic relatedness be-
tween terms (Budanitsky and Hirst, 2006), namely
path length and senses depth in the used thesaurus.
We combine these two measures naturally towards
defining theSemantic Relatednessbetween two
terms.

Definition 3 Given a word thesaurusO, a pair of
termsT = (t1, t2), and all pairs of sensesS =
(s1i, s2j), wheres1i, s2j senses oft1,t2 respec-
tively. The semantic relatedness ofT (SR(T,S,O))
is defined asmax{SCM(S, O)·SPE(S, O)}. SR
between two termsti, tj whereti ≡ tj ≡ t and
t /∈ O is defined as1. If ti ∈ O but tj /∈ O, or
ti /∈ O but tj ∈ O, SR is defined as0.
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Figure 1: Computation of semantic relatedness.

3.2 Semantic Networks from Word Thesauri

In order to construct a semantic network for a pair
of termst1 andt2 and a combination of their re-
spective senses, i.e.,s1 and s2, we adopted the
network construction method that we introduced
in (Tsatsaronis et al., 2007). This method was pre-
ferred against other related methods, like the one
introduced in (Mihalcea et al., 2004), since it em-
beds all the available semantic information exist-
ing in WordNet, even edges that cross POS, thus
offering a richer semantic representation. Accord-
ing to the adopted semantic network construction
model, each semantic edge type is given a different
weight. The intuition behind edge types’ weight-
ing is that certain types provide stronger semantic
connections than others. The frequency of occur-
rence of the different edge types in Wordnet 2.0, is
used to define the edge types’ weights (e.g.0.57
for hypernym/hyponym edges,0.14 for nominal-
ization edges etc.).

Figure 1 shows the construction of a semantic
network for two termsti and tj . Let the high-
lighted sensesS.i.2 andS.j.1 be a pair of senses
of ti and tj respectively. All the semantic links
of the highlighted senses, as found in WordNet,
are added as shown in example 1 of figure 1. The
process is repeated recursively until at least one
path betweenS.i.2 andS.j.1 is found. It might be
the case that there is no path fromS.i.2 to S.j.1.
In that caseSR((ti, tj), (S.i.2, S.j.1), O) = 0.
Suppose that a path is that of example 2, where
e1, e2, e3 are the respective edge weights,d1 is the
depth ofS.i.2, d2 the depth ofS.i.2.1, d3 the depth
of S.i.2.2 andd4 the depth ofS.j.1, anddmax the
maximum thesaurus depth. For reasons of sim-
plicity, let e1 = e2 = e3 = 0.5, andd1 = 3.
Naturally,d2 = 4, and letd3 = d4 = d2 = 4. Fi-
nally, letdmax = 14, which is the case for Word-

Net 2.0. Then,SR((ti, tj), (S.i.2, S.j.1), O) =
0.53 · 0.4615 · 0.52 = 0.01442. Example 3 of
figure 2 illustrates another possibility whereS.i.7
andS.j.5 is another examined pair of senses forti
andtj respectively. In this case, the two senses co-
incide, andSR((ti, tj), (S.i.7, S.j.5), O) = 1 · d

14 ,
whered the depth of the sense. When two senses
coincide,SCM = 1, as mentioned in definition 1,
a secondary criterion must be levied to distinguish
the relatedness of senses that match. This crite-
rion in SR is SPE, which assumes that a sense
is more specific as we traverse WordNet graph
downwards. In the specified example,SCM = 1,
butSPE = d

14 . This will give a final value toSR
that will be less than1. This constitutes an intrin-
sic property ofSR, which is expressed bySPE.
The rationale behind the computation ofSPE
stems from the fact that word senses in WordNet
are organized into synonym sets, namedsynsets.
Moreover, synsets belong to hierarchies (i.e., noun
hierarchies developed by the hypernym/hyponym
relations). Thus, in case two words map into the
same synset (i.e., their senses belong to the same
synset), the computation of their semantic related-
ness must additionally take into account the depth
of that synset in WordNet.

3.3 Computing Maximum Semantic
Relatedness

In the expansion of the VSM model we need to
weigh the inner product between any two term
vectors with their semantic relatedness. It is obvi-
ous that given a word thesaurus, there can be more
than one semantic paths that link two senses. In
these cases, we decide to use the path that max-
imizes the semantic relatedness (the product of
SCM and SPE). This computation can be done
according to the following algorithm, which is a
modification of Dijkstra’s algorithm for finding
the shortest path between two nodes in a weighted
directed graph. The proof of the algorithm’s cor-
rectness follows with theorem 1.

Theorem 1 Given a word thesaurusO, a weight-
ing functionw : E → (0, 1), where a higher value
declares a stronger edge, and a pair of senses
S(ss, sf ) declaring source (ss) and destination
(sf ) vertices, then theSCM(S, O) · SPE(S, O)
is maximized for the path returned by Algorithm
1, by using the weighting schemeeij = wij ·

2·di·dj

dmax·(di+dj)
, whereeij the new weight of the edge

connecting sensessi and sj , and wij the initial

73



Algorithm 1 MaxSR(G,u,v,w)
Require: A directed weighted graph G, two

nodes u, v and a weighting schemew : E →
(0..1).

Ensure: The path from u to v with the maximum
product of the edges weights.
Initialize-Single-Source(G,u)

1: for all verticesv ∈ V [G] do
2: d[v] = −∞
3: π[v] = NULL
4: end for
5: d[u] = 1

Relax(u, v, w)
6: if d[v] < d[u] · w(u, v) then
7: d[v] = d[u] · w(u, v)
8: π[v] = u
9: end if

Maximum-Relatedness(G,u,v,w)
10: Initialize-Single-Source(G,u)
11: S = ∅
12: Q = V [G]
13: while v ∈ Q do
14: s = Extract fromQ the vertex with maxd
15: S = S ∪ s
16: for all verticesk ∈ Adjacency List ofs do
17: Relax(s,k,w)
18: end for
19: end while
20: return the path following all the ancestorsπ of

v back tou

weight assigned by weighting functionw.

Proof 1 For the proof of this theorem we follow
the course of thinking of the proof of theorem
25.10 in (Cormen et al., 1990). We shall show
that for each vertexsf ∈ V , d[sf ] is the max-
imum product of edges’ weight through the se-
lected path, starting fromss, at the time when
sf is inserted intoS. From now on, the nota-
tion δ(ss, sf ) will represent this product. Path
p connects a vertex inS, namelyss, to a ver-
tex in V − S, namelysf . Consider the first ver-
tex sy along p such thatsy ∈ V − S and letsx

be y’s predecessor. Now, pathp can be decom-
posed asss → sx → sy → sf . We claim that
d[sy] = δ(ss, sy) whensf is inserted intoS. Ob-
serve thatsx ∈ S. Then, becausesf is chosen as
the first vertex for whichd[sf ] 6= δ(ss, sf ) when it
is inserted intoS, we hadd[sx] = δ(ss, sx) when
sx was inserted intoS.

We can now obtain a contradiction to the

above to prove the theorem. Becausesy oc-
curs beforesf on the path fromss to sf and all
edge weights are nonnegative2 and in (0, 1) we
have δ(ss, sy) ≥ δ(ss, sf ), and thusd[sy] =
δ(ss, sy) ≥ δ(ss, sf ) ≥ d[sf ]. But both sy

and sf were in V − S when sf was chosen,
so we haved[sf ] ≥ d[sy]. Thus, d[sy] =
δ(ss, sy) = δ(ss, sf ) = d[sf ]. Consequently,
d[sf ] = δ(ss, sf ) which contradicts our choice of
sf . We conclude that at the time each vertexsf is
inserted intoS, d[sf ] = δ(ss, sf ).

Next, to prove that the returned maximum
product is the SCM(S, O) · SPE(S, O), let
the path betweenss and sf with the maximum
edge weight product havek edges. Then, Al-
gorithm 1 returns the maximum

∏k
i=1 ei(i+1) =

ws2 · 2·ds·d2

dmax·(ds+d2) · w23 · 2·d2·d3

dmax·(d2+d3) · ... · wkf ·
2·dk·df

dmax·(dk+df ) =
∏k

i=1 wi(i+1) ·
∏k

i=1
2didi+1

di+di+1
·

1
dmax

= SCM(S, O) · SPE(S, O).

3.4 Word Sense Disambiguation

The reader will have noticed that our model com-
putes the SR between two termsti,tj , based on the
pair of sensessi,sj of the two terms respectively,
which maximizes the productSCM · SPE. Al-
ternatively, a WSD algorithm could have disam-
biguated the two terms, given the text fragments
where the two terms occurred. Though interesting,
this prospect is neither addressed, nor examined in
this work. Still, it is in our next plans and part of
our future work to embed in our model some of
the interesting WSD approaches, like knowledge-
based (Sinha and Mihalcea, 2007; Brody et al.,
2006), corpus-based (Mihalcea and Csomai, 2005;
McCarthy et al., 2004), or combinations with very
high accuracy (Montoyo et al., 2005).

3.5 The GVSM Model

In equation 2, which captures the document-query
similarity in the GVSM model, the orthogonality
between termsti andtj is expressed by the inner
product of the respective term vectors~ti~tj . Recall
that~ti and~tj are in reality unknown. We estimate
their inner product by equation 3, wheresi and
sj are the senses of termsti and tj respectively,
maximizingSCM · SPE.

~ti~tj = SR((ti, tj), (si, sj), O) (3)

Since in our model we assume that each term can
be semantically related with any other term, and

2The sign of the algorithm is not considered at this step.
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SR((ti, tj), O) = SR((tj , ti), O), the new space

is of n·(n−1)
2 dimensions. In this space, each di-

mension stands for a distinct pair of terms. Given
a document vector~dk in the VSM TF-IDF space,
we define the value in the(i, j) dimension of
the new document vector space asdk(ti, tj) =

(TF − IDF (ti, dk) + TF − IDF (tj , dk)) · ~ti~tj .
We add the TF-IDF values because any product-
based value results to zero, unless both terms are
present in the document. The dimensionsq(ti, tj)
of the query, are computed similarly. A GVSM
model aims at being able to retrieve documents
that not necessarily contain exact matches of the
query terms, and this is its great advantage. This
new space leads to a new GVSM model, which is
a natural extension of the standard VSM. The co-
sine similarity between a documentdk and a query
q now becomes:

cos( ~dk, ~q) =

∑ n
i=1

∑ n
j=i

dk(ti, tj) · q(ti, tj)
√

∑

n
i=1

∑

n
j=i

dk(ti, tj)
2
·

√

∑

n
i=1

∑

n
j=i

q(ti, tj)
2

(4)

wheren is the dimension of the VSM TF-IDF
space.

4 Experimental Evaluation

The experimental evaluation in this work is two-
fold. First, we test the performance of the seman-
tic relatedness measure (SR) for a pair of words
in three benchmark data sets, namely the Ruben-
stein and Goodenough 65 word pairs (Ruben-
stein and Goodenough, 1965)(R&G), the Miller
and Charles 30 word pairs (Miller and Charles,
1991)(M&C), and the 353 similarity data set
(Finkelstein et al., 2002). Second, we evaluate
the performance of the proposed GVSM in three
TREC collections (TREC 1, 4 and 6).

4.1 Evaluation of the Semantic Relatedness
Measure

For the evaluation of the proposed semantic re-
latedness measure between two terms we experi-
mented in three widely used data sets in which hu-
man subjects have provided scores of relatedness
for each pair. A kind of ”gold standard” ranking
of related word pairs (i.e., from the most related
words to the most irrelevant) has thus been cre-
ated, against which computer programs can test
their ability on measuring semantic relatedness be-
tween words. We compared our measure against
ten known measures of semantic relatedness: (HS)
Hirst and St-Onge (1998), (JC) Jiang and Conrath
(1997), (LC) Leacock et al. (1998), (L) Lin (1998),
(R) Resnik (1995), (JS) Jarmasz and Szpakowicz

(2003), (GM) Gabrilovich and Markovitch (2007),
(F) Finkelstein et al. (2002), (HR) ) and (SP)
Strube and Ponzetto (2006). In Table 1 the results
of SR and the ten compared measures are shown.
The reported numbers are the Spearman correla-
tion of the measures’ rankings with the gold stan-
dard (human judgements).

The correlations for the three data sets show that
SR performs better than any other measure of se-
mantic relatedness, besides the case of (HR) in the
M&C data set. It surpasses HR though in the R&G
and the 353-C data set. The latter contains the
word pairs of the M&C data set. To visualize the
performance of our measure in a more comprehen-
sible manner, Figure 2 presents for all pairs in the
R&G data set, and with increasing order of relat-
edness values based on human judgements, the re-
spective values of these pairs that SR produces. A
closer look on Figure 2 reveals that the values pro-
duced by SR (right figure) follow a pattern similar
to that of the human ratings (left figure). Note that
the x-axis in both charts begins from the least re-
lated pair of terms, according to humans, and goes
up to the most related pair of terms. The y-axis
in the left chart is the respective humans’ rating
for each pair of terms. The right figure shows SR
for each pair. The reader can consult Budanitsky
and Hirst (2006) to confirm that all the other mea-
sures of semantic relatedness we compare to, do
not follow the same pattern as the human ratings,
as closely as our measure of relatedness does (low
y values for small x values and high y values for
high x). The same pattern applies in the M&C and
353-C data sets.

4.2 Evaluation of the GVSM

For the evaluation of the proposed GVSM model,
we have experimented with three TREC collec-
tions 3, namely TREC 1 (TIPSTER disks 1 and
2), TREC 4 (TIPSTER disks 2 and 3) and TREC
6 (TIPSTER disks 4 and 5). We selected those
TREC collections in order to cover as many dif-
ferent thematic subjects as possible. For example,
TREC 1 contains documents from the Wall Street
Journal, Associated Press, Federal Register, and
abstracts of U.S. department of energy. TREC 6
differs from TREC 1, since it has documents from
Financial Times, Los Angeles Times and the For-
eign Broadcast Information Service.

For each TREC, we executed the standard base-

3http://trec.nist.gov/
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HS JC LC L R JS GM F HR SP SR

R&G 0.745 0.709 0.785 0.77 0.748 0.842 0.816 N/A 0.817 0.56 0.861

M&C 0.653 0.805 0.748 0.767 0.737 0.832 0.723 N/A 0.904 0.49 0.855

353-C N/A N/A 0.34 N/A 0.35 0.55 0.75 0.56 0.552 0.48 0.61

Table 1: Correlations of semantic relatedness measures with human judgements.
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Figure 2: Correlation between human ratings and SR in the R&G data set.

line TF-IDF VSM model for the first 20 topics
of each collection. Limited resources prohibited
us from executing experiments in the top1000
documents. To minimize the execution time, we
have indexed all the pairwise semantic related-
ness values according to the SR measure, in a
database, whose size reached 300GB. Thus, the
execution of the SR itself is really fast, as all pair-
wise SR values between WordNet synsets are in-
dexed. For TREC 1, we used topics51 − 70, for
TREC 4 topics201 − 220 and for TREC 6 topics
301 − 320. From the results of the VSM model,
we kept the top-50 retrieved documents. In order
to evaluate whether the proposed GVSM can aid
the VSM performance, we executed the GVSM
in the same retrieved documents. The interpo-
lated precision-recall values in the 11-standard re-
call points for these executions are shown in fig-
ure 3 (left graphs), for both VSM and GVSM. In
the right graphs of figure 3, the differences in in-
terpolated precision for the same recall levels are
depicted. For reasons of simplicity, we have ex-
cluded the recall values in the right graphs, above
which, both systems had zero precision. Thus, for
TREC 1 in the y-axis we have depicted the differ-
ence in the interpolated precision values (%) of the
GVSM from the VSM, for the first4 recall points.
For TRECs 4 and 6 we have done the same for the
first 9 and8 recall points respectively.

As shown in figure 3, the proposed GVSM may
improve the performance of the TFIDF VSM up to
1.93% in TREC 4,0.99% in TREC 6 and0.42%

in TREC 1. This small boost in performance
proves that the proposed GVSM model is promis-
ing. There are many aspects though in the GVSM
that we think require further investigation, like for
example the fact that we have not conducted WSD
so as to map each document and query term oc-
currence into its correct sense, or the fact that the
weighting scheme of the edges used in SR gen-
erates from the distribution of each edge type in
WordNet, while there might be other more sophis-
ticated ways to compute edge weights. We believe
that if these, but also more aspects discussed in
the next section, are tackled, the proposed GVSM
may improve more the retrieval performance.

5 Future Work

From the experimental evaluation we infer that
SR performs very well, and in fact better than all
the tested related measures. With regards to the
GVSM model, experimental evaluation in three
TREC collections has shown that the model is
promising and may boost retrieval performance
more if several details are further investigated and
further enhancements are made. Primarily, the
computation of the maximum semantic related-
ness between two terms includes the selection of
the semantic path between two senses that maxi-
mizes SR. This can be partially unrealistic since
we are not sure whether these senses are the cor-
rect senses of the terms. To tackle this issue,
WSD techniques may be used. In addition, the
role of phrase detection is yet to be explored and
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Figure 3: Differences (%) from the baseline in interpolated precision.

added into the model. Since we are using a large
knowledge-base (WordNet), we can add a simple
method to look-up term occurrences in a specified
window and check whether they form a phrase.
This would also decrease the ambiguity of the re-
spective text fragment, since in WordNet a phrase
is usually monosemous.

Moreover, there are additional aspects that de-
serve further research. In previously proposed
GVSM, like the one proposed by Voorhees (1993),
or by Mavroeidis et al. (2005), it is suggested
that semantic information can create an individual
space, leading to a dual representation of each doc-
ument, namely, a vector with document’s terms
and another with semantic information. Ratio-
nally, the proposed GVSM could act complemen-
tary to the standard VSM representation. Thus, the
similarity between a query and a document may be
computed by weighting the similarity in the terms
space and the senses’ space. Finally, we should
also examine the perspective of applying the pro-
posed measure of semantic relatedness in a query
expansion technique, similarly to the work of Fang
(2008).

6 Conclusions

In this paper we presented a new measure of
semantic relatedness and expanded the standard
VSM to embed the semantic relatedness between
pairs of terms into a new GVSM model. The
semantic relatedness measure takes into account
all of the semantic links offered by WordNet. It
considers WordNet as a graph, weighs edges de-
pending on their type and depth and computes
the maximum relatedness between any two nodes,
connected via one or more paths. The com-
parison to well known measures gives promis-
ing results. The application of our measure in
the suggested GVSM demonstrates slightly im-
proved performance in information retrieval tasks.
It is on our next plans to study the influence of
WSD performance on the proposed model. Fur-
thermore, a comparative analysis between the pro-
posed GVSM and other semantic network based
models will also shed light towards the condi-
tions, under which, embedding semantic informa-
tion improves text retrieval.
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Abstract

Often, there is a need to use the knowledge 
from multiple ontologies. This is particularly 
the case within the context of medical imag-
ing, where a single ontology is not enough to 
provide the complementary knowledge about
anatomy, radiology and diseases that is re-
quired by the related applications. Conse-
quently, semantic integration of these differ-
ent but related types of medical knowledge 
that is present in disparate domain ontologies 
becomes necessary. Medical ontology align-
ment addresses this need by identifying the 
semantically equivalent concepts across mul-
tiple medical ontologies. The resulting 
alignments can then be used to annotate the 
medical images and related patient text data. 
A corresponding semantic search engine that 
operates on these annotations (i.e. align-
ments) instead of simple keywords can, in 
this way, deliver the clinical users a coherent 
set of medical image and patient text data.

1 Introduction

As the content of numerous ontologies in the 
biomedical domain increases, so does the need 
for sharing and reusing this body of knowledge. 
Often, there is a need to use the knowledge from 
multiple ontologies. This is particularly the case 
within the context of medical imaging, where a 
single ontology is not enough to support the nec-
essary heterogeneous tasks that require comple-
mentary knowledge about human anatomy, radi-
ology and diseases. Medical imaging constitutes 
the context of this work, which lies within the 
Theseus-MEDICO1 use case.

The Theseus-MEDICO use case has the objec-
tive of building the next generation of intelligent, 
scalable, and robust search engine for the medi-

1 http://theseus-programm.de/scenarios/en/medico

cal imaging domain. MEDICO’s proposed solu-
tion relies on ontology based semantic annotation 
of the medical image contents and the related 
patient data. 

Semantic annotation of medical image con-
tents and patient text data allows for a mark-up 
with meaningful meta-information at a higher 
level of granularity that goes beyond simple 
keywords. Therefore, the data which is processed 
and stored in this way can be efficiently retrieved 
by a corresponding search engine such as the one 
envisioned in MEDICO.

The diagnostic analysis of medical images 
typically concentrates around three questions (a) 
what is the anatomy here? (b) what is the name 
of the body part here? (c) is it normal or is it ab-
normal? Therefore, when a radiologist looks for 
information, his search queries most likely con-
tain terms from various information sources that 
provide this kind of knowledge. 

To satisfy the radiologist’s information need, 
this scattered knowledge has to be gathered and 
integrated from disparate ontologies, in particular 
from those about human anatomy, radiology and 
diseases. Subsequently, the medical image con-
tents and the related patient data have to be anno-
tated with this information (i.e. ontology con-
cepts and relationships) rather than the single 
elements from independent ontologies.

Three ontologies that address the three ques-
tions above are relevant to gather the necessary 
knowledge about human anatomy, radiology and 
diseases. These are the Foundational Model of 
Anatomy2 (FMA), Radiology Lexicon3 (RadLex) 
and the Thesaurus of the National Cancer Insti-
tute4 (NCI), respectively.

2 http://sig.biostr.washington.edu/projects/fm/FME
/index.html
3 http://www.rsna.org/radlex
4http://nciterms.nci.nih.gov/NCIBrowser/Connect.do?dictio
nary=NCI_Thesaurus&bookmarktag=1
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Given this context, the semantic integration of 
these ontologies as knowledge sources becomes 
critical. Ontology alignment addresses this re-
quirement by identifying semantically equivalent 
concepts in multiple ontologies. These concepts 
are then made compatible with each other 
through meaningful relationships. Hence, our 
goal is to identify the correspondences between 
the concepts of different medical ontologies that 
are relevant to the medical image contents.

The rest of this paper is organized as follows.
In the next section we explain the motivation 
behind aligning the medical ontologies. Section 3 
discusses related work in ontology alignment in 
general and in the biomedical domain. In section 
4 we introduce our approach and explain why it 
goes beyond existing methods. Here we also ex-
plain the application scenario, which exhibits 
how aligned medical ontologies can contribute to
the identification of relevant clinical search que-
ries. Section 5 introduces the materials and 
methods that are relevant for this work. Finally 6
and 7 discusses the planned evaluation and pre-
sents the roadmap for the remaining work, re-
spectively

2 Motivation

The following scenario illustrates how the 
alignment of medical ontologies facilitates the 
integration of medical knowledge that is relevant 
to medical image contents from multiple ontolo-
gies. Suppose that we want to help a radiologist, 
who searches for related information about the 
manifestations of a certain type of lymphoma on 
a certain organ, e.g. liver, on medical images. As 
discussed earlier the three types of knowledge
that serves him would be about the human anat-
omy (liver), the organ’s location in the body (e.g. 
upper limb, lower limb, neighboring organs etc.) 
and whether what he sees is normal or abnormal 
(pathological observations, symptoms, and find-
ings about lymphoma). 

Once we know what the radiologist is looking 
for we can support him in his search in that we 
present him an integrated view of only the liver 
lymphoma relevant portions of the patient health 
records (or of that patient’s record), PubMed ab-
stracts as reference resource, drug databases, ex-
perience reports from other colleagues, treatment 
plans, notes of other radiologists or even discus-
sions from clinical web discussion boards. 

From the NCI Thesaurus we can obtain the in-
formation that ‘liver lymphoma’ is the synonym 
for ‘hepatic lymphoma’, for which holds:

‘hepatic lymphoma’
‘disease_has_primary_anatomic_site’
‘liver’ 
‘hematopoietic and lymphatic system’ 
‘gastrointestinal system’

With this information we can now move on to 
the FMA to find out that ‘hepatic artery’ is a
part of the ‘liver’ (such that any finding that in-
dicates lymphoma at the hepatic artery would 
also imply the lymphoma at the liver). RadLex 
on the other hand informs that ‘liver surgery’ is a 
‘treatment’ ‘procedure’. Various types of this
‘treatment’ ‘procedure’ are ‘hepatectomy’, ‘he-
patic lobectomy’, ‘hepatic segmentectomy’, ‘he-
patic subsegmentectomy’, ‘hepatic trisegmentec-
tomy’ or ‘hepatic wedge excision’, which can be 
used for disease treatment.

Consequently, the radiologist who searches for 
information about liver lymphoma is presented 
with a set of patient health records, PubMed ab-
stracts, radiology images etc. that are annotated 
using the terminology above. In this way, the 
radiologist’s search space is reduced to a signifi-
cantly small portion of the overdose of informa-
tion available in multiple data stores. Moreover, 
he receives coherent data, i.e. images and patient 
text data that are related to each other, from a 
single access point without having to login to 
several different data stores at different locations.

3 Related Work

Ontology alignment is commonly understood as 
a special case of semantic integration that con-
cerns the semi-automatic discovery of semanti-
cally equivalent concepts (sometimes also rela-
tions) across two or more ontologies.

There are two commonly adopted approaches 
to ontology alignment; schema-based and in-
stance-based, where most systems use both. Ac-
cordingly, the input of the former approach is the 
ontology schema only, whereas the input of the 
latter is the instance data i.e. the data that have 
been annotated with the ontology schema. Both 
approaches take advantage of linguistic and 
graph-based methods to help identify the corre-
spondences. The most recent and comprehensive 
overview of work ontology alignment in general 
is reported by Euzenat and Shvaiko (2007). 

Ontology alignment is an increasingly active 
research field in the biomedical domain, espe-
cially in association with the Open Biomedical 
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Ontologies (OBO)5 framework. The OBO con-
sortium establishes a set of principles to which 
the biomedical ontologies shall conform to for 
purposes of interoperability. The OBO confor-
mant ontologies, such as the FMA, are available 
at the National Center for Biomedical Ontology 
(NCBO) BioPortal6.

Johnson et al. (2006) take an information re-
trieval approach to discover relationships be-
tween the Gene Ontology (GO) and three other 
OBO ontologies (ChEBI7, Cell Type8 and 
BRENDA Tissue9). Here, GO ontology concepts 
are treated as documents, they are indexed using 
Lucene10 and are matched against the search que-
ries, which are the concepts from the other three 
ontologies. Whenever a match is found, it is 
taken as an evidence of a correspondence. This 
approach is efficient and easy to implement and
can therefore be successful with large medical 
ontologies. However, it does not account for the 
complex linguistic structure typically observed at 
the concept labels of the medical ontologies, 
which may result in inaccurate matches. 

The focus of the work reported by Zhang et al.
(2004) is to compare two different alignment 
approaches that are applied to two different on-
tologies about human anatomy. The subject on-
tologies are the FMA and the Generalized Archi-
tecture for Languages, Encyclopedias and No-
menclatures for Medicine11 (GALEN). Both ap-
proaches use a combination of lexical and struc-
tural matching techniques, however one of them 
additionally employs an external resource (the 
Unified Medical Lexicon UMLS12) to obtain 
domain knowledge. In this work the authors 
point to the fact that medical ontologies contain 
implicit relationships, especially in the multi-
word concept names that can be exploited to dis-
cover more correspondences. This thesis builds
on this finding and investigates further methods, 
e.g. the use of transformation grammars, to dis-
cover the implicit information observed at con-
cept labels of the medical ontologies.

On the medical imaging side, there are activi-
ties that concentrate around ImageClef13 cam-
paign, which concerns the cross-language image 

5 http://www.obofoundry.org/
6http://www.bioontology.org/ncbo/faces/index.xhtml
7 www.obofoundry.org/cgi-bin/detail.cgi?id=chebi
8 www.obofoundry.org/cgi-bin/detail.cgi?id=cell
9 www.obofoundry.org/cgi-bin/detail.cgi?id=brenda
10 http://lucene.apache.org/java/docs/
11 http://www.opengalen.org
12 http://www.nlm.nih.gov/research/umls/
13 http://imageclef.org

retrieval and which runs as a part of the Cross-
Language Evaluation Forum (CLEF)14 on multi-
lingual information access. Here, the Medical 
Annotation and the Medical Retrieval tasks 
benchmark systems on efficient annotation and 
retrieval of medical images. However, these ac-
tivities are organized taking an information re-
trieval and image parsing perspective and do not 
focus on semantic information integration. Nev-
ertheless, the campaign releases valuable imag-
ing and text data that can be used.

4 Approach and Contributions

Here, we describe our approach for the alignment 
of medical ontologies and outline the contribu-
tions of this thesis. In this respect, we first spec-
ify the general requirements for medical ontol-
ogy alignment, which are then addressed by our 
approach. These are followed by the statement of 
the hypotheses of this work. Secondly, the mate-
rials that are relevant for this work are intro-
duced. In particular, we describe the semantic
resources and our domain corpora. Finally, an 
application scenario is described that exhibits the 
benefits of aligning medical ontologies. We de-
scribe this scenario as ‘Clinical Query Extrac-
tion’ and explain the idea behind.

4.1 Requirements for medical ontology 
alignment

Drawing upon our experiences with the medical 
ontologies along the MEDICO use case we have 
identified some of their common characteristics 
that are relevant for the alignment process. These 
can be summarized as:

1. Generally, they are very large models.

2. They have extensive is-a hierarchies up 
to ten thousands of classes, which are 
organized according to different views. 

3. They have complex relationships, where 
classes are connected by a number of 
different relations. 

4. Their terminologies are rather stable (es-
pecially for anatomy) in that they should 
not differ much in the different models.

5. The modeling principles for them are 
well defined and documented.

Based on these characteristics and the general 
requirements of the MEDICO use case, we de-

14 http://www.clef-campaign.org/
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rived the following requirements specifically for 
aligning medical ontologies:

Linguistic processing: Medical ontologies are 
typically linguistically rich. For example, the 
FMA contains concept names as long as ‘Anas-
tomotic branch of right anterior inferior cerebel-
lar artery with right superior cerebellar artery’. 
Such long multi-word terms are usually rich with 
implicit semantic relations. This characteristic 
shall be exploited by an intensive use of linguis-
tic alignment methods.

Use of external resources: As we are in a 
specific domain (medicine) and as we are not 
domain experts, we are in lack of domain knowl-
edge. This missing domain knowledge shall be 
acquired from external resources, for example 
UMLS. Synonymy information in this resource 
and in other terminological resources is of par-
ticular interest.

Non-machine learning approach: We do not 
have access to much instance data. This is partly 
because we are domain dependent. A more im-
portant reason, however, is that the special re-
source, the patient health records, which would 
provide a large amount of relevant instance data 
is very difficult to obtain due to legal issues. 
Therefore, machine learning approaches, which 
require large portions of training data are not the 
optimal approach for our purposes. 

Structural matching: Medical ontologies 
typically come with rich structures that go be-
yond the basic is-a hierarchy. Most of them in-
clude a hierarchical ordering along the part-of
hierarchies. Ontologies such as FMA addition-
ally have part-of classification with higher granu-
larity that include relations such as ‘constitu-
tional part-of’, ‘systemic part-of’ etc. This rich 
structure of the medical ontologies shall be used 
to validate (or improve) the alignments that have 
been obtained as a result of the linguistic proc-
essing and the lexical matching. 

Sequential matching: Medical ontologies are 
complex, so that their automatic processing is 
usually expensive. Therefore, a target concept 
will be identified (this target concept/term will 
be in practice the search query of the clinician. 
More details are explained under section 6.2) 
First lexical matching techniques shall be applied 
to identify the search query relevant parts of the 
ontologies. In other words, those concepts that 
lexically match the query shall be aligned as 
first. In this way, the lexical match acts as a filter 
on the medical ontology and decreases the 
amount of the computation necessary. 

4.2 Assumptions

Given this context, we focus on the evaluation of 
the following hypotheses:

1. Valid relationships (equivalence or 
other) exist between concepts from 
FMA, RadLex and from NCI.

2. Relationships between non-identical 
concept labels from the three ontologies 
can be discovered if these have common 
reference in a more general medical on-
tology.

3. Concept labels in these ontologies are 
most often in the form of long natural 
language phrases with regular grammars. 
Meaningful relationships (e.g. synon-
ymy) across the three ontologies can be 
derived by processing these labels using 
transformation grammars.

4. Identification of medical image related 
query patterns (i.e. a certain combination 
of concept labels and relations) from cor-
pora is more efficient when it is done 
based on the alignments. 

4.3 Approach

The ontology alignment approach proposed in 
this thesis has three main aspects. It suggests a 
combinatory strategy that is based on (a) the lin-
guistic analysis of the ontology concept labels 
(the linguistic aspect), (b) on corpus analysis
(context information aspect) and (c) on human-
computer interaction e.g. relevance feedback 
(user interaction aspect).

The linguistic aspect draws on the observation
that concept labels in medical ontologies (espe-
cially those about human anatomy) often contain
implicit semantic relations as discussed by Mun-
gall (2004), e.g. equivalence. By observing com-
mon patterns in the multi-word terms that are 
typical for the concept labels of the medical on-
tologies these relations can be made explicit. 

Transformation grammars can help here to de-
tect the syntactic variants of the ontology con-
cept labels. In other words, with the help of rules, 
the concept labels can be transformed into se-
mantically equivalent but syntactically different 
word forms. For example, one concept label 
from the FMA and its corresponding commonly 
observed pattern (in brackets) is:

‘Blood in aorta’ (noun preposition noun)

Using a transformation rule of the form,
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noun1 preposition:’in’ noun2 => noun2 noun1

we can generate a variant as below with the 
equivalent semantics:

‘aorta blood’ (noun noun)

This is profitable for at least two reasons. 
Firstly, it can help resolve possible semantic am-
biguities (if one variant is ambiguous the other 
one can be preferred). Secondly, identified vari-
ants can be used to compare linguistic (textual) 
contexts of ontology concepts in corpora leading 
to the second aspect of our approach. 

Subsequently, the second aspect, the corpus 
analysis, builds on comparing linguistic (textual) 
contexts of ontology concepts in corpora and it 
assumes that concepts with similar meaning 
(originating from different ontologies) will ap-
pear in similar linguistic contexts. Here, the lin-
guistic context of an ontology class (e.g. ‘termi-
nal ileum’ from the FMA as in the example be-
low) can be defined as the document in which it 
appears, the sentence in which it appears and a
window of size N in which it appears. For exam-
ple, a window size -5, +5 for the FMA concept 
“terminal ileum” would be:

‘Focal lymphoid hyperplasia of the terminal 
ileum presenting mantle zone hyperplasia with 
clear cytoplasm’

can be represented as a vector in form of: 

<token -5, token -4, … , token +4, token +5>
<focal, lymphoid, hyperplasia, of, the, present-
ing, mantle, zone, hyperplasia, with>

These vectors can then be pairwise compared,
where most similar vectors indicate similar 
meaning of corresponding ontology concepts and 
alignment between ontology concepts follows 
from this.

Finally, with the user interaction aspect we 
understand dynamic models of the ontology inte-
gration process. Within this dynamic process the 
ontology alignment happens during an interac-
tive dialogue between the user and the system. In 
this way, clarifications and questions that elicit 
user’s feedback support the ontology alignment
process. An example interactive dialogue can be:

(1) Radiologist: Show me the images of Ms. 
Jane Doe, she has “Amyotrophic Lateral Sclero-
sis” (NCI Cancer Thesaurus concept)

(2) System: Ms. Doe doesn’t have any images 
of “Amyotrophic Lateral Sclerosis”. Is it equiva-
lent to “Lou Gehrig Disease” (equivalent NCI 
Cancer Thesaurus concept) or to “ALS” (equiva-
lent RadLex concept)? That attacks the neurons 
i.e. the nerve cells (FMA concept) Stephan Haw-
kins has it. 

(3) Radiologist: Yes, that is true. 
(4) System Ok. ALS is a kind of “Neuro De-

generative Disorder” (super-concept from 
RadLex) Do you want to see other images on 
Neuro Degenerative Disorders?

This dialogue illustrates a real life question 
answering dialogue; where the utterances (2) and 
(4) contain the system questions, and utterance 
(3) is the user’s interactive mapping feedback.
This aspect is based on the approach explained in 
more detail in (Sonntag, 2008).

5 Materials and Methods

5.1 Terminological resources

Foundational Model of Anatomy (FMA) is the 
most comprehensive machine processable re-
source on human anatomy. It covers 71,202 dis-
tinct anatomical concepts and more than 1.5 mil-
lion relations instances from 170 relation types. 
The FMA can be accessed via the Foundational 
Model Explorer15. 

FMA also provides synonym information (up 
to 6 per concept), for example one synonym for 
‘Neuraxis’ is the ‘Central nervous system’. Be-
cause single inheritance is one of the modeling 
principles used in the FMA, every concept (ex-
cept for the root) stands in a unique is-a relation 
to other concepts. Additionally, concepts are 
connected by seven kinds of part-of relationships
(e.g., part of, constitutional part of, regional part 
of). The version we currently refer to is the ver-
sion available in August 2008.

The Radiology Lexicon (RadLex) is a con-
trolled vocabulary developed and maintained by 
the Radiological Society of North America 
(RSNA) for the purpose of uniform indexing and 
retrieval of radiology information, including im-
ages. RadLex contains 11962 terms related to 
anatomy pathology, imaging techniques, and di-
agnostic image qualities. RadLex terms are or-
ganized along several relationships hence several 
hierarchies. Each term will participate in one of 
the relationships with its parent. Synonym in-
formation is given whenever it is present such as 

15 http://fme.biostr.washington.edu:8089/FME/
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in ‘Schatzki ring’ and ‘lower esophageal muco-
sal ring’. Examples of radiology specific rela-
tionships are ‘thickness of projected image’ or 
‘radiation dose’. 

The National Cancer Institute Thesaurus 
(NCI) provides standard vocabularies for cancer 
research. It covers around 34.000 concepts from
which 10521 are related to Disease, Abnormal-
ity, Finding, 5901 are related to Neoplasm, 4320 
to Anatomy and the rest are related to various 
other categories such as Gene, Protein, etc. The 
ontology model is structured around three com-
ponents i.e. Concepts, Kinds and Roles. Con-
cepts are represented as nodes in an acyclic 
graph, Roles are directed edges between the 
nodes and they represent the relationships be-
tween them. Kinds on the other hand are disjoint 
sets of concepts and they constrain the domain 
and the range of the relationships. Each concept 
belongs to only one Kind. Except for the root 
concept, every other concept has at least one is-a
relationship to another concept. 

Every concept has one preferred name (e.g., 
‘Hodgkin Lymphoma’). Additionally, 1,207 con-
cepts have a total of 2,371 synonyms (e.g., 
Hodgkin Lymphoma has synonym ‘Hodgkin’s 
Lymphoma’, ‘Hodgkin’s disease’ and ‘Hodgkin’s 
Disease’). The version we currently refer to is 
the version in June 2008 (08.06d).

5.2 Data

The Wikipedia anatomy, radiology and disease 
corpora have been constructed based on the 
Anatomy16, Radiology17 and Diseases18. sections 
of the Wikipedia. Patient records would be the 
first choice, but due to strict anonymization re-
quirements they are difficult to compile. There-
fore, as an initial resource we constructed the 
corpora based on the Wikipedia. 

To set up the three corpora the related web 
pages were downloaded and a specific XML ver-
sion for them was generated. The text sections of 
the XML files were run through the TnT part-of-
speech parser (Brants, 2000) to extract all nouns 
in the corpus. Then a relevance score (chi-
square) for each noun was computed by compar-
ing anatomy, radiology and disease frequencies 
respectively with those in the British National 
Corpus (BNC)19. In total there are 1410 such 

16http://en.wikipedia.org/wiki/Category:Anatomy
17 http://en.wikipedia.org/wiki/Category:Radiology
18 http://en.wikipedia.org/wiki/Category:Diseases
19 The BNC (http://www.natcorp.ox.ac.uk/) is a 100 mil-
lion word collection of samples of written and spoken lan-

XML files about human anatomy, 526 about dis-
ease, and 150 about radiology. 

The PubMed lymphoma corpus is set up to 
target the specific domain knowledge about lym-
phoma, a special type of cancer (one major use 
case of MEDICO is lymphoma). Thus, the lym-
phoma relevant subterminology from the NCI 
Thesaurus was extracted. This subterminology 
includes information about lymphoma types, 
their relevant thesaurus codes, synonyms, hy-
peronyms (or parent terms) and the correspond-
ing thesaurus definitions. 

Using the lymphoma terminology, we identi-
fied from PubMed an initial set of most fre-
quently reported lymphomas, e.g. the top five is 
‘Non-Hodgkin’s Lymphoma’, ‘Burkitt’s Lym-
phoma’, ‘T-Cell Non-Hodgkin’s Lymphoma’, 
‘Follicular Lymphoma’, and ‘Hodgkin’s Lym-
phoma’ in that order. The lymphoma corpus cur-
rently consists of XML files about two main 
lymphoma types i.e. ‘Mantle Cell Lymphoma’
and for ‘Diffuse Large B-Cell Lymphoma’. The 
former includes 1721 files and the latter 111. 

The clinical questions corpus consists of 
health related questions asked among the medical 
experts and that were collected during a scien-
tific survey. These questions (without answers)
are available through the Clinical Questions Col-
lection20 online repository. It can either be 
searched or browsed, for example, by a specific 
disease category. An example question from the 
Clinical Questions Collection is “What drugs are 
folic acid antagonists?” For each question, addi-
tional information about the expert asking the 
question, e.g. time, purpose etc. are encoded.

To create the clinical questions corpus we 
downloaded the categories Neoplasms as well as 
Menic and Lymphatic Diseases from the Clinical 
Questions Collection website. For each existing 
HTML page that reports on a question, we cre-
ated a corresponding XML file. Currently there 
are 796 questions our questions corpus. 

The clinical discussions corpus is ongoing 
work and it will be a corpus, whose contents will 
be compiled from the various clinical discussion 
boards across the Web. These discussion boards
usually contain questions and answers between 
and among the medical experts and patients. We 
expect the language to be less technical because 
of the user profile. The purpose of this corpus is 
to have a resource of clinical questions together 

guage from a wide range of sources, designed to represent a 
wide cross-section of current British English.
20 http://clinques.nlm.nih.gov/JitSearch.html
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with their answers as well as experience reports, 
links to other useful resources in a less technical 
language. We have already identified a set of 
relevant clinical discussion boards and analyzed 
their contents and structure.

6 Evaluation Strategies

We distinguish between two kinds of evaluation
techniques that can be applied to assess the qual-
ity of the alignments. 

Direct evaluation methods compare the results 
relative to human judgments as explained by
Pedersen et al. (2007), which in our case would 
be the assessment and the resulting feedback of 
the clinical experts. This kind of evaluation, 
however, is not very realistic in our context due 
to the unavailability of a representative number 
of clinical experts.

Indirect evaluation methods, on the other 
hand, consider the performance of an application 
that uses the alignments. Hence, any improve-
ment in the performance of the application when 
it uses the alignments can be attributed to the 
quality of the alignments. In the following two 
subsections we first describe the baseline and 
then explain the planned application that shall 
use the alignments. The performance of this ap-
plication, with and without the alignments, will 
be taken as a measure on the quality of these
alignments.

6.1 Baseline and Comparison to Other Sys-
tems

Our baseline for comparison is string matching 
after normalization on the concept labels from 
the input ontologies. Survey results (van Hage 
and Aleksovski, 2007) suggest that this method 
is currently the simplest and the most intuitive 
method being used for ontology alignment (or 
similar) tasks. Thus, the results of our matching 
approach will be in the first place compared with 
the results of this simple matching strategy.

The Ontology Alignment Evaluation Initia-
tive21 (OAEI) offers a service evaluate the 
alignment results for its participant matching sys-
tems. The competing systems are evaluated on 
consensus test cases at four different tracks. The 
evaluation at the anatomy track, which is the 
most relevant one for us, has been done either by 
comparing the systems’ resulting alignments to 
reference alignments (absolute comparison) or to 
each other (relative comparison).

21http://oaei.ontologymatching.org

6.2 Clinical Query Extraction

We conceive of the clinical query extraction 
process as a use case that shows the benefits of 
semantic integration by means of ontology align-
ments.

Clinical query extraction, (Oezden Wenner-
berg et al., 2008; Buitelaar et al., 2008) is the 
process of predicting patterns for typical clinical 
queries given domain ontologies and corpora. It 
is motivated by the fact that when developing 
search systems for healthcare professionals, it is 
necessary to know what kind of information they 
search for in their daily working tasks. As inter-
views with clinicians are not always possible, 
alternative solutions become necessary to obtain 
this information. 

Clinical query extraction is a technique to 
semi-automatically predict possible clinical que-
ries without having to depend on clinical inter-
views. It requires domain corpora (i.e. disease, 
anatomy and radiology) and domain ontologies 
to be able to process statistically most relevant 
concepts in the ontologies and the relations that 
hold between them. Consequently, concept-
relation-concept triplets are identified, for which 
the assumption is that the statistically most rele-
vant triplets are more likely to occur in clinical 
queries.

Clinical query extraction can be viewed as a 
special case of term/relation extraction. Related 
approaches from the medical domain are re-
ported by Bourigault and Jacquemin (1999) and 
Le Moigno et al. (2002).

The identification of query patterns (i.e. the 
concept-relation-concept triplets) starts with the 
construction of domain corpora from related 
Web resources such as Wikipedia22 and Pub-
Med23. As next, use case relevant parts from do-
main ontologies are extracted. The frequency of 
the concepts from the extracted sub-ontologies in 
the domain corpora versus the frequencies in a 
domain independent corpus determines the do-
main specificity of the concepts. 

This statistical term/concept profiling can be 
viewed as a function that takes the domain 
(sub)ontologies and the corpora as input and re-
turns the partially weighted domain ontologies as 
output, where the terms/concepts are ranked ac-
cording to their weights. An example query pat-
tern can look like:

22 http://www.wikipedia.org/
23 http://www.ncbi.nlm.nih.gov/pubmed/
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[ANATOMICAL 
STRUCTURE]

located_in [ANATOMICAL 
STRUCTURE]

AND

[[RADIOLOGY
IMAGE]Modality]

is_about [ANATOMICAL 
STRUCTURE]

AND

[[RADIOLOGY 
IMAGE]Modality]

shows_
symptom

[DISEASE 
SYMPTOM]

The clinical query extraction approach, as il-
lustrated so far, builds on using domain ontolo-
gies, however on using them independently. That 
is, the entire statistical term profiling is based on 
processing the use case relevant terms (i.e. con-
cepts) of the ontologies in isolation. In this re-
spect the clinical query pattern extraction is a 
good potential application that can be used to 
evaluate the quality of the ontology alignments. 

As the current process is based on single con-
cepts, the natural extension will be to perform 
the extraction based on aligned concepts. Any 
improvement in the identification of the query 
patterns from corpora can then be attributed to 
the quality alignments.

7 Future Directions

Regarding the linguistic aspect of the ontology 
alignment approach, the next step will be to con-
centrate on the definition of the transformation 
grammar to generate the semantic equivalent 
concepts. 

A further consideration is to explore whether 
other relations beyond synonymy such as hy-
ponymy or hyperonymy can also be generated 
and whether this is profitable. To accord for the 
second aspect, the most suitable vector model 
will be determined and tested and applied on the 
current corpora. As required by the third, user 
interaction aspect, a dialogue that is most repre-
sentative of a real life use case will be modeled.

Currently, some of the existing alignment 
frameworks, e.g. COMA++24 or PhaseLibs25 are 
being tested for their performance with FMA, 
RadLex and NCI. The observations on the 
strengths and the weaknesses of these systems 
will give more insights for the requirements for
our system.

Other tasks that are relevant for achieving the 
goal of this thesis concentrate on two main top-
ics; the collection and the preparation of data and 

24 http://dbs.uni-leipzig.de/Research/coma.html
25 http://phaselibs.opendfki.de/

the evaluation of the alignment approach. Subse-
quently, the clinical questions corpus will be ex-
panded and will be used to evaluate the clinical 
query patterns. As explained earlier, the efficient 
identification of the clinical query patterns based 
on the alignments will be regarded as one means 
to assess the performance of the alignment ap-
proach. Parallels, a complementary corpus com-
piled from relevant clinical discussion boards 
will be prepared for the same purpose. 

As required by the linguistic aspect of our ap-
proach an initial grammar will be set up and be 
continuously improved to detect the variants of 
the ontology concepts labels from the three on-
tologies mentioned earlier. Transformation rules 
will be used for this purpose. 

The open question about whether the ontology 
relations shall also be aligned will be investi-
gated to determine the trade-offs of including vs. 
excluding them from the process. We consider 
using an external resource such as UMLS to ob-
tain background knowledge that can help resolve 
possible semantic ambiguities. The appropriate-
ness and adoptability of this resource will be as-
sessed. Finally, the evaluation the overall ontol-
ogy alignment approach will be carried out, 
whereby a possible participation the OAEI may 
also be considered. 
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Abstract

In this paper we compare different ap-
proaches to extract definitions of four
types using a combination of a rule-based
grammar and machine learning. We col-
lected a Dutch text corpus containing 549
definitions and applied a grammar on it.
Machine learning was then applied to im-
prove the results obtained with the gram-
mar. Two machine learning experiments
were carried out. In the first experi-
ment, a standard classifier and a classi-
fier designed specifically to deal with im-
balanced datasets are compared. The al-
gorithm designed specifically to deal with
imbalanced datasets for most types outper-
forms the standard classifier. In the second
experiment we show that classification re-
sults improve when information on defini-
tion structure is included.

1 Introduction

Definition extraction can be relevant in differ-
ent areas. It is most times used in the do-
main of question answering to answer ‘What-is’-
questions. The context in which we apply defini-
tion extraction is the automatic creation of glos-
saries within elearning. This is a new area and
provides its own requirements to the task. Glos-
saries can play an important role within this do-
main since they support the learner in decoding
the learning object he is confronted with and in
understanding the central concepts which are be-
ing conveyed in the learning material.

Different approaches for the detection of def-
initions can be distinguished. We use a sequen-
tial combination of a rule-based approach and ma-
chine learning to extract definitions. As a first step
a grammar is used and thereafter, machine learn-
ing techniques are applied to filter the incorrectly
extracted data.

Our approach has different innovative aspects
compared to other research in the area of defini-
tion extraction. The first aspect is that we address
less common definition patterns also. Second, we
compared a common classification algorithm with
an algorithm designed specifically to deal with im-
balanced datasets (experiment 1), which seems to
be more appropriate for us because we have some
data sets in which the proportion of “yes”-cases is
extremely low. A third innovative aspect is that
we examined the influence of the type of gram-
mar used in the first step (sophisticated or basic)
on the final machine learning results (experiment
1). The sophisticated grammar aims at getting the
best balance between precision and recall whereas
the basic grammar only focuses at getting a high
recall. We investigated to which extent machine
learning can improve the low precision obtained
with the basic grammar while keeping the recall
as high as possible and then compare the results
to the performance of the sophisticated grammar
in combination with machine learning. As a last
point, we investigated the influence of definition
structure on the classification results (experiment
2). We expect this information to be especially
useful when a basic grammar is used in the first
step, because the patterns matched with such a
grammar can have very diverse structures.

The paper is organized as follows. Section 2 in-
troduces some relevant work in definition extrac-
tion. Section 3 explains the data used in the experi-
ments and the definition categories we distinguish.
Section 4 discusses the way in which grammars
have been applied to extract definitions and the
results obtained with them. Section 5 then talks
about the machine learning approach, covering is-
sues such as the classifiers, the features and the ex-
periments. Section 6 and section 7 report and dis-
cuss the results obtained in the experiments. Sec-
tion 8 provides the conclusions and presents some
future work.
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2 Related research

Research on the detection of definitions has been
pursued in the context of automatic building of
dictionaries from text, question-answering and re-
cently also within ontology learning.

In the area of automatic glossary creation, the
DEFINDER system combines shallow natural lan-
guage processing with deep grammatical analysis
to identify and extract definitions and the terms
they define from on-line consumer health litera-
ture (Muresan and Klavans, 2002). Their approach
relies entirely on manually crafted patterns. An
important difference with our approach is that they
start with the concept and then search for a defini-
tion of it, whereas in our approach we search for
complete definitions.

A lot of research on definition extraction has
been pursued in the area of question-answering,
where the answers to ‘What is’-questions usually
are definitions of concepts. In this area, they most
times start with a known concept (extracted from
the question) and then search the corpus for snip-
pets or sentences explaining the meaning of this
concept. The texts used are often well structured,
which is not the case in our approach where any
text can be used. Research in this area initially
relied almost totally on pattern identification and
extraction (cf. (Tjong Kim Sang et al., 2005)) and
only later, machine learning techniques have been
employed (cf. (Blair-Goldensohn et al., 2004;
Fahmi and Bouma, 2006; Miliaraki and Androut-
sopoulos, 2004)).

Fahmi and Bouma (2006) combine pattern
matching and machine learning. First, candidate
definitions which consist of a subject, a copular
verb and a predicative phrase are extracted from a
fully parsed text using syntactic properties. There-
after, machine learning methods are applied on the
set of candidate definitions to distinguish defini-
tions from non-definitions; to this end a combina-
tion of attributes has been exploited which refer to
text properties, document properties, and syntac-
tic properties of the sentences. They show that the
application of standard machine learning meth-
ods for classification tasks (Naive Bayes, SVM
and RBF) considerably improves the accuracy of
definition extraction based only on syntactic pat-
terns. However, they only applied their approach
on the most common definition type, that are the
definitions with a copular verb. In our approach
we also distinguish other, less common definition

types. Because the patterns of the other types
are more often also observed in non-definitions,
the precision with a rule-based approach will be
lower. As a consequence, the dataset for machine
learning will be less balanced. In our approach
we applied – besides a standard classification al-
gorithm (Naive Bayes) – also a classification al-
gorithm designed specifically to deal with imbal-
anced datasets.

In the domain of automatic glossary creation,
Kobylinski and Przepiórkowski (2008) describe
an approach in which a machine learning algo-
rithm specifically developed to deal with imbal-
anced datasets is used to extract definitions from
Polish texts. They compared the results obtained
with this approach to results obtained on the same
data in which hand crafted grammars were used
(Przepiórkowski et al., 2007) and to results with
standard classifiers (Degórski et al., 2008). The
best results were obtained with their new ap-
proach. The differences with our approach are
that (1) they use either only machine learning or
only a grammar and not a combination of the two
and (2) they do not distinguish different defini-
tion types. The advantage of using a combina-
tion of a grammar and machine learning, is that
the dataset on which machine learning needs to be
applied is much smaller and less imbalanced. A
second advantage of applying a grammar first, is
that the grammar can be used to add information
to the candidate definitions which can be used in
the machine learning features. Besides, applying
the grammar first, gives us the opportunity to sep-
arate the four definition types.

3 Definitions

Definitions are expected to contain at least three
parts. The definiendum is the element that is de-
fined (Latin: that which is to be defined). The
definiens provides the meaning of the definiendum
(Latin: that which is doing the defining). Definien-
dum and definiens are connected by a verb or
punctuation mark, the connector, which indicates
the relation between definiendum and definiens
(Walter and Pinkal, 2006).

To be able to write grammar rules we first ex-
tracted 549 definitions manually from 45 Dutch
text documents. Those documents consisted of
manuals and texts on computing (e.g. Word, La-
tex) and descriptive documents on academic skills
and elearning. All of them could be relevant learn-
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Type Example sentence
to be Gnuplot is een programma om grafieken te maken

‘Gnuplot is a program for drawing graphs’
verb E-learning omvat hulpmiddelen en toepassingen die via het internet beschikbaar zijn en creatieve mogeli-

jkheden bieden om de leerervaring te verbeteren .
‘eLearning comprises resources and application that are available via the Internet and provide creative
possibilities to improve the learning experience’

punctuation Passen: plastic kaarten voorzien van een magnetische strip, die door een gleuf gehaald worden, waardoor
de gebruiker zich kan identificeren en toegang krijgt tot bepaalde faciliteiten.
‘Passes: plastic cards equipped with a magnetic strip, thatcan be swiped through a card reader, by means
of which the identity of the user can be verified and the user gets access to certain facilities. ’

pronoun Dedicated readers. Dit zijn speciale apparaten, ontwikkeld met het exclusieve doel e-boeken te kunnen
lezen.
‘Dedicated readers. These are special devices, developed with the exclusive goal to make it possible to read
e-books.’

Table 1: Examples for each of the definition types.

ing objects in an elearning enivronment and are
thus representative for the glossary creation con-
text in which we will use definition extraction.

Based on the connectors used in the found pat-
terns, four common definition types were distin-
guished. The first type are the definitions in which
a form of the verbto beis used as connector. The
second group consists of definitions in which a
verb (or verbal phrase) other thanto be is used as
connector (e.g.to mean, to comprise). It also hap-
pens that a punctuation character is used as con-
nector (mainly:), such patterns are contained in
the third type. The fourth category contains the
definitory contexts in which relative or demonstra-
tive pronouns are used to point back to a defined
term that is mentioned in a preceding sentence.
The definition of the term then follows after the
pronoun. Table 1 shows an example for each of
the four types. To be able to test the grammar on
unseen data, the definition corpus was split in a
development and a test part. Table 2 shows some
general statistics of the corpus.

Development Test Total
# documents 33 12 45
# words 286091 95722 381813
# definitions 409 140 549

Table 2: General statistics of the definition corpus.

4 Using a grammar

To extract definition patterns two grammars have
been written on the basis of 409 manually selected
definitions from the development corpus. The
XML transducerlxtransducedeveloped by Tobin
(2005) is used to match the grammars against files
in XML format. Lxtransduce is an XML trans-
ducer that supplies a format for the development

of grammars which are matched against either
pure text or XML documents. The grammars are
XML documents which conform to a DTD (lx-
transduce.dtd, which is part of the software).

The grammars consist of four parts. In the first
part, part-of-speech information is used to make
rules for matching separate words. The second
part consists of rules to match chunks (e.g. noun
phrases, prepositional phrases). We did not use
a chunker, because we want to be able to put re-
strictions on the chunks. For example, to match
the definiendum, we only want to select relatively
simple NPs (mainly of the pattern (Article) - (Ad-
jective) - Noun(s)). The third part contains rules
for matching and marking definiendums and con-
nectors. In the last part the pieces are put together
and the complete definition patterns are matched.
The rules were made as general as possible to pre-
vent overfitting to the corpus.

Two types of grammars have been used: a basic
grammar and a sophisticated grammar. With the
basic grammar, the goal is to obtain a high recall
without bothering too much about precision. The
number of rules for detecting the patterns is 26 of
which 6 fall in the first category (matching words),
15 fall in the third part (matching parts of defi-
nitions) and 5 fall in the fourth category (match-
ing complete definitions). There are no rules of
the second category in this grammar (matching
chunks), because the focus is on the connector pat-
terns only and not on the pattern of the definien-
dum and definiens. In the sophisticated grammar
the aim is to design rules in such a way that a high
recall is obtained while at the same time the pre-
cision does not become very low. This grammar
contains 40 rules, which is 14 more than contained
in the basic grammar. There are 12 rules in part 1,
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5 in part 2, 11 rules in the third part and 12 rules
in the last part.

The first difference between the basic and the
sophisticated grammar is thus the number of rules.
However, the main difference is that the basic
grammar puts fewer restrictions on the patterns.
Restrictions on phrases present in the sophisti-
cated grammar such as ‘the definiendum should be
an NP of a certain structure’ are not present in the
basic grammar. For example, to detectis patterns,
the basic grammar simply marks all words before
a form of to beas definiendum and the complete
sentence containing a form ofto beas definition.
(Westerhout and Monachesi, 2007) describes the
design of the sophisticated grammar and the re-
sults obtained with it in more detail.

Table 3 shows that the recall is always higher
with the basic grammar is considerably, which is
what you would expect because fewer restrictions
are used. The consequence of using a less strict
grammar is that the precision decreases. The gain
of recall is much smaller than the loss in precision,
and therefore the f-score is also lower when the
basic grammar is used.

type corpus precision recall f-measure
is SG 0.25 0.82 0.38

BG 0.03 0.98 0.06
verb SG 0.29 0.71 0.41

BG 0.08 0.81 0.15
punct SG 0.04 0.67 0.08

BG 0.01 0.97 0.02
pron SG 0.05 0.47 0.10

BG 0.03 0.66 0.06
all SG 0.13 0.70 0.22

BG 0.03 0.86 0.06

Table 3: Results with sophisticated grammar (SG)
and basic grammar (BG) on the complete corpus.

5 Machine learning

The second step is aimed at improving the preci-
sion obtained with the grammars, while trying to
keep the recall as high as possible. The sentences
extracted with the grammars are input for this step
(table 3). We thus have two datasets: the first
dataset contains sentences extracted with the ba-
sic grammar and the second dataset contains sen-
tences extracted with the sophisticated grammar.
Because the datasets are relatively small, both de-
velopment and test results have been included to
get as much training data as possible. As a con-
sequence of using the output of the grammars as

dataset, the definitions not detected by the gram-
mar are lost already and cannot be retrieved any-
more. So, for example, the overall recall for theis
type where the sophisticated grammar is used as a
first step can not become more than 0.82.

The first classifier used is the Naive Bayes clas-
sifier, a common algorithm for text classification
tasks. However, because some of our datasets
are quite imbalanced and have an extremely low
percentage of correct definitions, the Naive Bayes
classifier did not always perform very well. There-
fore, a balanced classifier has been used also for
classifying the data. After describing the classi-
fiers, the experiments and the features used within
the experiments are discussed.

5.1 Classifiers

5.1.1 Naive Bayes classifier

The Naive Bayes classifier has often been used
in text classification tasks (Lewis, 1998; Mitchell,
1997; Fahmi and Bouma, 2006). Because of the
relatively small size of our dataset and sparse-
ness of the feature vector, the calculated numbers
of occurrences were very small and we expected
them to provide no additional information to the
classifier. For this reason, we used supervised
discretization (instead of normal distribution), in
which numeric attributes are converted to nominal
ones, and in this way removed the information on
the number of timesn-grams occurred in a partic-
ular sentence.

5.1.2 Balanced Random Forest classifier

The Naive Bayes (NB) classifier is aimed at get-
ting the best possible overall accuracy and is there-
fore not the best method when dealing with imbal-
anced data sets. In our experiments, all datasets
are more or less imbalanced and consist of a mi-
nority part with definitions and a majority part
with non-definitions. The extent to which the
dataset is imbalanced differs depending on the
type and the grammar that has been applied. Table
4 shows for each type the proportion that consti-
tutes the minority class with definitions. As can
be seen from this table, the sets foris and verb
definitions obtained with the sophisticated gram-
mar are the most balanced sets, whereas the others
are heavily imbalanced.

The problem of heavily imbalanced data can
be addressed in different ways. The approach we
adopted consists in a modification of the Random

91



SG (%) BG (%)
is 24.6 3.0
verb 28.9 8.1
punct 4.8 1.0
pron 5.4 2.9

Table 4: Percentage of correct definitions in sen-
tences extracted with sophisticated (SG) and basic
(BG) grammar.

Forest classifier (RF; (Breiman, 2001)). In Bal-
anced Random Forest (BRF; (Chen et al., 2004)),
for each decision tree two bootstrapped sets of the
same size, equal to the size of the minority class,
are constructed: one for the minority class, the
other for the majority class. Jointly, these two sets
constitute the training set. In our experiments we
made 100 trees in which at each node from 20
randomly selected features out of the total set of
features the best feature was selected. The final
classifier is the ensemble of the 100 trees and de-
cisions are reached by simple voting. We expect
the BRF classifier to outperform the NB classifier,
especially on the less balanced types.

5.2 Experiments

Two experiments have been conducted. Because
the datasets are relatively small 10-fold cross val-
idation has been used in all experiments for better
reliability of the classifier results.

5.2.1 Comparing classifier types

In the first experiment, the Naive Bayes and the
Balanced Random Forest classifiers are compared,
both on the data obtained with the sophisticated
and basic grammar. As featuresn-grams of the
part-of-speech tags were used withn being 1, 2
and 3. The main purpose of this experiment is to
compare the performance of the two classifiers to
see which method performs best on our data. We
expect the advantage of using the BRF method to
be bigger when the datasets are more imbalanced,
since the BRF classifier has been designed specifi-
cally to deal with imbalanced datasets. The second
purpose of the experiment is to investigate whether
combining a basic grammar with machine learning
can give better results than a sophisticated gram-
mar combined with machine learning. Because the
datasets will be more imbalanced for each type
when the basic grammar is used, we expect the
BRF method to perform better than the NB classi-
fier on the definition class. However, the counter
effect of using the balanced method will be that the

scores on the non-definition class will be worse.

5.2.2 Influence of definition structure

In the second experiment, we investigated whether
the structure of a definition provides informa-
tion that helps when classifying instances for the
datasets created with the basic grammar. As
features the part-of-speech tagn-grams of the
definiendum, the first part-of-speech tagn-gram
of the definiens and the part-of-speech tagn-
grams of the complete sentence. Because we have
seen when developing the sophisticated grammar
that the structure of the definiendum is very im-
portant for distinguishing definitions from non-
definitions, we decided to add information on the
structure of this part in the features of the data ob-
tained with the basic grammar. Also the first part
of the definiens often seemed to have a comparable
structure, therefore we included this part as well in
our features. We expect that including this infor-
mation will result in a better classification result.

6 Results

6.1 Comparing classifier types

Table 5 shows the results of the different classi-
fiers. When we look at the results for the sophis-
ticated grammar, we see that for the less balanced
datasets (i.e. thepunct andpron types) the BRF
classifier outperforms the NB classifier. For these
two types there were no definitions classified cor-
rectly and as a consequence both the precision and
the recall are 0. For the other two types the re-
sults of the different classifiers are comparable.
When the classifiers are used after the basic gram-
mar has been applied, the recall is substantially
better for all four types when the BRF method is
used. However, the precision is quite low with
this approach, mainly due to the low scores for
thepunctandpron types. The accuracy of the re-
sults, that is, the over all proportion of correctly
classified instances, is in all cases higher when
the Naive Bayes classifier is used. This is due
to the fact that the number of misclassified non-
definition sentences is higher when the BRF clas-
sifier is used.

Table 6 shows a comparison of the final results
obtained with the sophisticated grammar and the
basic grammar in combination with the two ma-
chine learning algorithms. The performance varies
largely per type and the overall score is highly in-
fluenced by theis andverb type, which together
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Naive Bayes
Sophisticated grammar Basic grammar

precision recall f-measure accuracyprecision recall f-measure accuracy
is 0.82 0.76 0.79 0.90 0.26 0.66 0.38 0.93
verb 0.77 0.75 0.76 0.86 0.67 0.17 0.27 0.93
punct 0 0 0 0.95 0 0 0 0.98
pron 0.36 0.30 0.33 0.93 0 0 0 0.97
all 0.72 0.61 0.66 0.92 0.29 0.32 0.31 0.95

Balanced Random Forest
Sophisticated grammar Basic grammar

precision recall f-measure accuracyprecision recall f-measure accuracy
is 0.77 0.79 0.78 0.89 0.18 0.82 0.30 0.88
verb 0.76 0.78 0.77 0.87 0.29 0.65 0.40 0.84
punct 0.13 0.61 0.22 0.79 0.06 0.61 0.10 0.79
pron 0.18 0.62 0.28 0.83 0.08 0.41 0.13 0.83
all 0.43 0.74 0.55 0.84 0.15 0.68 0.24 0.85

Table 5: Performance of Naive Bayes classifier and Balanced Random Forest classifier on the results
obtained with the grammars.

contain 69.8 % of the definitions. For the other
two types, the BRF classifier performs consider-
ably better, independent of which grammar has
been used in the first step. The overall f-measure
is best when the sophisticated grammar is used,
where the recall is higher with the BRF classifier
and the precision is better with the NB classifier.

Naive Bayes
grammar precision recall f-measure

is SG 0.82 0.62 0.70
BG 0.26 0.65 0.37

verb SG 0.77 0.53 0.63
BG 0.67 0.14 0.23

punct SG 0 0 0
BG 0 0 0

pron SG 0.36 0.14 0.20
BG 0 0 0

all SG 0.72 0.43 0.54
BG 0.29 0.27 0.28

Balanced Random Forest
grammar precision recall f-measure

is SG 0.77 0.65 0.70
BG 0.18 0.80 0.30

verb SG 0.76 0.55 0.64
BG 0.29 0.53 0.37

punct SG 0.13 0.42 0.20
BG 0.06 0.52 0.10

pron SG 0.18 0.29 0.22
BG 0.08 0.27 0.12

all SG 0.43 0.52 0.47
BG 0.15 0.57 0.24

Table 6: Final results of sophisticated grammar
(SG) and basic grammar (BG) in combination with
Naive Bayes classifier and Balanced Random For-
est classifier.

6.2 Influence of definition structure

Table 7 shows the results obtained with the BRF
classifier on the sentences extracted with the ba-

sic grammar when sentence structure is taken into
account. When we compare these results to ta-
ble 5, we see that the overall recall is higher when
structural information is provided to the classifier.
However, to which extent the structural informa-
tion contributes to a correct classification of the
definitions is different per type and also depends
on the amount of structural information provided.
When only information on the definiendum and
first part of the definiens are included, the pre-
cision scores are lower than the results obtained
with n-grams of the complete sentence. Providing
all information, that is, information on definien-
dum, first part of the definiens and the complete
sentence, gives the best results.

All information
precision recall f-measure accuracy

is 0.24 0.82 0.38 0.92
verb 0.29 0.81 0.43 0.82
punct 0.04 0.84 0.08 0.58
pron 0.09 0.54 0.16 0.83
all 0.14 0.78 0.24 0.82

Definiendum and firstn-gram of definiens
precision recall f-measure accuracy

is 0.19 0.82 0.31 0.89
verb 0.25 0.78 0.38 0.80
punct 0.03 0.96 0.05 0.23
pron 0.05 0.57 0.09 0.65
all 0.09 0.78 0.16 0.71

Table 7: Performance of Balanced Random Forest
classifier with information on sentence structure in
features applied on the results obtained with the
basic grammar.

For the is type, the recall remains the same
when structural information is added and the pre-
cision increases, especially when all structural in-
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formation is used. Information on the structure of
the definiens and the firstn-gram of the definiens
thus improves the classification results for this
type.

The recall ofverb definitions is higher when
structural information is used whereas the preci-
sion does not change. The fact that the precision is
hardly influenced by adding structural information
might be explained by the fact that connectors and
connector phrases are quite diverse for this type.
As a consequence, different types of firstn-grams
of the definiens might be used and the predicting
quality of structural information is smaller.

The classification of thepunctpatterns is quite
different depending on the amount of structural in-
formation used. The recall increases when struc-
tural information is added, whereas the precision
decreases. Adding structural information thus re-
sults in a low accuracy, especially when only the
n-grams of the definiendum and the firstn-gram of
the definiens are used. For this type of patterns the
structure of the complete definition is thus impor-
tant for obtaining a reasonable precision.

For the pronoun patterns the recall is higher
when structural information is included. The pre-
cision is slightly higher when all structural infor-
mation is included, but remarkably lower when
only then-grams of the definiendum and the first
n-gram of the definiens are used. From this we can
conclude that for this pattern type information on
the structure of the complete definition is crucial
to get a reasonable precision.

7 Evaluation and discussion

Which classifier performs best depends on the bal-
ance of the corpus. For the more balanced datasets
the results of the NB and the BRF method are al-
most the same. The more imbalanced the corpus,
the bigger the difference between the two meth-
ods, where BRF outperforms the NB classifier.
The accuracy is in all cases higher when the NB
classifier is used, due to the fact that this classi-
fier scores better on the majority part with non-
definitions. The inevitable counter effect of using
the BRF method is that the scores on this part are
lower, because the two classes now get the same
weight.

The answer to the question which grammar
should be used in the first step can be viewed from
different perspectives, by looking either at the goal
or the definition type.

When aiming at getting the highest possible re-
call, the BRF method in combination with the ba-
sic grammar gives the best overall results. How-
ever, when using these settings, the precision is
quite low. When the goal is to obtain the best
balance between recall and precision, this might
therefore not be the best choice. In this case, the
best option would be to use a combination of the
sophisticated grammar and the BRF method, in
which the recall is slightly lower than when the
basic grammar is used, but the precision is much
higher.

We can also view the question which gram-
mar should be used from a different perspective,
namely by looking at the definition type. To get
the best result for each of the separate types, we
would need to use different approaches for the dif-
ferent types. When the BRF method is used, for
two types the recall is considerably higher when
the basic grammar is used, whereas for the other
two types the recall scores are comparable for the
two grammars. However, again this goes with a
lower precision score, and therefore this may not
be the favourable solution in a practical applica-
tion. So, also when looking at a per type basis, us-
ing the sophisticated grammar seems to be the best
option when the aim is to get the best balance.

We are now able to answer the questions ad-
dressed in the first experiment and summarize
our conclusions on which classifier and grammar
should be used in table 8. The conclusions are
based on the final results obtained after both the
grammar and machine learning have been applied
(table 6). Although the recall is very important,
because of the context in which we want to apply
definition extraction the precision also cannot be
too low. In a practical application a user would
not like it to get 5 or 6 incorrect sentences for each
correct definition.

Best recall Best balance
is BG + BRF SG + NB / BRF
verb SG + NB / BRF SG + NB / BRF
punct BG + BRF SG + BRF
pron SG / BG + BRF SG + BRF

Table 8: Best combination of grammar and classi-
fier when aiming at best recall or best balance.

Information on structure in all cases results in
a higher number of correctly classified definitions.
The recall for the definition class is for all types
remarkably higher when only then-grams of the
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definiendum and the firstn-gram of the definiens
are considered. However, this goes with a much
lower precision and f-score and might therefore
not be the best option. When using all informa-
tion, the best results are obtained: the recall goes
up while the precision and f-score do not change
considerably. However, although the results are
improved, they are still lower then the results ob-
tained with the sophisticated grammar.

A question that might rise when looking at the
results for the different types, is whether the punc-
tuation and pronoun patterns should be included
when building an application for extracting defini-
tions. Although these types are present in texts –
they make up 30 % of the total number of defini-
tions – and can be extracted with our methods, the
results are poor compared to the results obtained
for the other two types. Especially the bad preci-
sion for these types gives reasons to have a closer
look at these patterns to discover the reason for
these low scores. The bad results might be caused
by the amount of training data, which might be too
low. Another reason might be that the patterns are
more diverse than the patterns of the other types,
and therefore more difficult to detect.

It is difficult to compare our results to other
work on definition extraction, because we are the
only who distinguish different types. However, we
try to compare research conducted by Fahmi and
Bouma (2006) on the first pattern and Kobyliński
and Przepiórkowski (2008) on definitions in gen-
eral. Fahmi and Bouma (2006) combined a rule-
based approach and machine learning for the de-
tection of is definitions in Wikipedia articles. Al-
though they used more structured texts, the accu-
racy they obtained is the same as the accuracy we
obtained in our experiments. However, they did
not report precision, recall, and f-score for the def-
inition class separately, which makes it difficult
to compare their result to ours. Kobyliński and
Przepiórkowski (2008) applied machine learning
on unstructured texts using a balanced classifier
and obtained a precision of 0.21, a recall of 0.69
and an f-score of 0.33 with an overall accuracy of
0.85. These scores are comparable to the scores
we obtained with the basic grammar in combina-
tion with the BRF classifier. Using the sophisti-
cated grammar in combination with BRF outper-
forms the results they obtained. From this we can
conclude that using a sophisticated grammar has
advantages over using machine learning only.

8 Conclusions and future work

On the basis of the results we can draw some con-
clusions. First, the type of grammar used in the
first step influences the final results. With the fea-
tures and classifiers used in our approach, the so-
phisticated grammar gives the best results for all
types. The added value of a sophisticated gram-
mar is also confirmed by the fact that the results
Kobyliński and Przepiórkowski (2008) obtained
without using a grammar are lower then our re-
sults with the sophisticated grammar. A second
lesson learned is that it is useful to distinguish dif-
ferent definition types. As the results vary depend-
ing on which type has to be extracted, adapting
the approach to the type to be extracted will re-
sult in a better overall performance. Third, the de-
gree to which the dataset is imbalanced influences
the choice for a classifier, where the BRF performs
better on less balanced datasets. As there are many
other NLP problems in which there is an interest-
ing minority class, the BRF method might be ap-
plied to those problems also. From the second ex-
periment, we can conclude that taking definition
structure into account helps to get better classifi-
cation results. This information has not been im-
plemented in other approaches yet and other work
on definition extraction can thus profit from this
new insight.

The results obtained so far clearly indicate that
a combination of a rule-based approach and ma-
chine learning is a good way to extract defini-
tions from texts. However, there is still room for
improvement, and we will work on this in the
next months. In near future, we will investigate
whether our results improve when more linguistic
information is added in the features. Especially
for the basic grammar, we expect it to be possi-
ble to get a better recall when more information
is added. We can make use of the grammar rules
implemented in the sophisticated grammar to see
there which information might be relevant. To im-
prove the precision scores obtained with the so-
phisticated grammar, we will also look at linguis-
tic information that might be relevant. However,
improving this score using linguistic information
will be more difficult, because the grammar al-
ready filtered out a lot of incorrect patterns. To
improve results obtained with this grammar, we
will therefore look at different features, such as
features based on document structure, keywordi-
ness of definiendum and similarity measures.
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