
Proceedings of the NAACL HLT Student Research Workshop and Doctoral Consortium, pages 66–71,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Syntactic Tree-based Relation Extraction Using a Generalization of

Collins and Duffy Convolution Tree Kernel

Mahdy Khayyamian Seyed Abolghasem

Mirroshandel

Hassan Abolhassani

Sharif University of Technology Sharif University of Technology Sharif University of Technology

khayyamian@ce.sharif.edu mirroshandel@ce.sharif.edu abolhassani@sharif.edu

Abstract

Relation extraction is a challenging task in

natural language processing. Syntactic

features are recently shown to be quite

effective for relation extraction. In this

paper, we generalize the state of the art

syntactic convolution tree kernel

introduced by Collins and Duffy. The

proposed generalized kernel is more

flexible and customizable, and can be

conveniently utilized for systematic

generation of more effective application

specific syntactic sub-kernels. Using the

generalized kernel, we will also propose a

number of novel syntactic sub-kernels for

relation extraction. These kernels show a

remarkable performance improvement over

the original Collins and Duffy kernel in the

extraction of ACE-2005 relation types.

1 Introduction

One of the contemporary demanding NLP tasks is

information extraction, which is the procedure of

extracting structured information such as entities,

relations, and events from free text documents. As

an information extraction sub-task, semantic

relation extraction is the procedure of finding

predefined semantic relations between textual

entity mentions. For instance, assuming a semantic

relation with type Physical and subtype Located

between an entity of type Person and another

entity of type Location, the sentence "Police

arrested Mark at the airport last week." conveys

two mentions of this relation between "Mark" and

"airport" and also between "police" and "airport"

that can be shown in the following format.

Phys.Located(Mark, airport)

Phys.Located(police, airport)

 Relation extraction is a key step towards

question answering systems by which vital

structured data is acquired from underlying free

text resources. Detection of protein interactions in

biomedical corpora (Li et al., 2008) is another

valuable application of relation extraction.

 Relation extraction can be approached by a

standard classification learning method. We

particularly use SVM (Boser et al., 1992; Cortes

and Vapnik, 1995) and kernel functions as our

classification method. A kernel is a function that

calculates the inner product of two transformed

vectors of a high dimensional feature space using

the original feature vectors as shown in eq. 1.

)().(),(jiji XXXXK φφ= (1)

Kernel functions can implicitly capture a large

amount of features efficiently; thus, they have been

widely used in various NLP tasks.

 Various types of features have been exploited so

far for relation extraction. In (Bunescu and

Mooney, 2005b) sequence of words features are

utilized using a sub-sequence kernel. In (Bunescu

and Mooney, 2005a) dependency graph features

are exploited, and in (Zhang et al., 2006a) syntactic

features are employed for relation extraction.

Although in order to achieve the best performance,

it is necessary to use a proper combination of these

features (Zhou et al., 2005), in this paper, we will

concentrate on how to better capture the syntactic

features for relation extraction.

66

 In CD’01 (Collins and Duffy, 2001) a

convolution syntactic tree kernel is proposed that

generally measures the syntactic similarity

between parse trees. In this paper, a generalized

version of CD’01 convolution tree kernel is

proposed by associating generic weights to the

nodes and sub-trees of the parse tree. These

weights can be used to incorporate domain

knowledge into the kernel and make it more

flexible and customizable. The generalized kernel

can be conveniently used to generate a variety of

syntactic sub-kernels (including the original CD’01

kernel), by adopting appropriate weighting

mechanisms.

 As a result, in this paper, novel syntactic sub-

kernels are generated from the generalized kernel

for the task of relation extraction. Evaluations

demonstrate that these kernels outperform the

original CD’01 kernel in the extraction of ACE-

2005 main relation types

 The remainder of this paper is structured as

follows. In section 2, the most related works are

briefly reviewed. In section 3, CD’01 tree kernel is

described. The proposed generalized convolution

tree kernel is explained in section 4 and its

produced sub-kernels for relation extraction are

illustrated in section 5. The experimental results

are discussed in section 6. Our work is concluded

in section 7 and some possible future works are

presented in section 8.

2 Related Work

In (Collins and Duffy, 2001), a convolution parse

tree kernel has been introduced. This kernel is

generally designed to measure syntactic similarity

between parse trees and is especially exploited for

parsing English sentences in their paper. Since

then, the kernel has been widely used in different

applications such as semantic role labeling

(Moschitti, 2006b) and relation extraction (Zhang

et al., 2006a; Zhang et al., 2006b; Zhou et al.,

2007; Li et al. 2008).

 For the first time, in (Zhang et al., 2006a), this

convolution tree kernel was used for relation

extraction. Since the whole syntactic parse tree of

the sentence that holds the relation arguments

contains a plenty of misleading features, several

parse tree portions are studied to find the most

feature-rich portion of the syntactic tree for

relation extraction, and Path-Enclosed Tree (PT) is

finally found to be the best performing tree

portion. PT is a portion of parse tree that is

enclosed by the shortest path between the two

relation arguments. Moreover, this tree kernel is

combined with an entity kernel to form a

reportedly high quality composite kernel in (Zhang

et al., 2006b).

3 CD’01 Convolution Tree Kernel

In (Collins and Duffy, 2001), a convolution tree

kernel has been introduced that measures the

syntactic similarity between parse trees. This

kernel computes the inner products of the

following feature vector.

10

))(#

),...,(#),...,(#()(

2

2
1

2

1

≤<

=

λ

λ

λλ

TsubTree

TsubTreeTsubTreeTH

n

size

i

sizesize

n

i

(2)

Each feature of this vector is the occurrence count

of a sub-tree type in the parse tree decayed

exponentially by the parameter λ . Without this

decaying mechanism used to retain the kernel

values within a fairly small range, the value of the

kernel for identical trees becomes far higher than

its value for different trees. Term isize is defined

to be the number of rules or internal nodes of the i
th

sub-tree type. Samples of such sub-trees are shown

in Fig. 1 for a simple parse tree. Since the number

of sub-trees of a tree is exponential in its size

(Collins and Duffy, 2001), direct inner product

calculation is computationally infeasible.

Consequently, Collins and Duffy (2001) proposed

an ingenious kernel function that implicitly

calculates the inner product in)(21 NNO × time

on the trees of size 1N and 2N .

4 A Generalized Convolution Tree

Kernel

In order to describe the kernel, a feature vector

over the syntactic parse tree is firstly defined in eq.

(3), in which the i
th
 feature equals the weighted

sum of the number of instances of sub-tree type i
th

in the tree.

Function)(nI
isubtree

 is an indicator function that

returns 1 if the
isubtree occurs with its root at

node n and 0 otherwise. As described in eq. (4),

67

function tw(T) (which stands for "tree weight")

assigns a weight to a tree T which is equal to the

product of the weights of all its nodes.

)))](()([

,...,))](()([

))],...,(()([()(11

∑

∑

∑

∈

∈

∈

×

×

×=

Tn

msubtree

Tn

isubtree

Tn

subtree

nsubtreetwnI

nsubtreetwnI

nsubtreetwnITH

m

i

(3)

∏∏
∈∈

×=
)()(

)()()(
TdesExternalNonTdesInternalNon

nenwninwTtw

(4)

Figure 1. Samples of sub-trees used in convolution tree

kernel calculation.

 Since each node of the whole syntactic tree can

either happen as an internal node or as an external

node of a supposed sub-tree (presuming its

existence in the sub-tree), two types of weights are

respectively associated to each node by the

functions)(ninw and)(nenw (which respectively

stand for "internal node weight" and "external node

weight"). For instance, in Fig. 1, the node with

label PP is an external node for sub-trees (1) and

(7) while it is an internal node of sub-trees (3) and

(4).

∑∑

∑∑ ∑

∑

∑ ∑

∈ ∈

∈ ∈

∈

∈

=

×

××=

××

×=

><=

11 22

11 22

22

11

),(

))](())((

)()([

)]])(()([

]))(()([[

)(),(),(

21

21

21

22

11

2121

Tn Tn

gc

ii

Tn Tn i

subtreesubtree

Tn

isubtree

i Tn

isubtree

nnC

nsubTreetwnsubTreetw

nInI

nsubTreetwnI

nsubTreetwnI

THTHTTK

ii

i

i

(5)

 As shown in eq. (5), A similar procedure to

(Collins and Duffy, 2001) can be employed to

develop a kernel function for the calculation of dot

products on H(T) vectors. According to eq. (5) the

calculation of the kernel finally leads to the sum of

a),(21 nnCgc function over all tree node pairs of T1

and T2. Function),(21 nnCgc is the weighted sum of

the common sub-trees rooted at 1n and n2, and can

be recursively computed in a similar way to

function),(21 nnC of (Collins and Duffy, 2001) as

follows.

(1) if the production rules of nodes n1 and n2 are

different then 0),(21 =nnCgc

(2) else if n1 and n2 are the same pre-terminals (the

same part of speeches) then

))(()(

))(()(),(

22

1121

nchildenwninw

nchildenwninwnnCgc

×

××=

(3) else if both n1 and n2 have the same production

rules then

))](),(())(())(([

)()(),(

2121

2121

nchildnchildCnchildenwnchildenw

ninwninwnnC

iigc

i

ii

gc

∏ +×

××=

 In the first case, when the two nodes represent

different production rules they can't accordingly

have any sub-trees in common. In the second case,

there is exactly one common sub-tree of size two.

It should be noted that all the leaf nodes of the tree

(or words of the sentence) are considered identical

in the calculation of the tree kernel. The value of

the function in this case is the weight of this

common sub-tree. In the third case, when the nodes

generally represent the same production rules the

weighted sum of the common sub-trees are

calculated recursively. The equation holds because

the existence of common sub-trees rooted at n1 and

n2 implies the existence of common sub-trees

rooted at their corresponding children, which can

be combined multiplicatively to form their parents'

common sub-trees.

 Due to the equivalent procedure of kernel

calculation, this generalized version of the tree

kernel preserves the nice)(21 NNO × time

complexity property of the original kernel. It is

worthy of note that in (Moschitti, 2006b) a sorting

based method is proposed for the fast

implementation of such tree kernels that reduces

the average running time to)(21 NNO + .

 The generalized kernel can be converted to

CD’01 kernel by defining λ=)(ninw and

1)(=nenw . Likewise, other definitions can be

utilized to produce other useful sub-kernels.

DT

the

airport

NN

NP

NP PP

NP

NP

NP PP

IN NNP

Mark

airport

NP

NP PP

IN NP

DT NN

NNP

Mark at

the

PP

airport

IN NP

DT NN
at

the

(4) (5)

(6) (7)

DT

the airport

NP

NN

NP

NP PP

NNP

(1) (2) (3)

68

5 Kernels for Relation Extraction

In this section, three sub-kernels of the generalized

convolution tree kernel will be proposed for

relation extraction. Using the embedded weights of

the generalized kernel, these sub-kernels

differentiate among sub-trees based on their

expected relevance to semantic relations. More

specifically, the sub-trees are weighted according

to how their nodes interact to the arguments of the

relation.

5.1 Argument Ancestor Path Kernel (AAP)

Definition of weighting functions is shown in eq.

(6) and (7). Parameter 10 ≤< α is a decaying

parameter similar to λ .

=

otherwise

itonnodeaofchilddirectaor

pathancestorumenttheonisnif

ninw

0

arg

)(

α

(6)

=

otherwise

itonnodeaofchilddirectaor

pathancestorumenttheonisnif

nenw

0

arg1

)(

(7)

This weighting method is equivalent to applying

CD’01 tree kernel (by setting
2αλ =) on a portion

of the parse tree that exclusively includes the

arguments ancestor nodes and their direct children.

5.2 Argument Ancestor Path Distance Kernel

(AAPD)

DISTMAX

nAAPDistnAAPDistMin

ninw _

))arg,(),arg,((21

)(α=

(8)

DISTMAX

nAAPDistnAAPDistMin

nenw _

))arg,(),arg,((21

)(α=

(9)

Definition of weighting functions is shown in eq.

(8) and (9). Both functions have identical

definitions for this kernel.

Function AAPDist(n,arg) calculates the distance of

the node n from the argument arg on the parse tree

as illustrated by Fig. 2. MAX_DIST is used for

normalization, and is the maximum of

AAPDist(n,arg) in the whole tree. In this way, the

closer a tree node is to one of the arguments

ancestor path, the less it is decayed by this

weighting method.

5.3 Threshold Sensitive Argument Ancestor

Path Distance Kernel (TSAAPD)

This kernel is intuitively similar to the previous

kernel but uses a rough threshold based decaying

technique instead of a smooth one. The definition

of weighting functions is shown in eq. (10) and

(11). Both functions are again identical in this case.

≥

≤
=

ThresholdnAAPDist

ThresholdnAAPDist
ninw

)(

)(1
)(

α
(10)

≥

≤
=

ThresholdnAAPDist

ThresholdnAAPDist
nenw

)(

)(1
)(

α

(11)

6 Experiments

6.1 Experiments Setting

The proposed kernels are evaluated on ACE-2005

multilingual corpus (Walker et al., 2006). In order

to avoid parsing problems, the more formal parts

of the corpus in "news wire" and "broadcast news"

sections are used for evaluation as in (Zhang et al.,

2006b).

AAPDist(airport, NP)=1

S

NN

airport

NP VP

NNP

Police

VBN

arrested

NP

NP PP

IN NP

DT NN

NNP

Mark at

the

NP

JJ

last week

Figure 2. The syntactic parse tree of the sentence

"Police arrested Mark at the airport last week" that

conveys a Phys.Located(Mark, airport) relation. The

ancestor path of the argument "airport" (dashed

curve) and the distance of the node NP of "Mark"

from it (dotted curve) is shown.

69

PER-SOC ART GEN-AFF ORG-AFF PART-WHOLE PHYS

CD’01 0.62 0.51 0.09 0.43 0.30 0.32

AAP 0.58 0.49 0.10 0.43 0.28 0.36

AAPD 0.70 0.50 0.12 0.43 0.29 0.29

TSAAPD-0 0.63 0.48 0.11 0.43 0.30 0.33

TSAAPD-1 0.73 0.47 0.11 0.45 0.28 0.33

Table 1: The F1-Measure value is shown for every kernel on each ACE-2005 main relation type. For every relation

type the best result is shown in bold font.

 We have used LIBSVM (Chang and Lin 2001)

java source for the SVM classification and

Stanford NLP package
1
 for tokenization, sentence

segmentation and parsing.

 Following [Bunescu and Mooney, 2007], every

pair of entities within a sentence is regarded as a

negative relation instance unless it is annotated as a

positive relation in the corpus. The total number of

negative training instances, constructed in this

way, is about 20 times more than the number of

annotated positive instances. Thus, we also

imposed the restriction of maximum argument

distance of 10 words. This constraint eliminates

half of the negative constructed instances while

slightly decreases positive instances. Nevertheless,

since the resulted training set is still unbalanced,

we used LIBSVM weighting mechanism.

Precisely, if there are P positive and N negative

instances in the training set, a weight value of

PN / is used for positive instances while the

default weight value of 1 is used for negative ones.

 A binary SVM is trained for every relation type

separately, and type compatible annotated and

constructed relation instances are used to train it.

For each relation type, only type compatible

relation instances are exploited for training. For

example to learn an ORG-AFF relation (which

applies to (PER, ORG) or (ORG, ORG) argument

types) it is meaningless to use a relation instance

between two entities of type PERSON. Moreover,

the total number of training instances used for

training every relation type is restricted to 5000

instances to shorten the duration of the evaluation

process. The reported results are achieved using a

5-fold cross validation method.

 The kernels AAP, AAPD and TSAAPD-0

(TSAAPD with threshold = 0) and TSAAPD-1

(TSAAPD with threshold = 1) are compared with

CD’01 convolution tree kernel. All the kernels

1 http://nlp.stanford.edu/software/index.shtml

except for AAP are computed on the PT portion

described in section 2. AAP is computed over the

MCT tree portion which is also proposed by

(Zhang et al., 2006a) and is the sub-tree rooted at

the first common ancestor of relation arguments.

 For the proposed kernels α is set to 0.44 which

is tuned on a development set that contained 5000

instances of type PHYS. The λ parameter of

CD’01 kernel is set to 0.4 according to (Zhang et

al., 2006a). The C parameter of SVM classification

is set to 2.4 for all the kernels after tuning it

individually for each kernel on the mentioned

development set.

6.2 Experiments Results

The results of the experiments are shown in Table

1. The proposed kernels outperform the original

CD’01 kernel in four of the six relation types. The

performance of TSAAPD-1 is especially

remarkable because it is the best kernel in ORG-

AFF and PER-SOC relations. It particularly

performs very well in the extraction of PER-SOC

relation with an F1-measure of 0.73. It should be

noted that the general low performance of all the

kernels on the GEN-AFF type is because of its

extremely small number of annotated instances in

the training set (40 in 5000). The AAPD kernel has

the best performance with a remarkable

improvement over the Collins kernel in GEN-AFF

relation type.

 The results clearly demonstrate that the nodes

closer to the ancestor path of relation arguments

contain the most useful syntactic features for

relation extraction

7 Conclusion

In this paper, we proposed a generalized

convolution tree kernel that can generate various

syntactic sub-kernels including the CD’01 kernel.

Kernel
Relation

70

The kernel is generalized by assigning weights to

the sub-trees. The weight of a sub-tree is the

product of the weights assigned to its nodes by two

types of weighting functions. In this way, impacts

of the tree nodes on the kernel value can be

discriminated purposely based on the application.

Context information can also be injected to the

kernel via context sensitive weighting mechanisms.

 Using the generalized kernel, various sub-

kernels can be produced by different definitions of

the two weighting functions. We consequently

used the generalized kernel for systematic

generation of useful kernels in relation extraction.

In these kernels, the closer a node is to the relation

arguments ancestor paths, the less it is decayed by

the weighting functions. Evaluation on the ACE-

2005 main relation types demonstrates the

effectiveness of the proposed kernels. They show

remarkable performance improvement over CD’01

kernel.

8 Future Work

Although the path-enclosed tree portion (PT)

(Zhang et al., 2006a) seems to be an appropriate

portion of the syntactic tree for relation extraction,

it only takes into account the syntactic information

between the relation arguments, and discards many

useful features (before and after the arguments

features). It seems that the generalized kernel can

be used with larger tree portions that contain

syntactic features before and after the arguments,

because it can be more easily targeted to related

features.

 Currently, the proposed weighting mechanisms

are solely based on the location of the tree nodes in

the parse tree; however other useful information

such as labels of nodes can also be used in

weighting.

 Another future work can be utilizing the

generalized kernel for other applicable NLP tasks

such as co-reference resolution.

Acknowledgement

This work is supported by Iran Telecommunication

Research Centre under contract No. 500-7725.

References

Boser B. E., Guyon I., and Vapnik V. 1992. A training

algorithm for optimal margin classifiers. In

Proceedings of the Fifth Annual Workshop on

Computational Learning Theory, pages 144-152.

ACM Press.

Bunescu R. C. and Mooney R. J. 2005a. A Shortest Path

Dependency Kernel for Relation Extraction.

EMNLP-2005

Bunescu R. C. and Mooney R. J. 2005b. Subsequence

kernels for relation extraction. NIPS-2005.

Bunescu R. C. and Mooney R. J. 2007. Learning for

Information Extraction: From Named Entity

Recognition and Disambiguation to Relation

Extraction, Ph.D. Thesis. Department of Computer

Sciences, University of Texas at Austin.

Chang, C.-C. and C.-J. Lin 2001. LIBSVM: a library for

support vector machines. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Collins M. and Duffy N. 2001. Convolution Kernels for

Natural Language. NIPS-2001

Cortes C. and Vapnik V. 1995. Support-vector network.

Machine Learning. 20, 273-297.

Li J., Zhang Z., Li X. and Chen H. 2008. Kernel-based

learning for biomedical relation extraction. J. Am.

Soc. Inf. Sci. Technol. 59, 5, 756–769.

Moschitti A. 2006a. Making tree kernels practical for

natural language learning. EACL-2006.

Moschitti A. 2006b. Syntactic kernels for natural

language learning: the semantic role labeling case.

HLT-NAACL-2006 (short paper)

Walker, C., Strassel, S., Medero J. and Maeda, K. 2006.

ACE 2005 Multilingual Training Corpus. Linguistic

Data Consortium, Philadelphia.

Zhang M., Zhang J. and SU j. 2006a. Exploring

syntactic features for relation extraction using a

convolution tree kernel. HLT-NAACL-2006.

Zhang M., Zhang J., Su J. and Zhou G.D. 2006b. A

Composite Kernel to Extract Relations between

Entities with both Flat and Structured

COLINGACL-2006: 825-832.

Zhou G.D., Su J, Zhang J. and Zhang M. 2005.

Exploring Various Knowledge in Relation

Extraction. ACL-2005

Zhou G.D., Zhang M., Ji D.H. and Zhu Q.M. 2007. Tree

Kernel-based Relation Extraction with Context-

Sensitive Structured Parse Tree Information.

EMNLP-CoNLL-2007

71

