
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 548–556,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Inducing Compact but Accurate Tree-Substitution Grammars

Trevor Cohn and Sharon Goldwater and Phil Blunsom
School of Informatics

University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

Scotland, United Kingdom
{tcohn,sgwater,pblunsom}@inf.ed.ac.uk

Abstract

Tree substitution grammars (TSGs) are a com-
pelling alternative to context-free grammars
for modelling syntax. However, many popu-
lar techniques for estimating weighted TSGs
(under the moniker of Data Oriented Parsing)
suffer from the problems of inconsistency and
over-fitting. We present a theoretically princi-
pled model which solves these problems us-
ing a Bayesian non-parametric formulation.
Our model learns compact and simple gram-
mars, uncovering latent linguistic structures
(e.g., verb subcategorisation), and in doing so
far out-performs a standard PCFG.

1 Introduction

Many successful models of syntax are based on
Probabilistic Context Free Grammars (PCFGs)
(e.g., Collins (1999)). However, directly learning a
PCFG from a treebank results in poor parsing perfor-
mance, due largely to the unrealistic independence
assumptions imposed by the context-free assump-
tion. Considerable effort is required to coax good
results from a PCFG, in the form of grammar en-
gineering, feature selection and clever smoothing
(Collins, 1999; Charniak, 2000; Charniak and John-
son, 2005; Johnson, 1998). This effort must be re-
peated when moving to different languages, gram-
mar formalisms or treebanks. We propose that much
of this hand-coded knowledge can be obtained auto-
matically as an emergent property of the treebanked
data, thereby reducing the need for human input in
crafting the grammar.

We present a model for automatically learning a
Probabilistic Tree Substitution Grammar (PTSG),
an extension to the PCFG in which non-terminals
can rewrite as entire tree fragments (elementary

trees), not just immediate children. These large frag-
ments can be used to encode non-local context, such
as head-lexicalisation and verb sub-categorisation.
Since no annotated data is available providing TSG
derivations we must induce the PTSG productions
and their probabilities in an unsupervised way from
an ordinary treebank. This is the same problem ad-
dressed by Data Oriented Parsing (DOP, Bod et al.
(2003)), a method which uses as productions all sub-
trees of the training corpus. However, many of the
DOP estimation methods have serious shortcomings
(Johnson, 2002), namely inconsistency for DOP1
(Bod, 2003) and overfitting of the maximum like-
lihood estimate (Prescher et al., 2004).

In this paper we develop an alternative means of
learning a PTSG from a treebanked corpus, with the
twin objectives of a) finding a grammar which ac-
curately models the data and b) keeping the gram-
mar as simple as possible, with few, compact, ele-
mentary trees. This is achieved using a prior to en-
courage sparsity and simplicity in a Bayesian non-
parametric formulation. The framework allows us to
perform inference over an infinite space of gram-
mar productions in an elegant and efficient manner.
The net result is a grammar which only uses the in-
creased context afforded by the TSG when necessary
to model the data, and otherwise uses context-free
rules.1 That is, our model learns to use larger rules
when the CFG’s independence assumptions do not
hold. This contrasts with DOP, which seeks to use
all elementary trees from the training set. While our
model is able, in theory, to use all such trees, in prac-
tice the data does not justify such a large grammar.
Grammars that are only about twice the size of a

1While TSGs and CFGs describe the same string lan-
guages, TSGs can describe context-sensitive tree-languages,
which CFGs cannot.
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treebank PCFG provide large gains in accuracy. We
obtain additional improvements with grammars that
are somewhat larger, but still much smaller than the
DOP all-subtrees grammar. The rules in these gram-
mars are intuitive, potentially offering insights into
grammatical structure which could be used in, e.g.,
the development of syntactic ontologies and guide-
lines for future treebanking projects.

2 Background and related work

A Tree Substitution Grammar2 (TSG) is a 4-tuple,
G = (T,N, S,R), where T is a set of terminal sym-
bols, N is a set of non-terminal symbols, S ∈ N is
the distinguished root non-terminal and R is a set
of productions (a.k.a. rules). The productions take
the form of elementary trees – tree fragments of
depth ≥ 2, where each internal node is labelled with
a non-terminal and each leaf is labelled with either a
terminal or a non-terminal. Non-terminal leaves are
called frontier non-terminals and form the substitu-
tion sites in the generative process of creating trees
with the grammar.

A derivation creates a tree by starting with the
root symbol and rewriting (substituting) it with an
elementary tree, then continuing to rewrite frontier
non-terminals with elementary trees until there are
no remaining frontier non-terminals. Unlike Con-
text Free Grammars (CFGs) a syntax tree may not
uniquely specify the derivation, as illustrated in Fig-
ure 1 which shows two derivations using different
elementary trees to produce the same tree.

A Probabilistic Tree Substitution Grammar
(PTSG), like a PCFG, assigns a probability to each
rule in the grammar. The probability of a derivation
is the product of the probabilities of its component
rules, and the probability of a tree is the sum of the
probabilities of its derivations.

As we mentioned in the introduction, work within
the DOP framework seeks to induce PTSGs from
treebanks by using all possible subtrees as rules, and
one of a variety of methods for estimating rule prob-
abilities.3 Our aim of inducing compact grammars
contrasts with that of DOP; moreover, we develop a
probabilistic estimator which avoids the shortcom-
ings of DOP1 and the maximum likelihood esti-

2A TSG is a Tree Adjoining Grammar (TAG; Joshi (2003))
without the adjunction operator.

3TAG induction (Chiang and Bikel, 2002; Xia, 2002) also
tackles a similar learning problem.

mate (Bod, 2000; Bod, 2003; Johnson, 2002). Re-
cent work on DOP estimation also seeks to address
these problems, drawing from estimation theory to
solve the consistency problem (Prescher et al., 2004;
Zollmann and Sima’an, 2005), or incorporating a
grammar brevity term into the learning objective
(Zuidema, 2007). Our work differs from these pre-
vious approaches in that we explicitly model a prior
over grammars within a Bayesian framework.4

Models of grammar refinement (Petrov et al.,
2006; Liang et al., 2007; Finkel et al., 2007) also
aim to automatically learn latent structure underly-
ing treebanked data. These models allow each non-
terminal to be split into a number of subcategories.
Theoretically the grammar space of our model is a
sub-space of theirs (projecting the TSG’s elementary
trees into CFG rules). However, the number of non-
terminals required to recreate our TSG grammars
in a PCFG would be exorbitant. Consequently, our
model should be better able to learn specific lexical
patterns, such as full noun-phrases and verbs with
their sub-categorisation frames, while theirs are bet-
ter suited to learning subcategories with larger mem-
bership, such as the terminals for days of the week
and noun-adjective agreement. The approaches are
orthogonal, and we expect that combining a category
refinement model with our TSG model would pro-
vide better performance than either approach alone.

Our model is similar to the Adaptor Grammar
model of Johnson et al. (2007b), which is also
a kind of Bayesian nonparametric tree-substitution
grammar. However, Adaptor Grammars require that
each sub-tree expands completely, with only termi-
nal symbols as leaves, while our own model permits
non-terminal frontier nodes. In addition, they disal-
low recursive containment of adapted non-terminals;
we impose no such constraint.

3 Model

Recall the nature of our task: we are given a corpus
of parse trees t and wish to infer a tree-substitution
grammar G that we can use to parse new data.
Rather than inferring a grammar directly, we go
through an intermediate step of inferring a distri-
bution over the derivations used to produce t, i.e.,

4A similar Bayesian model of TSG induction has been de-
veloped independently to this work (O’Donnell et al., 2009b;
O’Donnell et al., 2009a).
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(a)
S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)
S

NP

George

VP

V

V

hates

NP

broccoli

S→ NP (VP (V hates) NP)
NP→ George
NP→ broccoli

S→ (NP George) (VP V (NP broccoli))
V→ hates

Figure 1: Example derivations for the same tree,
where arrows indicate substitution sites. The ele-
mentary trees used in (a) and (b) are shown below
as grammar productions in bracketed tree notation.

a distribution over sequences of elementary trees e
that compose to form t. We will then essentially read
the grammar off the elementary trees, as described
in Section 5. Our problem therefore becomes one of
identifying the posterior distribution of e given t,
which we can do using Bayes’ Rule:

P (e|t) ∝ P (t|e)P (e) (1)

Since the sequence of elementary trees can be split
into derivations, each of which completely specifies
a tree, P (t|e) is either equal to 1 (when t and e
are consistent) or 0 (otherwise). Therefore, the work
in our model is done by the prior distribution over
elementary trees. Note that this is analogous to the
Bayesian model of word segmentation presented by
Goldwater et al. (2006); indeed, the problem of in-
ferring e from t can be viewed as a segmentation
problem, where each full tree must be segmented
into one or more elementary trees. As in Goldwater
et al. (2006), we wish to favour solutions employing
a relatively small number of elementary units (here,
elementary trees). This can be done using a Dirichlet
process (DP) prior. Specifically, we define the distri-
bution of elementary tree e with root non-terminal
symbol c as

Gc|αc, P0 ∼ DP(αc, P0(·|c))
e|c ∼ Gc

whereP0(·|c) (the base distribution) is a distribution
over the infinite space of trees rooted with c, and αc

(the concentration parameter) controls the model’s
tendency towards either reusing elementary trees or
creating novel ones as each training instance is en-
countered (and consequently, the tendency to infer
larger or smaller sets of elementary trees from the
observed data). We discuss the base distribution in
more detail below.

Rather than representing the distribution Gc ex-
plicitly, we integrate over all possible values of Gc.
The resulting distribution over ei, conditioned on
e<i = e1 . . . ei−1 and the root category c is:

p(ei|e<i, c, αc, P0) =
n<iei,c + αcP0(ei|c)

n<i·,c + αc
(2)

where n<iei,c is the number number of times ei has
been used to rewrite c in e<i, and n<i·,c =

∑
e n

<i
e,c is

the total count of rewriting c.
As with other DP models, ours can be viewed as a

cache model, where ei can be generated in one of
two ways: by drawing from the base distribution,
where the probability of any particular tree is pro-
portional to αcP0(ei|c), or by drawing from a cache
of previous expansions of c, where the probability of
any particular expansion is proportional to the num-
ber of times that expansion has been used before.
This view makes it clear that the model embodies
a “rich-get-richer” dynamic in which a few expan-
sions will occur with high probability, but many will
occur only once or twice, as is typical of natural lan-
guage. Our model is similar in this way to the Adap-
tor Grammar model of Johnson et al. (2007a).

We still need to define P0, the base distribution
over tree fragments. We use two such distributions.
The first, PM0 generates each elementary tree by
a series of random decisions: whether to expand a
non-terminal, how many children to produce and
their identities. The probability of expanding a non-
terminal node labelled c is parameterised via a bino-
mial distribution, Bin(βc), while all other decisions
are chosen uniformly at random. The second base
distribution, PC0 , has a similar generative process
but draws non-terminal expansions from a treebank-
trained PCFG instead of a uniform distribution.

Both choices of P0 have the effect of biasing the
model towards simple rules with a small number of
internal nodes. The geometric increase in cost dis-
courages the model from using larger rules; for this
to occur these rules must yield a large increase in the
data likelihood. As PC0 incorporates PCFG probabil-
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S

NP,1

George
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V,0
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NP,1

broccoli
Figure 2: Gibbs state e specifying the derivation in
Figure 1a. Each node is labelled with its substitution
indicator variable.

ities, it assigns higher relative probability to larger
rules, compared to the more draconian PM0 .

4 Training

To train our model we use Gibbs sampling (Geman
and Geman, 1984), a Markov chain Monte Carlo
method in which variables are repeatedly sampled
conditioned on the values of all other variables in
the model. After a period of burn-in, each sam-
pler state (set of variable assignments) is a sample
from the posterior distribution of the model. In our
case, we wish to sample from P (e|t, α, β), where
(α, β) = {αc, βc} for all categories c. To do so,
we associate a binary variable with each non-root
internal node of each tree in the training set, indi-
cating whether that node is a substitution point or
not. Each substitution point forms the root of some
elementary tree, as well as a frontier non-terminal
of an ancestor node’s elementary tree. Collectively,
the training trees and substitution variables specify
the sequence of elementary trees e that is the current
state of the sampler. Figure 2 shows an example tree
with its substitution variables, corresponding to the
TSG derivation in Figure 1a.

Our Gibbs sampler works by sampling the value
of each substitution variable, one at a time, in ran-
dom order. If d is the node associated with the sub-
stitution variable s under consideration, then the two
possible values of s define two options for e: one
in which d is internal to some elementary tree eM ,
and one in which d is the substitution site con-
necting two smaller trees, eA and eB . In the ex-
ample in Figure 2, when sampling the VP node,
eM = (S NP (VP (V hates) NP)), eA = (S NP VP),
and eB = (VP (V hates) NP). To sample a value for
s, we compute the probabilities of eM and (eA, eB),
conditioned on e−: all other elementary trees in the
training set that share at most a root or frontier non-

terminal with eM , eA, or eB . This is easy to do
because the DP is exchangeable, meaning that the
probability of a set of outcomes does not depend on
their ordering. Therefore, we can treat the elemen-
tary trees under consideration as the last ones to be
sampled, and apply Equation 2, giving us

P (eM |cM )=
n−eM ,cM

+ αcMP0(eM |cM )

n−·,cM + αcM
(3)

P (eA, eB|cA)=
n−eA,cA

+ αcAP0(eA|cA)

n−·,cA + αcA
(4)

×
n−eB ,cB

+ δ(eA, eB) + αcBP0(eB|cB)

n−·,cB + δ(cA, cB) + αcB

where cx is the root label of ex, x ∈ {A,B,M},
the counts n− are with respect to e−, and δ(·, ·) is
the Kronecker delta function, which returns 1 when
its arguments are identical and 0 otherwise. We have
omitted e−, t, α and β from the conditioning con-
text. The δ terms in the second factor of (4) account
the changes to n− that would occur after observing
eA, which forms part of the conditioning context for
eB . If the trees eA and eB are identical, then the
count n−eB ,cB

would increase by one, and if the trees
share the same root non-terminal, then n−·,cB would
increase by one.

In the previous discussion, we have assumed
that the model hyperparameters, (α, β), are known.
However, selecting their values by hand is extremely
difficult and fitting their values on heldout data is of-
ten very time consuming. For this reason we treat
the hyper-parameters as variables in our model and
infer their values during training. We choose vague
priors for each hyper-parameter, encoding our lack
of information about their values. We treat the con-
centration parameters, α, as being generated by a
vague gamma prior, αc ∼ Gamma(0.001, 1000).
We sample a new value α′c using a log-normal dis-
tribution with mean αc and variance 0.3, which is
then accepted into the distribution p(αc|e, t, α−, β)
using the Metropolis-Hastings algorithm. We use a
Beta prior for the binomial specification parameters,
βc ∼ Beta(1, 1). As the Beta distribution is conju-
gate to the binomial, we can directly resample the
β parameters from the posterior, p(βc|e, t, α, β−).
Both the concentration and substitution parameters
are resampled after every full Gibbs sampling itera-
tion over the training trees.
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5 Parsing

We now turn to the problem of using the model
to parse novel sentences. This requires finding the
maximiser of

p(t|w, t) =
∫
p(t|w, e, α, β) p(e, α, β|t) de dα dβ

(5)
wherew is the sequence of words being parsed and t
the resulting tree, t are the training trees and e their
segmentation into elementary trees.

Unfortunately solving for the maximising parse
tree in (5) is intractable. However, it can approxi-
mated using Monte Carlo techniques. Given a sam-
ple of (e, α, β)5 we can reason over the space of
possible trees using a Metropolis-Hastings sampler
(Johnson et al., 2007a) coupled with a Monte Carlo
integral (Bod, 2003). The first step is to sample from
the posterior over derivations, p(d|w, e, α, β). This
is achieved by drawing samples from an approxima-
tion grammar, p̃(d|w), which are then accepted to
the true distribution using the Metropolis-Hastings
algorithm. The second step records for each sampled
derivation the CFG tree. The counts of trees consti-
tute an approximation to p(t|w, e, α, β), from which
we can recover the maximum probability tree.

A natural proposal distribution, p̃(d|w), is the
maximum a posterior (MAP) grammar given the el-
ementary tree analysis of our training set (analogous
to the PCFG approximation used in Johnson et al.
(2007a)). This is not practical because the approx-
imation grammar is infinite: elementary trees with
zero count in e still have some residual probabil-
ity under P0. In the absence of a better alternative,
we discard (most of) the zero-count rules from MAP
grammar. This results in a tractable grammar repre-
senting the majority of the probability mass, from
which we can sample derivations. We specifically
retain all zero-count PCFG productions observed in
the training set in order to provide greater robustness
on unseen data.

In addition to finding the maximum probability
parse (MPP), we also report results using the maxi-
mum probability derivation (MPD). While this could
be calculated in the manner as described above, we

5Using many samples of (e, α, β) in a Monte Carlo inte-
gral is a straight-forward extension to our parsing algorithm. We
did not observe a significant improvement in parsing accuracy
when using a multiple samples compared to a single sample,
and therefore just present results for a single sample.

S → A | B
A→ A A | B B | (A a) (A a) | (B a) (B a)
B → A A | B B | (A b) (A b) | (B b) (B b)

Figure 3: TSG used to generate synthetic data. All
production probabilities are uniform.

found that using the CYK algorithm (Cocke, 1969)
to find the Viterbi derivation for p̃ yielded consis-
tently better results. This algorithm maximises an
approximated model, as opposed to approximately
optimising the true model. We also present results
using the tree with the maximum expected count of
CFG rules (MER). This uses counts of the CFG rules
applied at each span (compiled from the derivation
samples) followed by a maximisation step to find the
best tree. This is similar to the MAX-RULE-SUM
algorithm of Petrov and Klein (2007) and maximum
expected recall parsing (Goodman, 2003).

6 Experiments

Synthetic data Before applying the model to
natural language, we first create a synthetic problem
to confirm that the model is capable of recovering
a known tree-substitution grammar. We created 50
random trees from the TSG shown in Figure 3. This
produces binary trees with A and B internal nodes
and ‘a’ and ‘b’ as terminals, such that the termi-
nals correspond to their grand-parent non-terminal
(A and a or B and b). These trees cannot be mod-
elled accurately with a CFG because expanding A
and B nodes into terminal strings requires knowing
their parent’s non-terminal.

We train the model for 100 iterations of Gibbs
sampling using annealing to speed convergence.
Annealing amounts to smoothing the distributions
in (3) and (4) by raising them to the power of 1

T .
Our annealing schedule begins at T = 3 and lin-
early decreases to reach T = 1 in the final iteration.
The sampler converges to the correct grammar, with
the 10 rules from Figure 3.

Penn-treebank parsing We ran our natural lan-
guage experiments on the Penn treebank, using the
standard data splits (sections 2–21 for training, 22
for development and 23 for testing). As our model is
parameter free (the α and β parameters are learnt in
training), we do not use the development set for pa-
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rameter tuning. We expect that fitting these param-
eters to maximise performance on the development
set would lead to a small increase in generalisation
performance, but at a significant cost in runtime. We
replace tokens with count≤ 1 in the training sample
with one of roughly 50 generic unknown word mark-
ers which convey the token’s lexical features and po-
sition in the sentence, following Petrov et al. (2006).
We also right-binarise the trees to reduce the branch-
ing factor in the same manner as Petrov et al. (2006).
The predicted trees are evaluated using EVALB6 and
we report the F1 score over labelled constituents and
exact match accuracy over all sentences in the test-
ing sets.

In our experiments, we initialised the sampler by
setting all substitution variables to 0, thus treating
every full tree in the training set as an elementary
tree. Starting with all the variables set to 1 (corre-
sponding to CFG expansions) or a random mix of
0s and 1s considerably increases time until conver-
gence. We hypothesise that this is due to the sampler
getting stuck in modes, from which a series of lo-
cally bad decisions are required to escape. The CFG
solution seems to be a mode and therefore starting
the sampler with maximal trees helps the model to
avoid this mode.

Small data sample For our first treebank exper-
iments, we train on a small data sample by using
only section 2 of the treebank. Bayesian methods
tend to do well with small data samples, while for
larger samples the benefits diminish relative to point
estimates. The models were trained using Gibbs
sampling for 4000 iterations with annealing linearly
decreasing from T = 5 to T = 1, after which
the model performed another 1000 iterations with
T = 1. The final training sample was used in the
parsing algorithm, which used 1000 derivation sam-
ples for each test sentence. All results are the aver-
age of five independent runs.

Table 1 presents the prediction results on the de-
velopment set. The baseline is a maximum likeli-
hood PCFG. The TSG model significantly outper-
forms the baseline with either base distribution PM0
or PC0 . This confirms our hypothesis that CFGs are
not sufficiently powerful to model syntax, but that
the increased context afforded to the TSG can make
a large difference. This result is even more impres-
sive when considering the difference in the sizes of

6See http://nlp.cs.nyu.edu/evalb/.

F1 EX # rules
PCFG 60.20 4.29 3500
TSG PM0 : MPD 72.17 11.92 6609

MPP 71.27 12.33 6609
MER 74.25 12.30 6609

TSG PC0 : MPD 75.24 15.18 14923
MPP 75.30 15.74 14923
MER 76.89 15.76 14923

SMτ=2: MPD 71.93 11.30 16168
MER 74.32 11.77 16168

SMτ=5: MPD 75.33 15.64 39758
MER 77.93 16.94 39758

Table 1: Development results for models trained on
section 2 of the Penn tree-bank, showing labelled
constituent F1 and exact match accuracy. Grammar
sizes are the number of rules with count ≥ 1.

grammar in the PCFG versus TSG models. The TSG
using PM0 achieves its improvements with only dou-
ble as many rules, as a consequence of the prior
which encourages sparse solutions. The TSG results
with the CFG base distribution, PC0 , are more ac-
curate but with larger grammars.7 This base distri-
bution assigns proportionally higher probability to
larger rules than PM0 , and consequently the model
uses these additional rules in a larger grammar.

Surprisingly, the MPP technique is not systemati-
cally better than the MPD approach, with mixed re-
sults under the F1 metric. We conjecture that this is
due to sampling variance for long sentences, where
repeated samples of the same tree are exceedingly
rare. The MER technique results in considerably
better F1 scores than either MPD or MPP, with a
margin of 1.5 to 3 points. This method is less af-
fected by sampling variance due to its use of smaller
tree fragments (PCFG productions at each span).

For comparison, we trained the Berkeley split-
merge (SM) parser (Petrov et al., 2006) on the same
data and decoded using the Viterbi algorithm (MPD)
and expected rule count (MER a.k.a. MAX-RULE-
SUM). We ran two iterations of split-merge training,
after which the development F1 dropped substan-
tially (in contrast, our model is not fit to the devel-
opment data). The result is an accuracy slightly be-
low that of our model (SMτ=2). To be fairer to their
model, we adjusted the unknown word threshold to
their default setting, i.e., to apply to word types oc-

7The grammar is nevertheless far smaller than the full DOP
grammar on this data set, which has 700K rules.
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Figure 4: Grammar statistics for a TSG PM0 model
trained on section 2 of the Penn treebank, show-
ing a histogram over elementary tree depth, num-
ber of nodes, terminals (lexemes) and frontier non-
terminals (vars).

curring fewer than five times (SMτ=5). We expect
that tuning the treatment of unknown words in our
model would also yield further gains. The grammar
sizes are not strictly comparable, as the Berkeley bi-
narised grammars prohibit non-binary rules, and are
therefore forced to decompose each of these rules
into many child rules. But the trend is clear – our
model produces similar results to a state-of-the-art
parser, and can do so using a small grammar. With
additional rounds of split-merge training, the Berke-
ley grammar grows exponentially larger (200K rules
after six iterations).

Full treebank We now train the model using
PM0 on the full training partition of the Penn tree-
bank, using sections 2–21. We run the Gibbs sampler
for 15,000 iterations while annealing from T = 5 to
T = 1, after which we finish with 5,000 iterations
at T = 1. We repeat this three times, giving an av-
erage F1 of 84.0% on the testing partition using the
maximum expected rule algorithm and 83.0% using
the Viterbi algorithm. This far surpasses the ML-
PCFG (F1 of 70.7%), and is similar to Zuidema’s
(2007) DOP result of 83.8%. However, it still well
below state-of-the art parsers (e.g., the Berkeley
parser trained using the same data representation
scores 87.7%). But we must bear in mind that these
parsers have benefited from years of tuning to the
Penn-treebank, where our model is much simpler
and is largely untuned. We anticipate that careful
data preparation and model tuning could greatly im-
prove our model’s performance.

NP→
(NNP Mr.) NNP
CD (NN %)
(NP CD (NN %)) (PP (IN of) NP)
(NP ($ $) CD) (NP (DT a) (NN share))
(NP (DT the) (N̄P (NN company) POS)) N̄P
(NP QP (NN %)) (PP (IN of) NP)
(NP CD (NNS cents)) (NP (DT a) (NN share))
(NP (NNP Mr.) (N̄P NNP (POS ’s))) NN
QP (NN %)
(NP (NN president)) (PP (IN of) NP)
(NP (NNP Mr.) (N̄P NNP (POS ’s))) N̄P
NNP (N̄P NNP (NNP Corp.))
NNP (N̄P NNP (NNP Inc.))
(NP (NN chairman)) (PP (IN of) NP)
VP→
(VBD said) (SBAR (S (NP (PRP it)) VP))
(VBD said) (SBAR (S NP VP))
(VBD rose) (V̄P (NP CD (NN %)) V̄P)
(VBP want) S
(VBD said) (SBAR (S (NP (PRP he)) VP))
(VBZ plans) S
(VBD said) (SBAR S)
(VBZ says) (SBAR (S NP VP))
(VBP think) (SBAR S)
(VBD agreed) (S (VP (TO to) (VP VB V̄P)))
(VBZ includes) NP
(VBZ says) (SBAR (S (NP (PRP he)) VP))
(VBZ wants) S
(VBD closed) (V̄P (PP (IN at) NP) (V̄P , ADVP))

Table 3: Most frequent lexicalised expansions for
noun and verb phrases, excluding auxiliary verbs.

7 Discussion

So what kinds of non-CFG rules is the model learn-
ing? Figure 4 shows the grammar statistics for a
TSG model trained on the small data sample. This
model has 5611 CFG rules and 1008 TSG rules.
The TSG rules vary in depth from two to nine levels
with the majority between two and four. Most rules
combine a small degree of lexicalisation and a vari-
able or two. This confirms that the model is learn-
ing local structures to encode, e.g., multi-word units,
subcategorisation frames and lexical agreement. The
few very large rules specify full parses for sentences
which were repeated in the training corpus. These
complete trees are also evident in the long tail of
node counts (up to 27; not shown in the figure) and
counts for highly lexicalised rules (up to 8).

To get a better feel for the types of rules being
learnt, it is instructive to examine the rules in the re-
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NP→ PP→ ADJP→
DT N̄P IN NP JJ
NNS (IN in) NP RB JJ
DT NN (TO to) NP JJ ( ¯ADJP CC JJ)
(DT the) N̄P TO NP JJ PP
JJ NNS (IN with) NP (RB very) JJ
NP (PP (IN of) NP) (IN of) NP RB ¯ADJP
NP PP (IN by) NP (RBR more) JJ
NP (N̄P (CC and) NP) (IN at) NP JJ ¯ADJP
JJ N̄P IN (NP (DT the) N̄P) ADJP ( ¯ADJP CC ADJP)
NN NNS (IN on) NP RB VBN
(DT the) NNS (IN from) NP RB ( ¯ADJP JJ PP)
DT (N̄P JJ NN) IN (S (VP VBG NP)) JJ (PP (TO to) NP)
NN IN (NP NP PP) ADJP (PP (IN than) NP)
JJ NN (IN into) NP (RB too) JJ
(NP DT NN) (PP (IN of) NP) (IN for) NP (RB much) JJR

Table 2: Top fifteen expansions sorted by frequency (most frequent at top), taken from the final sample of a
model trained on the full Penn treebank. Non-terminals shown with an over-bar denote a binarised sub span
of the given phrase type.

sultant grammar. Table 2 shows the top fifteen rules
for three phrasal categories for the model trained on
the full Penn treebank. We can see that many of these
rules are larger than CFG rules, showing that the
CFG rules alone are inadequate to model the tree-
bank. Two of the NP rules encode the prevalence
of preposition phrases headed by ‘of’ within a noun
phrase, as opposed to other prepositions. Also note-
worthy is the lexicalisation of the determiner, which
can affect the type of NP expansion. For instance,
the indefinite article is more likely to have an ad-
jectival modifier, while the definite article appears
more frequently unmodified. Highly specific tokens
are also incorporated into lexicalised rules.

Many of the verb phrase expansions have been
lexicalised, encoding the verb’s subcategorisation,
as shown in Table 3. Notice that each verb here ac-
cepts only one or a small set of argument frames,
indicating that by lexicalising the verb in the VP ex-
pansion the model can find a less ambiguous and
more parsimonious grammar.

The model also learns to use large rules to de-
scribe the majority of root node expansions (we add
a distinguished TOP node to all trees). These rules
mostly describe cases when the S category is used
for a full sentence, which most often include punc-
tuation such as the full stop and quotation marks. In
contrast, the majority of expansions for the S cat-
egory do not include any punctuation. The model
has learnt to differentiate between the two different
classes of S – full sentence versus internal clause –
due to their different expansions.

8 Conclusion

In this work we have presented a non-parametric
Bayesian model for inducing tree substitution gram-
mars. By incorporating a structured prior over ele-
mentary rules our model is able to reason over the
infinite space of all such rules, producing compact
and simple grammars. In doing so our model learns
local structures for latent linguistic phenomena, such
as verb subcategorisation and lexical agreement. Our
experimental results show that the induced gram-
mars strongly out-perform standard PCFGs, and are
comparable to a state-of-the-art parser on small data
samples. While our results on the full treebank are
well shy of the best available parsers, we have pro-
posed a number of improvements to the model and
the parsing algorithm that could lead to state-of-the-
art performance in the future.
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