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Abstract

We supplement WordNet entries with infor-
mation on the subjectivity of its word senses.
Supervised classifiers that operate on word
sense definitions in the same way that text
classifiers operate on web or newspaper texts
need large amounts of training data. The re-
sulting data sparseness problem is aggravated
by the fact that dictionary definitions are very
short. We propose a semi-supervised mini-
mum cut framework that makes use of both
WordNet definitions and its relation structure.
The experimental results show that it outper-
forms supervised minimum cut as well as stan-
dard supervised, non-graph classification, re-
ducing the error rate by 40%. In addition, the
semi-supervised approach achieves the same
results as the supervised framework with less
than 20% of the training data.

1 Introduction

There is considerable academic and commercial in-
terest in processing subjective content in text, where
subjective content refers to any expression of a pri-
vate state such as an opinion or belief (Wiebe et
al., 2005). Important strands of work include the
identification of subjective content and the determi-
nation of its polarity, i.e. whether a favourable or
unfavourable opinion is expressed.

Automatic identification of subjective content of-
ten relies on word indicators, such as unigrams
(Pang et al., 2002) or predetermined sentiment lex-
ica (Wilson et al., 2005). Thus, the word positive
in the sentence “This deal is a positive development
for our company.” gives a strong indication that

the sentence contains a favourable opinion. How-
ever, such word-based indicators can be misleading
for two reasons. First, contextual indicators such as
irony and negation can reverse subjectivity or po-
larity indications (Polanyi and Zaenen, 2004). Sec-
ond, different word senses of a single word can ac-
tually be of different subjectivity or polarity. A typ-
ical subjectivity-ambiguous word, i.e. a word that
has at least one subjective and at least one objec-
tive sense, is positive, as shown by the two example
senses given below.1

(1) positive, electropositive—having a positive electric
charge;“protons are positive” (objective)

(2) plus, positive—involving advantage or good; “a
plus (or positive) factor” (subjective)

We concentrate on this latter problem by automat-
ically creating lists of subjective senses, instead
of subjective words, via adding subjectivity labels
for senses to electronic lexica, using the exam-
ple of WordNet. This is important as the prob-
lem of subjectivity-ambiguity is frequent: We (Su
and Markert, 2008) find that over 30% of words
in our dataset are subjectivity-ambiguous. Informa-
tion on subjectivity of senses can also improve other
tasks such as word sense disambiguation (Wiebe
and Mihalcea, 2006). Moreover, Andreevskaia and
Bergler (2006) show that the performance of auto-
matic annotation of subjectivity at the word level can
be hurt by the presence of subjectivity-ambiguous
words in the training sets they use.

1All examples in this paper are from WordNet 2.0.
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We propose a semi-supervised approach based on
minimum cut in a lexical relation graph to assign
subjectivity (subjective/objective) labels to word
senses.2 Our algorithm outperforms supervised min-
imum cuts and standard supervised, non-graph clas-
sification algorithms (like SVM), reducing the error
rate by up to 40%. In addition, the semi-supervised
approach achieves the same results as the supervised
framework with less than 20% of the training data.
Our approach also outperforms prior approaches to
the subjectivity recognition of word senses and per-
forms well across two different data sets.

The remainder of this paper is organized as fol-
lows. Section 2 discusses previous work. Section 3
describes our proposed semi-supervised minimum
cut framework in detail. Section 4 presents the ex-
perimental results and evaluation, followed by con-
clusions and future work in Section 5.

2 Related Work

There has been a large and diverse body of research
in opinion mining, with most research at the text
(Pang et al., 2002; Pang and Lee, 2004; Popescu and
Etzioni, 2005; Ounis et al., 2006), sentence (Kim
and Hovy, 2005; Kudo and Matsumoto, 2004; Riloff
et al., 2003; Yu and Hatzivassiloglou, 2003) or word
(Hatzivassiloglou and McKeown, 1997; Turney and
Littman, 2003; Kim and Hovy, 2004; Takamura et
al., 2005; Andreevskaia and Bergler, 2006; Kaji and
Kitsuregawa, 2007) level. An up-to-date overview is
given in Pang and Lee (2008).

Graph-based algorithms for classification into
subjective/objective or positive/negative language
units have been mostly used at the sentence and
document level (Pang and Lee, 2004; Agarwal and
Bhattacharyya, 2005; Thomas et al., 2006), instead
of aiming at dictionary annotation as we do. We
also cannot use prior graph construction methods
for the document level (such as physical proxim-
ity of sentences, used in Pang and Lee (2004)) at
the word sense level. At the word level Taka-
mura et al. (2005) use a semi-supervised spin model
for word polarity determination, where the graph

2It can be argued that subjectivity labels are maybe rather
more graded than the clear-cut binary distinction we assign.
However, in Su and Markert (2008a) as well as Wiebe and Mi-
halcea (2006) we find that human can assign the binary distinc-
tion to word senses with a high level of reliability.

is constructed using a variety of information such
as gloss co-occurrences and WordNet links. Apart
from using a different graph-based model from ours,
they assume that subjectivity recognition has already
been achieved prior to polarity recognition and test
against word lists containing subjective words only.
However, Kim and Hovy (2004) and Andreevskaia
and Bergler (2006) show that subjectivity recogni-
tion might be the harder problem with lower human
agreement and automatic performance. In addition,
we deal with classification at the word sense level,
treating also subjectivity-ambiguous words, which
goes beyond the work in Takamura et al. (2005).

Word Sense Level: There are three prior ap-
proaches addressing word sense subjectivity or po-
larity classification. Esuli and Sebastiani (2006) de-
termine the polarity (positive/negative/objective) of
word senses in WordNet. However, there is no eval-
uation as to the accuracy of their approach. They
then extend their work (Esuli and Sebastiani, 2007)
by applying the Page Rank algorithm to rank the
WordNet senses in terms of how strongly a sense
possesses a given semantic property (e.g., positive
or negative). Apart from us tackling subjectivity
instead of polarity, their Page Rank graph is also
constructed focusing on WordNet glosses (linking
glosses containing the same words), whereas we
concentrate on the use of WordNet relations.

Both Wiebe and Mihalcea (2006) and our prior
work (Su and Markert, 2008) present an annota-
tion scheme for word sense subjectivity and algo-
rithms for automatic classification. Wiebe and Mi-
halcea (2006) use an algorithm relying on distribu-
tional similarity and an independent, large manually
annotated opinion corpus (MPQA) (Wiebe et al.,
2005). One of the disadvantages of their algorithm is
that it is restricted to senses that have distributionally
similar words in the MPQA corpus, excluding 23%
of their test data from automatic classification. Su
and Markert (2008) present supervised classifiers,
which rely mostly on WordNet glosses and do not
effectively exploit WordNet’s relation structure.

3 Semi-Supervised Mincuts

3.1 Minimum Cuts: The Main Idea

Binary classification with minimum cuts (Mincuts)
in graphs is based on the idea that similar items
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should be grouped in the same cut. All items in the
training/test data are seen as vertices in a graph with
undirected weighted edges between them specifying
how strong the similarity/association between two
vertices is. We use minimum s-t cuts: the graph con-
tains two particular vertices s (source, corresponds
to subjective) and t (sink, corresponds to objective)
and each vertex u is connected to s and t via a
weighted edge that can express how likely u is to
be classified as s or t in isolation.

Binary classification of the vertices is equivalent
to splitting the graph into two disconnected subsets
of all vertices, S and T with s ∈ S and t ∈ T .
This corresponds to removing a set of edges from
the graph. As similar items should be in the same
part of the split, the best split is one which removes
edges with low weights. In other words, a minimum
cut problem is to find a partition of the graph which
minimizes the following formula, where w(u, v) ex-
presses the weight of an edge between two vertices.

W (S, T ) =
∑

u∈S,v∈T

w(u, v)

Globally optimal minimum cuts can be found in
polynomial time and near-linear running time in
practice, using the maximum flow algorithm (Pang
and Lee, 2004; Cormen et al., 2002).

3.2 Why might Semi-supervised Minimum
Cuts Work?

We propose semi-supervised mincuts for subjectiv-
ity recognition on senses for several reasons.

First, our problem satisfies two major conditions
necessary for using minimum cuts. It is a bi-
nary classification problem (subjective vs. objective
senses) as is needed to divide the graph into two
components. Our dataset also lends itself naturally
to s-t Mincuts as we have two different views on the
data. Thus, the edges of a vertex (=sense) to the
source/sink can be seen as the probability of a sense
being subjective or objective without taking similar-
ity to other senses into account, for example via con-
sidering only the sense gloss. In contrast, the edges
between two senses can incorporate the WordNet re-
lation hierarchy, which is a good source of similar-
ity for our problem as many WordNet relations are
subjectivity-preserving, i.e. if two senses are con-
nected via such a relation they are likely to be both

subjective or both objective.3 An example here is
the antonym relation, where two antonyms such as
good—morally admirable and evil, wicked—morally
bad or wrong are both subjective.

Second, Mincuts can be easily expanded into
a semi-supervised framework (Blum and Chawla,
2001). This is essential as the existing labeled
datasets for our problem are small. In addition,
glosses are short, leading to sparse high dimensional
vectors in standard feature representations. Also,
WordNet connections between different parts of the
WordNet hierarchy can also be sparse, leading to
relatively isolated senses in a graph in a supervised
framework. Semi-supervised Mincuts allow us to
import unlabeled data that can serve as bridges to
isolated components. More importantly, as the unla-
beled data can be chosen to be related to the labeled
and test data, they might help pull test data to the
right cuts (categories).

3.3 Formulation of Semi-supervised Mincuts

The formulation of our semi-supervised Mincut for
sense subjectivity classification involves the follow-
ing steps, which we later describe in more detail.

1. We define two vertices s (source) and t (sink),
which correspond to the “subjective” and “ob-
jective” category, respectively. Following the
definition in Blum and Chawla (2001), we call
the vertices s and t classification vertices, and
all other vertices (labeled, test, and unlabeled
data) example vertices. Each example vertex
corresponds to one WordNet sense and is con-
nected to both s and t via a weighted edge. The
latter guarantees that the graph is connected.

2. For the test and unlabeled examples, we see
the edges to the classification vertices as the
probability of them being subjective/objective
disregarding other example vertices. We use a
supervised classifier to set these edge weights.
For the labeled training examples, they are con-
nected by edges with a high constant weight to
the classification vertices that they belong to.

3. WordNet relations are used to construct the
edges between two example vertices. Such

3See Kamps et al. (2004) for an early indication of such
properties for some WordNet relations.
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edges can exist between any pair of example
vertices, for example between two unlabeled
examples.

4. After graph construction we then employ a
maximum-flow algorithm to find the minimum
s-t cuts of the graph. The cut in which the
source vertex s lies is classified as “subjective”,
and the cut in which the sink vertex t lies is “ob-
jective”.

We now describe the above steps in more detail.
Selection of unlabeled data: Random selection

of unlabeled data might hurt the performance of
Mincuts, as they might not be related to any sense in
our training/test data (denoted by A). Thus a basic
principle is that the selected unlabeled senses should
be related to the training/test data by WordNet rela-
tions. We therefore simply scan each sense in A, and
collect all senses related to it via one of the WordNet
relations in Table 1. All such senses that are not in
A are collected in the unlabeled data set.

Weighting of edges to the classification ver-
tices: The edge weight to s and t represents how
likely it is that an example vertex is initially put in
the cut in which s (subjective) or t (objective) lies.
For unlabeled and test vertices, we use a supervised
classifier (SVM4) with the labeled data as training
data to assign the edge weights. The SVM is also
used as a baseline and its features are described in
Section 4.3. As we do not wish the Mincut to re-
verse labels of the labeled training data, we assign a
high constant weight of 5 to the edge between a la-
beled vertex and its corresponding classification ver-
tex, and a low weight of 0.01 to the edge to the other
classification vertex.

Assigning weights to WordNet relations: We
connect two vertices that are linked by one of
the ten WordNet relations in Table 1 via an edge.
Not all WordNet relations we use are subjectivity-
preserving to the same degree: for example, hy-
ponyms (such as simpleton) of objective senses
(such as person) do not have to be objective. How-
ever, we aim for high graph connectivity and we
can assign different weights to different relations

4We employ LIBSVM, available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm/. Linear kernel and prob-
ability estimates are used in this work.

to reflect the degree to which they are subjectivity-
preserving. Therefore, we experiment with two
methods of weight assignment. Method 1 (NoSL)
assigns the same constant weight of 1.0 to all Word-
Net relations.

Method 2 (SL) reflects different degrees of pre-
serving subjectivity. To do this, we adapt an un-
supervised method of generating a large noisy set
of subjective and objective senses from our previ-
ous work (Su and Markert, 2008). This method
uses a list of subjective words (SL)5 to classify each
WordNet sense with at least two subjective words
in its gloss as subjective and all other senses as ob-
jective. We then count how often two senses re-
lated via a given relation have the same or a dif-
ferent subjectivity label. The weight is computed
by #same/(#same+#different). Results are listed in
Table 1.

Table 1: Relation weights (Method 2)
Method #Same #Different Weight
Antonym 2,808 309 0.90
Similar-to 6,887 1,614 0.81
Derived-from 4,630 947 0.83
Direct-Hypernym 71,915 8,600 0.89
Direct-Hyponym 71,915 8,600 0.89
Attribute 350 109 0.76
Also-see 1,037 337 0.75
Extended-Antonym 6,917 1,651 0.81
Domain 4,387 892 0.83
Domain-member 4,387 892 0.83

Example graph: An example graph is shown in
Figure 1. The three example vertices correspond
to the senses religious—extremely scrupulous and
conscientious, scrupulous—having scruples; aris-
ing from a sense of right and wrong; principled;
and flicker, spark, glint—a momentary flash of light
respectively. The vertex “scrupulous” is unlabeled
data derived from the vertex “religious”(a test item)
by the relation “similar-to”.

4 Experiments and Evaluation

4.1 Datasets

We conduct the experiments on two different gold
standard datasets. One is the Micro-WNOp corpus,

5Available at http://www.cs.pitt.edu/mpqa
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Figure 1: Graph of Word Senses

which is representative of the part-of-speech distri-
bution in WordNet 6. It includes 298 words with
703 objective and 358 subjective WordNet senses.
The second one is the dataset created by Wiebe
and Mihalcea (2006).7 It only contains noun and
verb senses, and includes 60 words with 236 ob-
jective and 92 subjective WordNet senses. As the
Micro-WNOp set is larger and also contains adjec-
tive and adverb senses, we describe our results in
more detail on that corpus in the Section 4.3 and
4.4. In Section 4.5, we shortly discuss results on
Wiebe&Mihalcea’s dataset.

4.2 Baseline and Evaluation

We compare to a baseline that assigns the most
frequent category objective to all senses, which
achieves an accuracy of 66.3% and 72.0% on Micro-
WNOp and Wiebe&Mihalcea’s dataset respectively.
We use the McNemar test at the significance level of
5% for significance statements. All evaluations are
carried out by 10-fold cross-validation.

4.3 Standard Supervised Learning

We use an SVM classifier to compare our proposed
semi-supervised Mincut approach to a reasonable

6Available at http://www.comp.leeds.ac.uk/
markert/data. This dataset was first used with a different
annotation scheme in Esuli and Sebastiani (2007) and we also
used it in Su and Markert (2008).

7Available at http://www.cs.pitt.edu/˜wiebe/
pubs/papers/goldstandard.total.acl06.

baseline.8 Three different feature types are used.
Lexical Features (L): a bag-of-words representa-

tion of the sense glosses with stop word filtering.
Relation Features (R): First, we use two features

for each of the ten WordNet relations in Table 1, de-
scribing how many relations of that type the sense
has to senses in the subjective or objective part of the
training set, respectively. This provides a non-graph
summary of subjectivity-preserving links. Second,
we manually collected a small set (denoted by
SubjSet) of seven subjective verb and noun senses
which are close to the root in WordNet’s hypernym
tree. A typical example element of SubjSet is psy-
chological feature —a feature of the mental life of a
living organism, which indicates subjectivity for its
hyponyms such as hope — the general feeling that
some desire will be fulfilled. A binary feature de-
scribes whether a noun/verb sense is a hyponym of
an element of SubjSet.

Monosemous Feature (M): for each sense, we
scan if a monosemous word is part of its synset. If
so, we further check if the monosemous word is col-
lected in the subjective word list (SL). The intuition
is that if a monosemous word is subjective, obvi-
ously its (single) sense is subjective. For example,
the sense uncompromising, inflexible—not making
concessions is subjective, as “uncompromising” is
a monosemous word and also in SL.

We experiment with different combinations of
features and the results are listed in Table 2, prefixed
by “SVM”. All combinations perform significantly
better than the more frequent category baseline and
similarly to the supervised Naive Bayes classifier
(see S&M in Table 2) we used in Su and Mark-
ert (2008). However, improvements by adding more
features remain small.

In addition, we compare to a supervised classifier
(see Lesk in Table 2) that just assigns each sense
the subjectivity label of its most similar sense in
the training data, using Lesk’s similarity measure
from Pedersen’s WordNet similarity package9. We
use Lesk as it is one of the few measures applicable
across all parts-of-speech.

8This SVM is also used to provide the edge weights to the
classification vertices in the Mincut approach.

9Available at http://www.d.umn.edu/˜tpederse/
similarity.html.
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Table 2: Results of SVM and Mincuts with different settings of feature

Method Subjective Objective Accuracy
Precision Recall F-score Precision Recall F-score

Baseline N/A 0 N/A 66.3% 100% 79.7% 66.3%
S&M 66.2% 64.5% 65.3% 82.2% 83.2% 82.7% 76.9%
Lesk 65.6% 50.3% 56.9% 77.5% 86.6% 81.8% 74.4%
SVM-L 69.6% 37.7% 48.9% 74.3% 91.6% 82.0% 73.4%
L-SL 82.0% 43.3% 56.7% 76.7% 95.2% 85.0% 77.7%
L-NoSL 80.8% 43.6% 56.6% 76.7% 94.7% 84.8% 77.5%
SVM-LM 68.9% 42.2% 52.3% 75.4% 90.3% 82.2% 74.1%
LM-SL 83.2% 44.4% 57.9% 77.1% 95.4% 85.3% 78.2%
LM-NoSL 83.6% 44.1% 57.8% 77.1% 95.6% 85.3% 78.2%
SVM-LR 68.4% 45.3% 54.5% 76.2% 89.3% 82.3% 74.5%
LR-SL 82.7% 65.4% 73.0% 84.1% 93.0% 88.3% 83.7%
LR-NoSL 82.4% 65.4% 72.9% 84.0% 92.9% 88.2% 83.6%
SVM-LRM 69.8% 47.2% 56.3% 76.9% 89.6% 82.8% 75.3%
LRM-SL 85.5% 65.6% 74.2% 84.4% 94.3% 89.1% 84.6%
LRM-NoSL 84.6% 65.9% 74.1% 84.4% 93.9% 88.9% 84.4%
1 L, R and M correspond to the lexical, relation and monosemous features respectively.
2 SVM-L corresponds to using lexical features only for the SVM classifier. Likewise, SVM-

LRM corresponds to using a combination for lexical, relation, and monosemous features
for the SVM classifier.

3 L-SL corresponds to the Mincut that uses only lexical features for the SVM classifier,
and subjective list (SL) to infer the weight of WordNet relations. Likewise, LM-NoSL
corresponds to the Mincut algorithm that uses lexical and monosemous features for the
SVM, and predefined constants for WordNet relations (without subjective list).

4.4 Semi-supervised Graph Mincuts

Using our formulation in Section 3.3, we import
3,220 senses linked by the ten WordNet relations to
any senses in Micro-WNOp as unlabeled data. We
construct edge weights to classification vertices us-
ing the SVM discussed above and use WordNet re-
lations for links between example vertices, weighted
by either constants (NoSL) or via the method illus-
trated in Table 1 (SL). The results are also summa-
rized in Table 2. Semi-supervised Mincuts always
significantly outperform the corresponding SVM
classifiers, regardless of whether the subjectivity list
is used for setting edge weights. We can also see
that we achieve good results without using any other
knowledge sources (setting LR-NoSL).

The example in Figure 1 explains why semi-
supervised Mincuts outperforms the supervised ap-
proach. The vertex “religious” is initially assigned
the subjective/objective probabilities 0.24/0.76 by
the SVM classifier, leading to a wrong classification.
However, in our graph-based Mincut framework, the

vertex “religious” might link to other vertices (for
example, it links to the vertex “scrupulous” in the
unlabeled data by the relation “similar-to”). The
mincut algorithm will put vertices “religious” and
“scrupulous” in the same cut (subjective category) as
this results in the least cost 0.93 (ignoring the cost of
assigning the unrelated sense of “flicker”). In other
words, the edges between the vertices are likely to
correct some initially wrong classification and pull
the vertices into the right cuts.

In the following we will analyze the best mini-
mum cut algorithm LRM-SL in more detail. We
measure its accuracy for each part-of-speech in the
Micro-WNOp dataset. The number of noun, adjec-
tive, adverb and verb senses in Micro-WNOp is 484,
265, 31 and 281, respectively. The result is listed
in Table 3. The significantly better performance of
semi-supervised mincuts holds across all parts-of-
speech but the small set of adverbs, where there is
no significant difference between the baseline, SVM
and the Mincut algorithm.
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Table 3: Accuracy for Different Part-Of-Speech
Method Noun Adjective Adverb Verb
Baseline 76.9% 61.1% 77.4% 72.6%
SVM 81.4% 63.4% 83.9% 75.1%
Mincut 88.6% 78.9% 77.4% 84.0%

We will now investigate how LRM-SL performs
with different sizes of labeled and unlabeled data.
All learning curves are generated via averaging 10
learning curves from 10-fold cross-validation.
Performance with different sizes of labeled data:
we randomly generate subsets of labeled data A1,
A2... An, and guarantee that A1 ⊂ A2... ⊂ An.
Results for the best SVM (LRM) and the best min-
imum cut (LRM-SL) are listed in Table 4, and the
corresponding learning curve is shown in Figure 2.
As can be seen, the semi-supervised Mincuts is
consistently better than SVM. Moreover, the semi-
supervised Mincut with only 200 labeled data items
performs even better than SVM with 954 training
items (78.9% vs 75.3%), showing that our semi-
supervised framework allows for a training data re-
duction of more than 80%.

Table 4: Accuracy with different sizes of labeled data
# labeled data SVM Mincuts
100 69.1% 72.2%
200 72.6% 78.9%
400 74.4% 82.7%
600 75.5% 83.7%
800 76.0% 84.1%
900 75.6% 84.8%
954 (all) 75.3% 84.6%

Performance with different sizes of unlabeled
data: We propose two different settings.

Option1: Use a subset of the ten relations to
generate the unlabeled data (and edges between
example vertices). For example, we first use
{antonym, similar-to} only to obtain a unlabeled
dataset U1, then use a larger subset of the relations
like {antonym, similar-to, direct-hyponym, direct-
hypernym} to generate another unlabeled dataset
U2, and so forth. Obviously, Ui is a subset of Ui+1.

Option2: Use all the ten relations to generate the
unlabeled data U . We then randomly select subsets
of U , such as subset U1, U2 and U3, and guarantee
that U1 ⊂ U2 ⊂ U3 ⊂ . . . U .
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Figure 2: Learning curve with different sizes of labeled
data

The results are listed in Table 5 and Table 6 re-
spectively. The corresponding learning curves are
shown in Figure 3. We see that performance im-
proves with the increase of unlabeled data. In addi-
tion, the curves seem to converge when the size of
unlabeled data is larger than 3,000. From the results
in Tabel 5 one can also see that hyponymy is the re-
lation accounting for the largest increase.

Table 6: Accuracy with different sizes of unlabeled data
(random selection)

# unlabeled data Accuracy
0 75.9%
200 76.5%
500 78.6%
1000 80.2%
2000 82.8%
3000 84.0%
3220 84.6%

Furthermore, these results also show that a super-
vised mincut without unlabeled data performs only
on a par with other supervised classifiers (75.9%).
The reason is that if we exclude the unlabeled data,
there are only 67 WordNet relations/edges between
senses in the small Micro-WNOp dataset. In con-
trast, the use of unlabeled data adds more edges
(4,586) to the graph, which strongly affects the
graph cut partition (see also Figure 1).

4.5 Comparison to Prior Approaches

In our previous work (Su and Markert, 2008), we re-
port 76.9% as the best accuracy on the same Micro-
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Table 5: Accuracy with different sizes of unlabeled data from WordNet relation
Relation # unlabeled data Accuracy
{∅} 0 75.3%
{similar-to} 418 79.1%
{similar-to, antonym} 514 79.5%
{similar-to, antonym, direct-hypernym, direct-
hyponym}

2,721 84.4%

{similar-to, antonym, direct-hypernym, direct-
hyponym, also-see, extended-antonym}

3,004 84.4%

{similar-to, antonym, direct-hypernym, direct-
hyponym, also-see, extended-antonym, derived-from,
attribute, domain, domain-member}

3,220 84.6%
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Figure 3: Learning curve with different sizes of unlabeled
data

WNOp dataset used in the previous sections, using a
supervised Naive Bayes (S&M in Tabel 2). Our best
result from Mincuts is significantly better at 84.6%
(see LRM-SL in Table 2).

For comparison to Wiebe and Mihalcea (2006),
we use their dataset for testing, henceforth called
Wiebe (see Section 4.1 for a description). Wiebe
and Mihalcea (2006) report their results in precision
and recall curves for subjective senses, such as a pre-
cision of about 55% at a recall of 50% for subjective
senses. Their F-score for subjective senses seems to
remain relatively static at 0.52 throughout their pre-
cision/recall curve.

We run our best Mincut LRM-SL algorithm with
two different settings on Wiebe. Using Micro-
WNOp as training set and Wiebe as test set, we
achieve an accuracy of 83.2%, which is similar to the
results on the Micro-WNOp dataset. At the recall of
50% we achieve a precision of 83.6% (in compari-

son to their precision of 55% at the same recall). Our
F-score is 0.63 (vs. 0.52).

To check whether the high performance is just due
to our larger training set, we also conduct 10-fold
cross-validation on Wiebe. The accuracy achieved
is 81.1% and the F-score 0.56 (vs. 0.52), suggesting
that our algorithm performs better. Our algorithm
can be used on all WordNet senses whereas theirs is
restricted to senses that have distributionally similar
words in the MPQA corpus (see Section 2). How-
ever, they use an unsupervised algorithm i.e. they
do not need labeled word senses, although they do
need a large, manually annotated opinion corpus.

5 Conclusion and Future Work

We propose a semi-supervised minimum cut algo-
rithm for subjectivity recognition on word senses.
The experimental results show that our proposed ap-
proach is significantly better than a standard super-
vised classification framework as well as a super-
vised Mincut. Overall, we achieve a 40% reduction
in error rates (from an error rate of about 25% to an
error rate of 15%). To achieve the results of standard
supervised approaches with our model, we need less
than 20% of their training data. In addition, we com-
pare our algorithm to previous state-of-the-art ap-
proaches, showing that our model performs better
on the same datasets.

Future work will explore other graph construc-
tion methods, such as the use of morphological re-
lations as well as thesaurus and distributional sim-
ilarity measures. We will also explore other semi-
supervised algorithms.
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