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Abstract

In this paper we explore a learning-based ap-
proach to the problem of predicting language
impairment in children. We analyzed sponta-
neous narratives of children and extracted fea-
tures measuring different aspects of language
including morphology, speech fluency, lan-
guage productivity and vocabulary. Then, we
evaluated a learning-based approach and com-
pared its predictive accuracy against a method
based on language models. Empirical re-
sults on monolingual English-speaking chil-
dren and bilingual Spanish-English speaking
children show the learning-based approach is
a promising direction for automatic language
assessment.

1 Introduction

The question of how best to identify children with
language disorders is a topic of ongoing debate.
One common assessment approach is based on cut-
off scores from standardized, norm-referenced lan-
guage assessment tasks. Children scoring at the
lower end of the distribution, typically more than
1.25 or 1.5 Standard Deviations (SD) below the
mean, are identified as having language impair-
ment (Tomblin et al., 1997). This cutoff-based
approach has several well-documented weaknesses
that may result in both over- and under-identification
of children as language impaired (Plante and Vance,
1994). Recent studies have suggested considerable
overlap between children with language impairment
and their typically developing cohorts on many of
these tasks (e.g., (Peña et al., 2006b; Spaulding et

al., 2006)). In addition, scores and cutoffs on stan-
dardized tests depend on the distribution of scores
from the particular samples used in normalizing the
measure. Thus, the validity of the measure for chil-
dren whose demographic and other socioeconomic
characteristics are not well represented in the test’s
normative sample is a serious concern. Finally, most
norm-referenced tests of language ability rely heav-
ily on exposure to mainstream language and expe-
riences, and have been found to be biased against
children from families with low parental education
and socioeconomic status, as well as children from
different ethnic backgrounds (Campbell et al., 1997;
Dollaghan and Campbell, 1998).

This paper aims to develop a reliable and auto-
matic method for identifying the language status of
children. We propose the use of different lexico-
syntactic features, typically used in computational
linguistics, in combination with features inspired
by current assessment practices in the field of lan-
guage disorders to train Machine Learning (ML) al-
gorithms. The two main contributions of this pa-
per are: 1) It is one step towards developing a re-
liable and automatic approach for language status
prediction in English-speaking children; 2) It pro-
vides evidence showing that the same approach can
be adapted to predict language status in Spanish-
English bilingual children.

2 Related Work

2.1 Monolingual English-Speaking Children

Several hypotheses exist that try to explain the gram-
matical deficits of children with Language Impair-

46



ment (LI). Young children normally go through a
stage where they use non-finite forms of verbs in
grammatical contexts where finite forms are re-
quired (Wexler, 1994). This is referred as the op-
tional infinitive stage. The Extended Optional Infini-
tive (EOI) theory (Rice and Wexler, 1996) suggests
that children with LI exhibit the use of a “young”
grammar for an extended period of time, where
tense, person, and number agreement markers are
omitted.

In contrast to the EOI theory, the surface account
theory (Leonard et al., 1997) assumes that chil-
dren with LI have reduced processing capabilities.
This deficit affects the perception of low stress mor-
phemes, such as -ed, -s, be and do, resulting in an
inconsistent use of these verb morphemes.

Spontaneous narratives are considered as one of
the most ecologically valid ways to measure com-
municative competence (Botting, 2002). They rep-
resent various aspects involved in children’s every-
day communication. Typical measures for sponta-
neous language samples include Mean Length of
Utterance (MLU) in words, Number of Different
Words (NDW), and errors in grammatical morphol-
ogy. Assessment approaches compare children’s
performance on these measures against expected
performance. As mentioned in Section 1, these cut-
off based methods raise questions concerning accu-
racy and bias. Manually analyzing the narratives is
also a very time consuming task. After transcribing
the sample, clinicians need to code for the differ-
ent clinical markers and other morphosyntactic in-
formation. This can take up to several hours for each
child making it infeasible to analyze a large number
of samples.

2.2 Bilingual Spanish-English Speaking
Children

Bilingual children face even more identification
challenges due to their dual language acquisition.
They can be mistakenly labeled as LI due to: 1) the
inadequate use of translations of assessment tools;
2) an over reliance on features specific to English; 3)
a lack of appropriate expectations about how the lan-
guages of a bilingual child should develop (Bedore
and Peña, 2008); 4) or the use of standardized
tests where the normal distribution used to compare
language performance is composed of monolingual

children (Restrepo and Gutiérrez-Clellen, 2001).
Spanish speaking children with LI show differ-

ent clinical markers than English speaking children
with LI. As mentioned above, English speakers have
problems with verb morphology. In contrast, Span-
ish speakers have been found to have problems with
noun morphology, in particular in the use of articles
and clitics (Restrepo and Gutiérrez-Clellen, 2001;
Jacobson and Schwartz, 2002; Bedore and Leonard,
2005). Bedore and Leonard (2005) also found dif-
ferences in the error patterns of Spanish and related
languages such as Italian. Spanish-speakers tend to
both omit and substitute articles and clitics, while
the dominant errors for Italian-speakers are omis-
sions.

3 Our Approach

We use language models (LMs) in our initial inves-
tigation, and later explore more complex ML algo-
rithms to improve the results. Our ultimate goal is
to discover a highly accurate ML method that can be
used to assist clinicians in the task of LI identifica-
tion in children.

3.1 Language Models for Predicting Language
Impairment

LMs are statistical models used to estimate the prob-
ability of a given sequence of words. They have been
explored previously for clinical purposes. Roark et
al. (2007) proposed cross entropy of LMs trained
on Part-of-Speech (POS) sequences as a measure of
syntactic complexity with the aim of determining
mild cognitive impairment in adults. Solorio and
Liu (2008) evaluated LMs on a small data set in a
preliminary trial on LI prediction.

The intuition behind using LMs is that they can
identify atypical grammatical patterns and help dis-
criminate the population with potential LI from
the Typically Developing (TD) one. We use LMs
trained on POS tags rather than on words. Using
POS tags can address the data sparsity issue in LMs,
and place less emphasis on the vocabulary and more
emphasis on the syntactic patterns.

We trained two separate LMs using POS tags
from the transcripts of TD and LI children, respec-
tively. The language status of a child is predicted
using the following criterion:
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d(s) =
{

LI if (PPTD(s) > PPLI(s))
TD otherwise

where s represents a transcript from a child, and
PPTD(s) and PPLI(s) are the perplexity values
from the TD and LI LMs, respectively. We used the
SRI Language Modeling Toolkit (Stolcke, 2002) for
training the LMs and calculating perplexities.

3.2 Machine Learning for Predicting Language
Impairment

Although LMs have been used successfully on dif-
ferent human language processing tasks, they are
typically trained and tested on language samples
larger than what is usually collected by clinicians for
the purpose of diagnosing a child with potential LI.
Clinicians make use of additional information be-
yond children’s speech, such as parent and teacher
questionnaires and test scores on different language
assessment tasks. Therefore in addition to using
LMs for children language status prediction, we ex-
plore a machine learning classification approach that
can incorporate more information for better predic-
tion. We aim to identify effective features for this
task and expect this information will help clinicians
in their assessment.

We consider various ML algorithms for the clas-
sification task, including Naive Bayes, Artificial
Neural Networks (ANNs), Support Vector Ma-
chines (SVM), and Boosting with Decision Stumps.
Weka (Witten and Frank, 1999) was used in our ex-
periments due to its known reliability and the avail-
ability of a large number of algorithms. Below we
provide a comprehensive list of features that we ex-
plored for both English and Spanish-English tran-
scripts. We group these features according to the
aspect of language they focus on. Features specific
to Spanish are discussed in Section 5.2.

1. Language productivity

(a) Mean Length of Utterance (MLU) in
words
Due to a general deficit of language abil-
ity, children with LI have been found to
produce language samples with a shorter
MLU in words because they produce

grammatically simpler sentences when
compared to their TD peers.

(b) Total number of words
This measure is widely used when build-
ing language profiles of children for diag-
nostic and treatment purposes.

(c) Degree of support
In spontaneous samples of children’s
speech, it has been pointed out that chil-
dren with potential LI need more encour-
agement from the investigator (Wetherell
et al., 2007) than their TD peers. A sup-
port prompt can be a question like “What
happened next?” We count the number of
utterances, or turns, of the investigator in-
terviewing the child for this feature.

2. Morphosyntactic skills

(a) Ratio of number of raw verbs to the total
number of verbs
As mentioned previously, children with LI
omit tense markers in verbs more often
than their TD cohorts. For example:

...the boy look into the hole but didn’t
find...

Hence, we include the ratio of the number
of raw verbs to the total number of verbs
as a feature.

(b) Subject-verb agreement
Research has shown that English-speaking
children with LI have difficulties mark-
ing subject-verb agreement (Clahsen and
Hansen, 1997; Schütze and Wexler, 1996).
An illustration of subject-verb disagree-
ment is the following:

...and he were looking behind the rocks

As a way of capturing this information
in the machine learning setting, we con-
sider various bigrams of POS tags: noun
and verb, noun and auxiliary verb, pro-
noun and verb, and pronoun and auxiliary
verb. These features are included in a bag-
of-words fashion using individual counts.
Also, we allow a window between these
pairs to capture agreement between sub-
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ject and verb that may have modifiers in
between.

(c) Number of different POS tags
This feature is the total number of differ-
ent POS tags in each transcript.

3. Vocabulary knowledge

We use the Number of Different Words (NDW)
to represent vocabulary knowledge of a child.
Although such measures can be biased against
children from different backgrounds, we expect
this possible negative effect to decrease as a re-
sult of having a richer pool of features.

4. Speech fluency

Repetitions, revisions, and filled pauses have
been considered indicators of language learn-
ing difficulties (Thordardottir and Weismer,
2002; Wetherell et al., 2007). In this work
we include as features (a) the number of fillers,
such as uh, um, er; and (b) the number of disflu-
encies (abandoned words) found in each tran-
script.

5. Perplexities from LMs

As mentioned in Section 3.1 we trained LMs of
order 1, 2, and 3 on POS tags extracted from
TD and LI children. We use the perplexity val-
ues from these models as features. Addition-
ally, differences in perplexity values from LI
and TD LMs for different orders are used as
features.

6. Standard scores

A standard score, known as a z-score, is the dif-
ference between an observation and the mean
relative to the standard deviation. For this fea-
ture group, we first find separate distributions
for the MLU in words, NDW and total num-
ber of utterances for the TD and LI populations.
Then, for each transcript, we compute the stan-
dard scores based on each of these six distribu-
tions. This represents how well the child is per-
forming relative to the TD and LI populations.
Note that a cross validation setup was used to
obtain the distribution for the TD and LI chil-
dren for training. This is also required for the
LM features above.

4 Experiments with Monolingual Children

4.1 The Monolingual English Data Set

Our target population for this work is children with
an age range of 3 to 6 years old. However, currently
we do not have any monolingual data sets readily
available to test our approach in this age range. In
the field of communication disorders data sharing
is not a common practice due to the sensitive con-
tent of the material in the language samples of chil-
dren, and also due to the large amount of effort and
time it takes researchers to collect, transcribe, and
code the data before they can begin their analysis.
To evaluate our approach we used a dataset from
CHILDES (MacWhinney, 2000) that includes nar-
ratives from English-speaking adolescents with and
without LI with ages ranging between 13 and 16
years old. Even though the age range is outside the
range we are interested in, we believe that this data
set can still be helpful in exploring the feasibility of
our approach as a first step.

This data set contains 99 TD adolescents and 19
adolescents who met the LI profile at one point in
the duration of the study. There are transcripts from
each child for two tasks: a story telling and a spon-
taneous personal narrative. The first task is a picture
prompted story telling task using the wordless pic-
ture book, “Frog, Where Are You?” (Mayer, 1969).
In this story telling task children first look at the
story book –to develop a story in memory– and then
are asked to narrate the story. This type of elicitation
task encourages the use of past tense constructions,
providing plenty of opportunities for extracting clin-
ical markers. In the spontaneous personal narrative
task, the child is asked to talk about a person who an-
noys him/her the most and describe the most annoy-
ing features of that person. This kind of spontaneous
personal narrative encourages the participant for the
use of third person singular forms (-s). Detailed in-
formation of this data set can be found in (Wetherell
et al., 2007).

We processed the transcripts using the CLAN
toolkit (MacWhinney, 2000). MOR and POST from
CLAN are used for morphological analysis and POS
tagging of the children’s speech. We decided to use
these analyzers since they are customized for chil-
dren’s speech.
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Story telling Personal narrative
Method P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Baseline 28.57 10.53 15.38 33.33 15.79 21.43
1-gram LMs 41.03 84.21 55.17 34.21 68.42 45.61
2-gram LMs 75.00 47.37 58.06 55.56 26.32 35.71
3-gram LMs 80.00 21.05 33.33 87.50 36.84 51.85

Table 1: Evaluation of language models on the monolingual English data set.

Story telling Personal narrative
Algorithm P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Naive Bayes 38.71 63.16 48.00 34.78 42.11 38.10
Bayesian Network 58.33 73.68 65.12 28.57 42.11 34.04
SVM 76.47 68.42 72.22 47.06 42.11 44.44
ANNs 62.50 52.63 57.14 50.00 47.37 48.65
Boosting 70.59 63.16 66.67 69.23 47.37 56.25

Table 2: Evaluation of machine learning algorithms on the monolingual English data set.

4.2 Results with Monolingual
English-Speaking Children

The performance measures we use are: precision
(P), recall (R), and F-measure (F1). Here the LI cat-
egory is the positive class and the TD category is the
negative class.

Table 1 shows the results of leave-one-out-cross-
validation (LOOCV) obtained from the LM ap-
proach for the story telling and spontaneous personal
narrative tasks. It also shows results from a base-
line method that predicts language status by using
standard scores on measures that have been asso-
ciated with LI in children (Dollaghan, 2004). The
three measures we used for the baseline are: MLU
in words, NDW, and total number of utterances pro-
duced. To compute this baseline we estimate the
mean and standard deviation of these measures us-
ing LOOCV with the TD population as our norma-
tive sample. The baseline predicts that a child has
LI if the child scores more than 1.25 SD below the
mean on at least two out of the three measures.

Although LMs yield different results for the story
telling and personal narrative tasks, they both pro-
vide consistently better results than the baseline. For
the story telling task the best results, in terms of the
F1 measure, are achieved by a bigram LM (F1 =
58.06%) while for the personal narrative the highest
F1 measure (51.85%) is from the trigram LM. If we
consider precision, both tasks have the same increas-

ing pattern when increasing LM orders. However for
recall that is not the case. In the story telling task,
recall decreases at the expense of higher precision,
but for the personal narrative task, the trigram LM
reaches a better trade-off between precision and re-
call, which yields a high F1 measure. We also evalu-
ated 4-gram LMs, but results did not improve, most
likely because we do not have enough data to train
higher order LMs.

The results for different ML algorithms are shown
in Table 2, obtained by using all features described
in Section 3.2. The feature based approach us-
ing ML algorithms outperformed using only LMs
on both tasks. For the story telling task, SVM
with a linear kernel achieves the best results (F1 =
72.22%), while Boosting with Decision Stumps pro-
vides the best performance (F1 = 56.25%) for the
personal narrative task.

4.3 Feature and Error Analysis

The ML results shown above use the entire feature
set described in Subsection 3.2. The next question
we ask is the effectiveness of different features for
this task. The datasets we are using in our evalua-
tion are very small, especially considering the num-
ber of positive instances. This prevents us from hav-
ing a separate subset of the data for parameter tun-
ing or feature selection. Therefore, we performed
additional experiments to evaluate the usefulness of
individual features. Figure 1 shows the F1 measures
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Figure 1: Discriminating power of different groups of
features. The numbers on the x-axis correspond to the
feature groups in Section 3.2.

when using different feature groups. The numbers
on the x-axis correspond to the feature groups de-
scribed in Section 3.2. The F1 measure value for
each of the features is the highest value obtained by
running different ML algorithms for classification.

We noticed that for the story telling task, using
perplexity values from LMs (group 5) as a feature
in the ML setting outperforms the LM threshold ap-
proach by a large margin. It seems that having the
perplexity values as well as the perplexity differ-
ences from all the LMs of different orders in the ML
algorithm provides a better estimation of the target
concept.

Only the standard scores (group 6) yield a higher
F1 measure for the personal narrative task than the
story telling one. The majority of the features (5
out of 6 groups) provide higher F1 measures for the
story telling task, which explains the significantly
better results on this task over the personal narrative
in our learning approach. This is consistent with pre-
vious work contrasting narrative genre stating that
the restrictive setting of a story retell is more reveal-
ing of language difficulties than spontaneous narra-
tives, where the subjects have more control on the
content and style (Wetherell et al., 2007).

We also performed some error analysis for some
of the transcripts that were consistently misidenti-
fied by different ML algorithms. In the story telling
task, we find that some LI transcripts are misclassi-
fied as TD because they (1) have fewer fillers, dis-
fluencies, and degree of support; (2) are similar to

the TD transcripts, which is depicted by the perplex-
ity values for these transcripts; or (3) contain higher
MLU in words as compared to their LI peers. Some
of the reasons for classifying transcripts in the TD
category as LI are shorter MLU in words as com-
pared to other TD peers, large number of fillers, and
excessive repetitions of words and phrases unlike the
other TD children. These factors are consistent with
the effective features that we found from Figure 1.

For the personal narrative task, standard scores
(group 6) and language productivity (group 1) have
an important role in classification, as shown in Fig-
ure 1. The TD transcripts that are misidentified have
lower standard scores and MLU in words than those
of their TD peers.

We believe that another source of noise in the
transcripts comes from the POS tags themselves.
For instance, we found that many verbs in present
tense for third person singular are tagged as plural
nouns, which results in a failure to capture subject-
verb agreement.

Lastly, according to the dataset description, chil-
dren in the LI category met the LI criteria at one
stage in their lifetime and some of these children
also had, or were receiving, some educational sup-
port in the school environment at the time of data
collection. This support for children with LI is
meant to improve their performance on language
related tasks, making the automatic classification
problem more complicated. This also raises the
question about the reference label (TD or LI) for
each child in the data set we used. The details about
which children received interventions are not speci-
fied in the dataset description.

5 Experiments with Bilingual Children

In this section we generalize the approach to a
Spanish-English bilingual population. In adapting
the approach to our bilingual population we face two
challenges: first, what shows to be promising for
a monolingual and highly heterogeneous population
may not be as successful in a bilingual setting where
we expect to have a large variability of exposure to
each language; second, there is a large difference
in the mean age of the monolingual setting and that
of our bilingual one. This age difference will result
in different speech patterns. Younger children pro-
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duce more ill-formed sentences since they are still
in a language acquisition phase. Lastly, the clini-
cal markers in adolescents are geared towards prob-
lems at the pragmatic and discourse levels, while at
younger ages they focus more on syntax and mor-
phology.

For dealing with the first challenge we are extract-
ing language-specific features and hope that by look-
ing at both languages we can reach a good discrim-
ination performance. For the second challenge, our
feature engineering approach has been focused on
younger children from the beginning. We are aiming
to capture the type of morphosyntactic patterns that
can identify LI in young children. In addition, the
samples in the bilingual population are story retells,
and our feature setting showed to be a good match
for this task. Therefore, we expect our approach to
capture relevant classification patterns, even in the
presence of noisy utterances.

5.1 The Bilingual Data Set
The transcripts for the bilingual LI task come from
an on-going longitudinal study of language impair-
ment in Spanish-English speaking children (Peña et
al., 2006a). The children in this study were enrolled
in kindergarten with a mean age of about 70 months.
Of the 59 children, 6 were identified as having a
possible LI by an expert in communication disor-
ders, while 53 were identified as TD. Six of the TD
children were excluded due to missing information,
yielding a total of 47 TD children.

Each child told a series of stories based on Mercer
Mayer’s wordless picture books (Mayer, 1969). Two
stories were told in English and two were told in
Spanish, for a total of four transcripts per child. The
books used for English were “A Boy, A Dog, and
A Frog” and “Frog, Where Are You?” The books
used for Spanish retelling were “Frog on His Own”
and “Frog Goes to Dinner.” The transcripts for each
separate language were combined, yielding one in-
stance per language for each child.

An interesting aspect of the bilingual data is that
the children mix languages in their narratives. This
phenomenon is called code-switching. At the begin-
ning of a retelling session, the interviewer encour-
ages the child to speak the target language if he/she
is not doing so. Once the child begins speaking the
correct language, any code-switching thereafter is

not corrected by the interviewer. Due to this, the En-
glish transcripts contain Spanish utterances and vice
versa. We believe that words in the non-target lan-
guage help contribute to a more accurate language
development profile. Therefore, in our work we de-
cided to keep these code-switched elements. A com-
bined lexicon approach was used to tag the mixed-
language fragments. If a word does not appear in the
target language lexicon, we apply the POS tag from
the non-target language.

5.2 Spanish-Specific Features

Many structural differences exist between Spanish,
a Romance language, and English, a Germanic lan-
guage. Spanish is morphologically richer than En-
glish. It contains a larger number of different verb
conjugations and it uses a two gender system for
nouns, adjectives, determiners, and participles. A
Spanish-speaking child with LI will have difficulties
with different grammatical elements, such as articles
and clitics, than an English-speaking child (Bedore
and Peña, 2008). These differences indicate that the
Spanish feature set will need to be tailored towards
the Spanish language.

To account for Spanish-specific patterns we in-
cluded new POS bigrams as features. To capture
the use of correct and incorrect gender and num-
ber marking morphology, we added noun-adjective,
determiner-noun, and number-noun bigrams to the
list of morphosyntactic features.

5.3 Results on Bilingual Children

Results are shown for the baseline and LM threshold
approach for the bilingual data set in Table 3. The
baseline is computed from the same measures as the
monolingual dataset (MLU in words, NDW, and to-
tal utterances).

Compared to Table 1, the values in Table 3
are generally lower than on the monolingual story
telling task. In this inherently difficult task, the bilin-
gual transcripts are more disfluent than the monolin-
gual ones. This could be due to the age of the chil-
dren or their bilingual status. Recent studies on psy-
cholinguistics and language production have shown
that bilingual speakers have both languages active
at speech production time (Kroll et al., 2008) and
it is possible that this may cause interference, espe-
cially in children still in the phase of language acqui-
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English Spanish
Method P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Baseline 20.00 16.66 18.18 16.66 16.66 16.66
1-gram LMs 40.00 33.33 36.36 17.64 50.00 26.08
2-gram LMs 50.00 33.33 40.00 33.33 16.66 22.22
3-gram LMs 100.00 33.33 50.00 0.00 0.00 -

Table 3: Evaluation of language models on Bilingual Spanish-English data set.

sition. In addition, the LMs in the monolingual task
were trained using more instances per class, possibly
yielding better results.

There are some different patterns between using
the English and Spanish transcripts. In English,
the unigram models provide the least discriminative
value, and the bigram and trigram models improve
discrimination. We also evaluated higher order n-
grams, but did not obtain any further improvement.
We found that the classification accuracy of the LM
approach was influenced by two children with LI
who were consistently marked as LI due to a greater
perplexity value from the TD LM. A further analysis
shows that these children spoke mostly Spanish on
the “English” tasks yielding larger perplexities from
the TD LM, which was trained from mostly English.
In contrast, the LI LM was created with transcripts
containing more Spanish than the TD one, and thus
test transcripts with a lot of Spanish do not inflate
perplexity values that much.

For Spanish, unigram LMs provide some discrim-
inative usefulness, and then the bigram performance
decreases while the trigram model provides no dis-
criminative value. One reason for this may be that
the Spanish LMs have a larger vocabulary. In the
Spanish LMs, there are 2/3 more POS tags than in
the English LM. This size difference dramatically
increases the possible bigrams and trigrams, there-
fore increasing the number of parameters to esti-
mate. In addition, we are using an “off the shelf”
POS tagger (provided by CLAN) and this may add
noise in the feature extraction process. Since we do
not have gold standard annotations for these tran-
scripts, we cannot measure the POS tagging accu-
racy. A rough estimate based on manually revis-
ing one transcript in each language showed a POS
tagging accuracy of 90% for English and 84% for
Spanish. Most of the POS tagger errors involve
verbs, nouns and pronouns. Thus while the accu-
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Figure 2: Discriminating power of different groups of
features for the bilingual population. The numbers on the
x-axis correspond to the feature groups in Section 3.2.

racy might not seem that low, it can still have a ma-
jor impact on our approach since it involves the POS
categories that are more relevant for this task.

Table 4 shows the results from various ML algo-
rithms. In addition to predicting the language status
with the English and Spanish samples separately, we
also combined the English and Spanish transcripts
together for each child, and used all the features
from both languages in order to allow a prediction
based on both samples. The best F1 measure for this
task (60%) is achieved by using the Naive Bayes al-
gorithm with the combined Spanish-English feature
set. This is an improvement over both the separate
English and Spanish trials. The Naive Bayes algo-
rithm provided the best discrimination for the En-
glish (54%) and Combined data sets and Boosting
and SVM provided the best discrimination for the
Spanish set (18%).

5.4 Feature Analysis

Similar to the monolingual dataset, we performed
additional experiments exploring the contribution
of different groups of features. We tested the six
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English Spanish Combined
Algorithm P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
ANNs 66.66 33.33 44.44 0.00 0.00 - 100.00 16.66 28.57
SVM 14.28 16.66 15.38 20.00 16.66 18.18 66.66 33.33 44.44
Naive Bayes 60.00 50.00 54.54 0.00 0.00 - 75.00 50.00 60.00
Logistic Regression 25.00 16.66 20.00 - 0.00 - 50.00 33.33 40.00
Boosting 50.00 33.33 40.00 20.00 16.66 18.18 66.66 33.33 44.44

Table 4: Evaluation of machine learning algorithms on the Bilingual Spanish-English data set.

groups of features described in Section 3.2 sepa-
rately. Overall, the combined LM perplexity val-
ues (group 5) provided the best discriminative value
(F1 = 66%). The LM perplexity values performed
the best for English. It even outperformed using all
the features in the ML algorithm, suggesting some
feature selection is needed for this task.

The morpohsyntactic skills (group 2) provided the
best discriminative value for the Spanish language
features, and performed better than the complete
feature set for Spanish. Within group 2, we evalu-
ated different POS bigrams for the Spanish and En-
glish sets and observed that most of the bigram com-
binations by themselves are usually weak predictors
of language status. In the Spanish set, out of all of
the lexical combinations, only the determiner-noun,
noun-verb, and pronoun-verb categories provided
some discriminative value. The determiner-noun
category captured the correct and incorrect gender
marking between the two POS tags. The noun-verb
and pronoun-verb categories covered the correct and
incorrect usage of subject-verb combinations. In-
terestingly enough, the pronoun-verb category per-
formed well by itself, yielding an F1 measure of
54%. There are also some differences in the frequen-
cies of bigram features in the English and Spanish
data sets. For example, there is no noun-auxiliary
POS pattern in Spanish, and the pronoun-auxiliary
bigram appears less frequently in Spanish than in
English because in Spanish the use of personal pro-
nouns is not mandatory since the verb inflection will
disambiguate the subject of the sentence.

The vocabulary knowledge feature (group 3) did
not provide any discriminative value for any of the
language tasks. This may be because bilingual chil-
dren receive less input for each language than a
monolingual child learning one language, or due to
the varied vocabulary acquisition rate in our bilin-

gual population.

6 Conclusions and Future Work

In this paper we present results on the use of LMs
and ML techniques trained on features representing
different aspects of language gathered from spon-
taneous speech samples for the task of assisting
clinicians in determining language status in chil-
dren. First, we evaluate our approach on a monolin-
gual English-speaking population. Next, we show
that this ML approach can be successfully adapted
to a bilingual Spanish-English population. ML al-
gorithms provide greater discriminative power than
only using a threshold approach with LMs.

Our current efforts are devoted to improving pre-
diction accuracy by refining our feature set. We are
working on creating a gold standard corpus of chil-
dren’s transcripts annotated with POS tags. This
data set will help us improve accuracy on our POS-
based features. We are also exploring the use of
socio-demographic features such as the educational
level of parents, the gender of children, and enroll-
ment status on free lunch programs.
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