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Abstract

In (Chen, 2009), we show that for a vari-
ety of language models belonging to the ex-
ponential family, the test set cross-entropy of
a model can be accurately predicted from its
training set cross-entropy and its parameter
values. In this work, we show how this rela-
tionship can be used to motivate two heuristics
for “shrinking” the size of a language model
to improve its performance. We use the first
heuristic to develop a novel class-based lan-
guage model that outperforms a baseline word
trigram model by 28% in perplexity and 1.9%
absolute in speech recognition word-error rate
on Wall Street Journal data. We use the second
heuristic to motivate a regularized version of
minimum discrimination information models
and show that this method outperforms other
techniques for domain adaptation.

1 Introduction

An exponential modelpΛ(y|x) is a model with a set
of features{f1(x, y), . . . , fF (x, y)} and equal num-
ber of parametersΛ = {λ1, . . . , λF } where

pΛ(y|x) =
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(1)

and whereZΛ(x) is a normalization factor. In
(Chen, 2009), we show that for many types of ex-
ponential language models, if a training and test set
are drawn from the same distribution, we have

Htest≈ Htrain +
γ

D

F∑

i=1

|λ̃i| (2)

whereHtest denotes test set cross-entropy;Htrain de-
notes training set cross-entropy;D is the number of
events in the training data; thẽλi areregularizedpa-
rameter estimates; andγ is a constant independent

of domain, training set size, and model type.1 This
relationship is strongest if thẽΛ = {λ̃i} are esti-
mated using̀1+`2

2 regularization (Kazama and Tsu-
jii, 2003). In `1 + `2

2 regularization, parameters are
chosen to optimize

O`1+`22
(Λ) = Htrain +

α

D

F∑

i=1

|λi|+
1

2σ2D

F∑

i=1

λ2
i (3)

for someα andσ. With (α = 0.5, σ2 = 6) and
takingγ = 0.938, test set cross-entropy can be pre-
dicted with eq. (2) for a wide range of models with a
mean error of a few hundredths of a nat, equivalent
to a few percent in perplexity.2

In this paper, we show how eq. (2) can be applied
to improve language model performance. First, we
use eq. (2) to analyze backoff features in exponential
n-gram models. We find that backoff features im-
prove test set performance by reducing the “size” of
a model 1D

∑F
i=1 |λ̃i| rather than by improving train-

ing set performance. This suggests the following
principle for improving exponential language mod-
els: if a model can be “shrunk” without increasing
its training set cross-entropy, test set cross-entropy
should improve. We apply this idea to motivate
two language models: a novel class-based language
model and regularized minimum discrimination in-
formation (MDI) models. We show how these mod-
els outperform other models in both perplexity and
word-error rate on Wall Street Journal (WSJ) data.

The organization of this paper is as follows: In
Section 2, we analyze the use of backoff features in
n-gram models to motivate a heuristic for model de-
sign. In Sections 3 and 4, we introduce our novel

1The cross-entropy of a modelpΛ(y|x) on some dataD =
(x1, y1), . . . , (xD, yD) is defined as− 1

D

PD
j=1 log pΛ(yj |xj).

It is equivalent to the negative mean log-likelihood per event as
well as to log perplexity.

2A nat is a “natural” bit and is equivalent tolog2 e regular
bits. We use nats to be consistent with (Chen, 2009).
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features Heval Hpred Htrain
∑ |λ̃i|

D

3g 2.681 2.724 2.341 0.408
2g+3g 2.528 2.513 2.248 0.282

1g+2g+3g 2.514 2.474 2.241 0.249

Table 1: Various statistics for letter trigram models built
on a 1k-word training set.Heval is the cross-entropy of
the evaluation data;Hpred is the predicted test set cross-
entropy according to eq. (2); andHtrain is the training
set cross-entropy. The evaluation data is drawn from the
same distribution as the training;H values are in nats.
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Figure 1: Nonzerõλi values for bigram features in let-
ter bigram model without unigram backoff features. If
we denote bigrams aswj−1wj , each column contains the
λ̃i’s corresponding to all bigrams with a particularwj .
The ‘×’ marks represent the average|λ̃i| in each column;
this average includes history words for which no feature
exists or for which̃λi = 0.

class-based model and discuss MDI domain adapta-
tion, and compare these methods against other tech-
niques on WSJ data. Finally, in Sections 5 and 6 we
discuss related work and conclusions.3

2 N -Gram Models and Backoff Features

In this section, we use eq. (2) to explain why backoff
features in exponentialn-gram models improve per-
formance, and use this analysis to motivate a general
heuristic for model design. An exponentialn-gram
model contains a binary featurefω for eachn′-gram
ω occurring in the training data forn′ ≤ n, where
fω(x, y) = 1 iff xy ends inω. We refer to features
corresponding ton′-grams forn′ < n as backoff
features; it is well known that backoff features help

3A long version of this paper can be found at (Chen, 2008).
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Figure 2: Like Figure 1, but for model with unigram
backoff features.

performance a great deal. We present statistics in
Table 1 for various letter trigram models built on the
same data set. In these and all later experiments, all
models are regularized with̀1 + `2

2 regularization
with (α = 0.5, σ2 = 6). The last row corresponds to
a normal trigram model; the second row corresponds
to a model lacking unigram features; and the first
row corresponds to a model with no unigram or bi-
gram features. As backoff features are added, we see
that the training set cross-entropy improves, which
is not surprising since the number of features is in-
creasing. More surprising is that as we add features,
the “size” of the model1D

∑F
i=1 |λ̃i| decreases.

We can explain these results by examining a sim-
ple example. Consider an exponential model con-
sisting of the featuresf1(x, y) andf2(x, y) with pa-
rameter values̃λ1 = 3 and λ̃2 = 4. From eq. (1),
this model has the form

pΛ̃(y|x) =
exp(3f1(x, y) + 4f2(x, y))

ZΛ(x)
(4)

Now, consider creating a new featuref3(x, y) =
f1(x, y)+f2(x, y) and setting our parameters as fol-
lows: λnew

1 = 0, λnew
2 = 1, andλnew

3 = 3. Substitut-
ing into eq. (1), we see thatpΛnew(y|x) = pΛ̃(y|x)
for all x, y. As the distribution this model de-
scribes does not change, neither will its training per-
formance. However, the (unscaled) size

∑F
i=1 |λi|

of the model has been reduced from 3+4=7 to
0+1+3=4, and consequently by eq. (2) we predict
that test performance will improve.4

4When sgn(λ̃1) = sgn(λ̃2),
PF

i=1 |λi| is reduced most by
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In fact, sincepΛnew = pΛ̃, test performance will
remain the same. The catch is that eq. (2) applies
only to the regularizedparameter estimates for a
model, and in general,Λnew will not be the regu-
larized parameter estimates for the expanded feature
set. We can compute the actual regularized parame-
tersΛ̃new for which eq. (2)will apply; this may im-
prove predicted performance even more.

Hence, by adding “redundant” features to a model
to shrink its total size

∑F
i=1 |λ̃i|, we can improve

predicted performance (and perhaps also actual per-
formance). This analysis suggests the following
technique for improving model performance:

Heuristic 1 Identify groups of features which will
tend to have similar̃λi values. For each such fea-
ture group, add a new feature to the model that is
the sum of the original features.

The larger the original̃λi’s, the larger the reduction
in model size and the higher the predicted gain.

Given this perspective, we can explain why back-
off features improven-gram model performance.
For simplicity, consider a bigram model, one with-
out unigram backoff features. It seems intuitive
that probabilities of the formp(wj |wj−1) are sim-
ilar across differentwj−1, and thus so are thẽλi for
the corresponding bigram features. (If a word has
a high unigram probability, it will also tend to have
high bigram probabilities.) In Figure 1, we plot the
nonzeroλ̃i values for all (bigram) features in a bi-
gram model without unigram features. Each column
contains thẽλi values for a different predicted word
wj , and the ‘×’ mark in each column is the average
value of |λ̃i| over all history wordswj−1. We see
that the average|λ̃i| for each wordwj is often quite
far from zero, which suggests creating features

fwj
(x, y) =

∑

wj−1

fwj−1wj
(x, y) (5)

to reduce the overall size of the model.
In fact, these features are exactly unigram backoff

features. In Figure 2, we plot the nonzeroλ̃i values
for all bigram features after adding unigram backoff
features. We see that the average|λ̃i|’s are closer
to zero, implying that the model size

∑F
i=1 |λ̃i| has

settingλnew
3 to theλ̃i with the smaller magnitude, and the size

of the reduction is equal to|λnew
3 |. If sgn(λ̃1) 6= sgn(λ̃2), no

reduction is possible through this transformation.

Heval Hpred Htrain
∑ |λ̃i|

D

wordn-gram 4.649 4.672 3.354 1.405
modelM 4.536 4.544 3.296 1.330

Table 2: Various statistics for word and class trigram
models built on 100k sentences of WSJ training data.

been significantly decreased. We can extend this
idea to higher-ordern-gram models as well;e.g., bi-
gram parameters can shrink trigram parameters, and
can in turn be shrunk by unigram parameters. As
shown in Table 1, both training set cross-entropy and
model size can be reduced by this technique.

3 Class-Based Language Models

In this section, we show how we can use Heuris-
tic 1 to design a novel class-based model that outper-
forms existing models in both perplexity and speech
recognition word-error rate. We assume a wordw is
always mapped to the same classc(w). For a sen-
tencew1 · · ·wl, we have

p(w1 · · ·wl) =
∏l+1

j=1 p(cj |c1 · · · cj−1, w1 · · ·wj−1)×
∏l

j=1 p(wj |c1 · · · cj , w1 · · ·wj−1) (6)

wherecj = c(wj) andcl+1 is the end-of-sentence
token. We use the notationpng(y|ω) to denote an ex-
ponentialn-gram model, a model containing a fea-
ture for each suffix of eachωy occurring in the train-
ing set. We usepng(y|ω1, ω2) to denote a model con-
taining all features inpng(y|ω1) andpng(y|ω2).

We can define a class-basedn-gram model by
choosing parameterizations for the distributions
p(cj | · · · ) andp(wj | · · · ) in eq. (6) above. For exam-
ple, the most widely-used class-basedn-gram model
is the one introduced by Brown et al. (1992); we re-
fer to this model as the IBM class model:

p(cj |c1 · · · cj−1, w1 · · ·wj−1)= png(cj |cj−2cj−1)

p(wj |c1 · · · cj , w1 · · ·wj−1)= png(wj |cj) (7)

(In the original work, non-exponentialn-gram mod-
els are used.) Clearly, there is a large space of pos-
sible class-based models.

Now, we discuss how we can use Heuristic 1 to
design a novel class-based model by using class in-
formation to “shrink” a word-basedn-gram model.
The basic idea is as follows: if we have ann-gramω
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and anothern-gramω′ created by replacing a word
in ω with a similar word, then the two correspond-
ing features should have similar̃λi’s. For exam-
ple, it seems intuitive that then-gramson Monday
morningandon Tuesday morningshould have sim-
ilar λ̃i’s. Heuristic 1 tells us how to take advantage
of this observation to improve model performance.

Let’s begin with a word trigram model
png(wj |wj−2wj−1). First, we would like to
convert this model into a class-based model.
Without loss of generality, we have

p(wj |wj−2wj−1) =
∑

cj
p(wj , cj |wj−2wj−1)

=
∑

cj
p(cj |wj−2wj−1)p(wj |wj−2wj−1cj) (8)

Thus, it seems reasonable to use the distributions
png(cj |wj−2wj−1) andpng(wj |wj−2wj−1cj) as the
starting point for our class model. This model can
express the same set of word distributions as our
original model, and hence may have a similar train-
ing cross-entropy. In addition, this transformation
can be viewed as shrinking together wordn-grams
that differ only inwj . That is, we expect that pairs
of n-gramswj−2wj−1wj that differ only inwj (be-
longing to the same class) should have similarλ̃i.
From Heuristic 1, we can make new features

fwj−2wj−1cj
(x, y) =

∑

wj∈cj

fwj−2wj−1wj
(x, y) (9)

These are exactly the features inpng(cj |wj−2wj−1).
When applying Heuristic 1, all features typically be-
long to the same model, but even when they don’t
one can achieve the same net effect.

Then, we can use Heuristic 1 to also shrink to-
gethern-gram features forn-grams that differ only
in their histories. For example, we can create new
features of the form

fcj−2cj−1cj
(x, y) =

∑

wj−2∈cj−2,wj−1∈cj−1

fwj−2wj−1cj (x, y) (10)

This corresponds to replacingpng(cj |wj−2wj−1)
with the distributionpng(cj |cj−2cj−1, wj−2wj−1).
We refer to the resulting model as modelM :

p(cj |c1···cj−1,w1···wj−1)=png(cj |cj−2cj−1,wj−2wj−1)

p(wj |c1···cj ,w1···wj−1)=png(wj |wj−2wj−1cj) (11)

By design, it is meant to have similar training set
cross-entropy as a wordn-gram model while being
significantly smaller.

To give an idea of whether this model behaves as
expected, in Table 2 we provide statistics for this
model (as well as for an exponential wordn-gram
model) built on 100k WSJ training sentences with 50
classes using the same regularization as before. We
see that modelM is both smaller than the baseline
and has a lower training set cross-entropy, similar to
the behavior found when adding backoff features to
wordn-gram models in Section 2. As long as eq. (2)
holds, modelM should have good test performance;
in (Chen, 2009), we show that eq. (2) does indeed
hold for models of this type.

3.1 Class-Based Model Comparison

In this section, we compare modelM against other
class-based models in perplexity and word-error
rate. The training data is 1993 WSJ text with verbal-
ized punctuation from the CSR-III Text corpus, and
the vocabulary is the union of the training vocabu-
lary and 20k-word “closed” test vocabulary from the
first WSJ CSR corpus (Paul and Baker, 1992). We
evaluate training set sizes of 1k, 10k, 100k, and 900k
sentences. We create three different word classings
containing 50, 150, and 500 classes using the algo-
rithm of Brown et al. (1992) on the largest training
set.5 For each training set and number of classes, we
build 3-gram and 4-gram versions of each model.

From the verbalized punctuation data from the
training and test portions of the WSJ CSR corpus,
we randomly select 2439 unique utterances (46888
words) as our evaluation set. From the remaining
verbalized punctuation data, we select 977 utter-
ances (18279 words) as our development set.

We compare the following model types: con-
ventional (i.e., non-exponential) wordn-gram mod-
els; conventional IBM classn-gram models in-
terpolated with conventional wordn-gram models
(Brown et al., 1992); and modelM . All conven-
tional n-gram models are smoothed with modified
Kneser-Ney smoothing (Chen and Goodman, 1998),
except we also evaluate wordn-gram models with
Katz smoothing (Katz, 1987).Note: Because word

5One can imagine choosing word classes to optimize model
shrinkage; however, this is not an avenue we pursued.

471



training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, Katz
3g 579.3 317.1 196.7 137.5
4g 592.6 325.6 202.4 136.7

interpolated IBM class model
3g, 50c 358.4 224.5 156.8 117.8
3g, 150c 346.5 210.5 149.0 114.7
3g, 500c 372.6 210.9 145.8 112.3
4g, 50c 362.1 220.4 149.6 109.1
4g, 150c 346.3 207.8 142.5 105.2
4g, 500c 371.5 207.9 140.5 103.6

training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, modified KN
3g 488.4 270.6 168.2 121.5
4g 486.8 267.4 163.6 114.4

modelM
3g, 50c 341.5 210.0 144.5 110.9
3g, 150c 342.6 203.7 140.0 108.0
3g, 500c 387.5 212.7 142.2 108.1
4g, 50c 345.8 209.0 139.1 101.6
4g, 150c 344.1 202.8 135.7 99.1
4g, 500c 390.7 211.1 138.5 100.6

Table 3: WSJ perplexity results. The best performance for each training set for each model type is highlighted in bold.

training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, Katz
3g 35.5% 30.7% 26.2% 22.7%
4g 35.6% 30.9% 26.3% 22.7%

interpolated IBM class model
3g, 50c 32.2% 28.7% 25.2% 22.5%
3g, 150c 31.8% 28.1% 25.0% 22.3%
3g, 500c 32.5% 28.5% 24.5% 22.1%
4g, 50c 32.2% 28.6% 25.0% 22.0%
4g, 150c 31.8% 28.0% 24.6% 21.8%
4g, 500c 32.7% 28.3% 24.5% 21.6%

training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, modified KN
3g 34.5% 30.5% 26.1% 22.6%
4g 34.5% 30.4% 25.7% 22.3%

modelM
3g, 50c 30.8% 27.4% 24.0% 21.7%
3g, 150c 31.0% 27.1% 23.8% 21.5%
3g, 500c 32.3% 27.8% 23.9% 21.4%
4g, 50c 30.8% 27.5% 23.9% 21.2%
4g, 150c 31.0% 27.1% 23.5% 20.8%
4g, 500c 32.4% 27.9% 24.1% 21.1%

Table 4: WSJ lattice rescoring results; all values are word-error rates. The best performance for each training set size
for each model type is highlighted in bold. Each 0.1% in error rate corresponds to about 47 errors.

classes are derived from the largest training set, re-
sults for word models and class models are compa-
rable only for this data set. The interpolated model is
the most popular state-of-the-art class-based model
in the literature, and is the only model here using the
development set to tune interpolation weights.

We display the perplexities of these models on the
evaluation set in Table 3. ModelM performs best of
all (even without interpolating with a wordn-gram
model), outperforming the interpolated model with
every training set and achieving its largest reduction
in perplexity (4%) on the largest training set. While
these perplexity reductions are quite modest, what
matters more is speech recognition performance.

For the speech recognition experiments, we use
a cross-word quinphone system built from 50 hours
of Broadcast News data. The system contains 2176
context-dependent states and a total of 50336 Gaus-
sians. To evaluate our language models, we use lat-

tice rescoring. We generate lattices on both our de-
velopment and evaluation data sets using the Latt-
AIX decoder (Saon et al., 2005) in the Attila speech
recognition system (Soltau et al., 2005). The lan-
guage model for lattice generation is created by
building a modified Kneser-Ney-smoothed word tri-
gram model on our largest training set; this model is
pruned to contain a total of 350kn-grams using the
algorithm of Stolcke (1998). We choose the acoustic
weight for each model to optimize word-error rate
on the development set.

In Table 4, we display the word-error rates for
each model. If we compare the best performance
of model M for each training set with that of the
state-of-the-art interpolated class model, we find that
modelM is superior by 0.8–1.0% absolute. These
gains are much larger than are suggested by the
perplexity gains of modelM over the interpolated
model; as has been observed earlier, perplexity is
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Heval Hpred Htrain
∑ |λ̃i|

D

baselinen-gram model
1k 5.915 5.875 2.808 3.269
10k 5.212 5.231 3.106 2.265
100k 4.649 4.672 3.354 1.405

MDI n-gram model
1k 5.444 5.285 2.678 2.780
10k 5.031 4.973 3.053 2.046
100k 4.611 4.595 3.339 1.339

Table 5: Various statistics for WSJ trigram models, with
and without a Broadcast News prior model. The first col-
umn is the size of the in-domain training set in sentences.

not a reliable predictor of speech recognition perfor-
mance. While we can only compare class models
with word models on the largest training set, for this
training set modelM outperforms the baseline Katz-
smoothed word trigram model by 1.9% absolute.6

4 Domain Adaptation

In this section, we introduce another heuristic for
improving exponential models and show how this
heuristic can be used to motivate a regularized ver-
sion of minimum discrimination information (MDI)
models (Della Pietra et al., 1992). Let’s say we have
a modelpΛ̃ estimated from one training set and a
“similar” model q estimated from an independent
training set. Imagine we useq as aprior model for
pΛ; i.e., we make a new modelpq

Λnew as follows:

pq
Λnew(y|x) = q(y|x)

exp(
∑F

i=1 λnew
i fi(x, y))

ZΛnew(x)
(12)

Then, chooseΛnew such thatpq
Λnew(y|x) = pΛ̃(y|x)

for all x, y (assuming this is possible). Ifq is “simi-
lar” to pΛ̃, then we expect the size1D

∑F
i=1 |λnew

i | of
pq
Λnew to be less than that ofpΛ̃. Since they describe

the same distribution, their training set cross-entropy
will be the same. By eq. (2), we expectpq

Λnew to
have better test set performance thanpΛ̃ after reesti-
mation.7 In (Chen, 2009), we show that eq. (2) does
indeed hold for models with priors;q need not be
accounted for in computing model size as long as it
is estimated on a separate training set.

6Results for several other baseline language models and with
a different acoustic model are given in (Chen, 2008).

7That is, we expect theregularizedparameters̃Λnew to yield
improved performance.

This analysis suggests the following method for
improving model performance:

Heuristic 2 Find a “similar” distribution estimated
from an independent training set, and use this distri-
bution as a prior.

It is straightforward to apply this heuristic to the task
of domain adaptation for language modeling. In the
usual formulation of this task, we have a test set and
a small training set from the same domain, and a
large training set from a different domain. The goal
is to use the data from the outside domain to max-
imally improve language modeling performance on
the target domain. By Heuristic 2, we can build a
language model on the outside domain, and use this
model as the prior model for a language model built
on the in-domain data. This method is identical to
the MDI method for domain adaptation, except that
we also apply regularization.

In our domain adaptation experiments, our out-
of-domain data is a 100k-sentence Broadcast News
training set. For our in-domain WSJ data, we use
training set sizes of 1k, 10k, and 100k sentences. We
build an exponentialn-gram model on the Broad-
cast News data and use this model as the prior model
q(y|x) in eq. (12) when building an exponentialn-
gram model on the in-domain data. In Table 5, we
display various statistics for trigram models built on
varying amounts of in-domain data when using a
Broadcast News prior and not. Across training sets,
the MDI models are both smaller in1D

∑F
i=1 |λ̃i| and

have better training set cross-entropy than the un-
adapted models built on the same data. By eq. (2),
the adapted models should have better test perfor-
mance and we verify this in the next section.

4.1 Domain Adaptation Method Comparison

In this section, we examine how MDI adapta-
tion compares to other state-of-the-art methods for
domain adaptation in both perplexity and speech
recognition word-error rate. For these experiments,
we use the same development and evaluation sets
and lattice rescoring setup from Section 3.1.

The most widely-used techniques for domain
adaptation are linear interpolation and count merg-
ing. In linear interpolation, separaten-gram models
are built on the in-domain and out-of-domain data
and are interpolated together. In count merging, the
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in-domain data (sents.) in-domain data (sents.)
1k 10k 100k 1k 10k 100k

in-domain data only
3g 488.4 270.6 168.2 34.5% 30.5% 26.1%
4g 486.8 267.4 163.6 34.5% 30.4% 25.7%

count merging
3g 503.1 290.9 170.7 30.4% 28.3% 25.2%
4g 497.1 284.9 165.3 30.0% 28.0% 25.3%

linear interpolation
3g 328.3 234.8 162.6 30.3% 28.5% 25.8%
4g 325.3 230.8 157.6 30.3% 28.4% 25.2%

MDI model
3g 296.3 218.7 157.0 30.0% 28.0% 24.9%
4g 293.7 215.8 152.5 29.6% 27.9% 24.9%

Table 6: WSJ perplexity and lattice rescoring results for
domain adaptation models. Values on the left are perplex-
ities and values on the right are word-error rates.

in-domain and out-of-domain data are concatenated
into a single training set, and a singlen-gram model
is built on the combined data set. The in-domain
data set may be replicated several times to more
heavily weight this data. We also consider the base-
line of not using the out-of-domain data.

In Table 6, we display perplexity and word-error
rates for each method, for both trigram and 4-gram
models and with varying amounts of in-domain
training data. The last method corresponds to the
exponential MDI model; all other methods employ
conventional (non-exponential)n-gram models with
modified Kneser-Ney smoothing. In count merging,
only one copy of the in-domain data is included in
the training set; including more copies does not im-
prove evaluation set word-error rate.

Looking first at perplexity, MDI models outper-
form the next best method, linear interpolation, by
about 10% in perplexity on the smallest data set and
3% in perplexity on the largest. In terms of word-
error rate, MDI models again perform best of all,
outperforming interpolation by 0.3–0.7% absolute
and count merging by 0.1–0.4% absolute.

5 Related Work

5.1 Class-Based Language Models

In past work, the most common baseline models are
Katz-smoothed word trigram models. Compared to
this baseline, modelM achieves a perplexity reduc-

tion of 28% and word-error rate reduction of 1.9%
absolute with a 900k-sentence training set. The most
closely-related existing model to modelM is the
modelfullibmpredictproposed by Goodman (2001):

p(cj |cj−2cj−1,wj−2wj−1)=

λ p(cj |wj−2wj−1)+(1−λ) p(cj |cj−2cj−1)

p(wj |cj−2cj−1cj ,wj−2wj−1)=

µ p(wj |wj−2wj−1cj)+(1−µ) p(wj |cj−2cj−1cj) (13)

This is similar to modelM except that linear in-
terpolation is used to combine word and class his-
tory information, and there is no analog to the fi-
nal term in eq. (13) in modelM . Using the North
American Business news corpus, the largest perplex-
ity reduction achieved over a Katz-smoothed trigram
model baseline byfullibmpredictis about 25%, with
a training set of 1M words. InN -best list rescor-
ing with a 284M-word training set, the best result
achieved for an individual class-based model is an
0.5% absolute reduction in word-error rate.

To situate the quality of our results, we also re-
view the best perplexity and word-error rate results
reported for class-based language models relative
to conventional wordn-gram model baselines. In
terms of absolute word-error rate, the best gains we
found in the literature are frommulti-class com-
positen-gram models, a variant of the IBM class
model (Yamamoto and Sagisaka, 1999; Yamamoto
et al., 2003). These are calledcompositemodels
because frequent word sequences can be concate-
nated into single units within the model; the term
multi-classrefers to choosing different word clus-
terings depending on word position. In experiments
on the ATR spoken language database, Yamamoto et
al. (2003) report a reduction in perplexity of 9% and
an increase in word accuracy of 2.2% absolute over
a Katz-smoothed trigram model.

In terms of perplexity, the best gains we found
are from SuperARV language models (Wang and
Harper, 2002; Wang et al., 2002; Wang et al., 2004).
In these models, classes are based onabstract role
valuesas given by a Constraint Dependency Gram-
mar. The class and word prediction distributions are
n-gram models that back off to a variety of mixed
word/class histories in a specific order. With a WSJ
training set of 37M words and a Katz-smoothed tri-
gram model baseline, a perplexity reduction of up to
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53% is achieved as well as a decrease in word-error
rate of up to 1.0% absolute.

All other perplexity and absolute word-error rate
gains we found in the literature are considerably
smaller than those listed here. While different data
sets are used in previous work so results are not di-
rectly comparable, our results appear very competi-
tive with the body of existing results in the literature.

5.2 Domain Adaptation

Here, we discuss methods for supervised domain
adaptation that involve only the simple static combi-
nation of in-domain and out-of-domain data or mod-
els. For a survey of techniques using word classes,
topic, syntax, etc., refer to (Bellegarda, 2004).

Linear interpolation is the most widely-used
method for domain adaptation. Jelinek et al. (1991)
describe its use for combining a cache language
model and static language model. Another popular
method is count merging; this has been motivated
as an instance of MAP adaptation (Federico, 1996;
Masataki et al., 1997). In terms of word-error rate,
Iyer et al. (1997) found linear interpolation to give
better speech recognition performance while Bac-
chiani et al. (2006) found count merging to be su-
perior. Klakow (1998) proposes log-linear interpo-
lation for domain adaptation. As compared to reg-
ular linear interpolation for bigram models, an im-
provement of 4% in perplexity and 0.2% absolute in
word-error rate is found.

Della Pietra et al. (1992) introduce the idea of
minimum discrimination information distributions.
Given a prior modelq(y|x), the goal is to find
the nearest model in Kullback-Liebler divergence
that satisfies a set of linear constraints derived from
adaptation data. The model satisfying these condi-
tions is an exponential model containing one fea-
ture per constraint withq(y|x) as its prior as in
eq. (12). While MDI models have been used many
times for language model adaptation,e.g., (Kneser et
al., 1997; Federico, 1999), they have not performed
as well as linear interpolation in perplexity or word-
error rate (Rao et al., 1995; Rao et al., 1997).

One important issue with MDI models is how to
select the feature set specifying the model. With a
small amount of adaptation data, one should intu-
itively use a small feature set,e.g., containing just
unigram features. However, the use of regulariza-

tion can obviate the need for intelligent feature se-
lection. In this work, we include alln-gram fea-
tures present in the adaptation data forn ∈ {3, 4}.
Chueh and Chien (2008) propose the use of inequal-
ity constraints for regularization (Kazama and Tsu-
jii, 2003); here, we usè1+`2

2 regularization instead.
We hypothesize that the use of state-of-the-art regu-
larization is the primary reason why we achieve bet-
ter performance relative to interpolation and count
merging as compared to earlier work.

6 Discussion

For exponential language models, eq. (2) tells us
that with respect to test set performance, the num-
ber of model parameters seems to matter not at all;
all that matters are the magnitudes of the parame-
ter values. Consequently, one can improve exponen-
tial language models by adding features (or a prior
model) that shrink parameter values while maintain-
ing training performance, and from this observa-
tion we develop Heuristics 1 and 2. We use these
ideas to motivate a novel and simple class-based
language model that achieves perplexity and word-
error rate improvements competitive with the best
reported results for class-based models in the litera-
ture. In addition, we show that with regularization,
MDI models can outperform both linear interpola-
tion and count merging in language model combina-
tion. Still, Heuristics 1 and 2 are quite vague, and
it remains to be seen how to determine when these
heuristics will be effective.

In summary, we have demonstrated how the trade-
off between training set performance and model size
impacts aspects of language modeling as diverse as
backoff n-gram features, class-based models, and
domain adaptation. In particular, we can frame
performance improvements in all of these areas as
methods that shrink models without degrading train-
ing set performance. All in all, eq. (2) is an impor-
tant tool for both understanding and improving lan-
guage model performance.
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