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Abstract

The spoken term detection (STD) task aims
to return relevant segments from a spoken
archive that contain the query terms. This pa-
per focuses on the decision stage of an STD
system. We propose a term specific threshold-
ing (TST) method that uses per query poste-
rior score distributions. The STD system de-
scribed in this paper indexes word-level lat-
tices produced by an LVCSR system using
Weighted Finite State Transducers (WFSTs).
The target application is a sign dictionary
where precision is more important than recall.
Experiments compare the performance of dif-
ferent thresholding techniques. The proposed
approach increases the maximum precision at-
tainable by the system.

1 Introduction

The availability of vast multimedia archives calls
for solutions to efficiently search this data. Multi-
media content also enables interesting applications
which utilize multiple modalities, such as speech
and video. Spoken term detection (STD) is a sub-
field of speech retrieval, which locates occurrences
of a query in a spoken archive. In this work, STD
is used as a tool to segment and retrieve the signs
in news videos for the hearing impaired based on
speech information. After the location of the query
is extracted with STD, the sign video correspond-
ing to that time interval is displayed to the user.
In addition to being used as a sign language dic-
tionary this approach can also be used to automat-
ically create annotated sign databases that can be

utilized for training sign recognizers (Aran et al.,
2008). For these applications the precision of the
system is more important than its recall.

The classical STD approach consists of convert-
ing the speech to word transcripts using large vocab-
ulary continuous speech recognition (LVCSR) tools
and extending classical information retrieval tech-
niques to word transcripts. However, retrieval per-
formance is highly dependent on the recognition er-
rors. In this context, lattice indexing provides a
means of reducing the effect of recognition errors
by incorporating alternative transcriptions in a prob-
abilistic framework. A system using lattices can also
return the posterior probability of a query as a de-
tection score. Various operating points can be ob-
tained by comparing the detection scores to a thresh-
old. In addition to using a global detection thresh-
old, choosing term specific thresholds that optimize
the STD evaluation metric known as Term-Weighted
Value (TWV) was recently proposed (Miller et al.,
2007). A similar approach which trains a neural net-
work mapping various features to the target classes
was used in (Vergyri et al., 2007).

The rest of the paper is organized as follows.
In Section 2 we explain the methods used for spo-
ken term detection. These include the indexing and
search framework based on WFSTs and the detec-
tion framework based on posterior score distribu-
tions. In Section 3 we describe our experimental
setup and present the results. Finally, in Section 4
we summarize our contributions and discuss possi-
ble future directions.
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2 Methods

The STD system used in this study consists of four
stages. In the first stage, an LVCSR system is used
to generate lattices from speech. In the second stage
the lattices are indexed for efficient retrieval. When
a query is presented to the system a set of candidates
ranked by posterior probabilities are obtained from
the index. In the final stage, the posterior probabil-
ities are compared to a threshold to decide which
candidates should be returned.

2.1 Indexing and Retrieval using Finite-State
Automata

General indexation of weighted automata (Allauzen
et al., 2004) provides an efficient means of index-
ing for STD (Parlak and Saraçlar, 2008; Can et al.,
2009), where retrieval is based on the posterior prob-
ability of a term in a given time interval. In this
work, the weighted automata to be indexed are the
preprocessed lattice outputs of the ASR system. The
input labels are phones, the output labels are quan-
tized time-intervals and the weights are normalized
negative log probabilities. The index is represented
as a WFST where each substring (factor) leads to a
successful path over the input labels whenever that
particular substring was observed. Output labels of
these paths carry the time interval information fol-
lowed by the utterance IDs. The path weights give
the probability of each factor occurring in the spe-
cific time interval of that utterance. The index is op-
timized by WFST determinization and minimization
so that the search complexity is linear in the sum of
the query length and the number of times the query
appears in the index.

2.2 Decision Mechanism

Once a list of candidates ranked with respect to their
posterior probabilities are determined using the in-
dex, the candidates exceeding a threshold are re-
turned by the system. The threshold is computed
to minimize the Bayes risk. In this framework, we
need to specify a cost function, prior probabilities
and likelihood functions for each class. We choose
the cost of a miss to be 1 and the cost of a false alarm
to be a free parameter, α. The prior probabilities and
the likelihood functions are estimated from the pos-
terior scores of the candidate results for each query.

The likelihood functions are found by fitting para-
metric models to the score distributions (Manmatha
et al., 2001). In this study, the score distributions
are modeled by exponential distributions. When the
system returns a score, we do not know whether
it belongs to the correct or incorrect group, so we
use a mixture of two exponential distributions to
model the posterior scores returned by the system.
The exponential mixture model (EMM) parameters
are determined via unsupervised estimation using
the Expectation-Maximization (EM) algorithm. Fig-
ure 1 shows the normalized histogram of posterior
scores and the EM estimate given by our method for
an example query.
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Figure 1: The normalized histogram of posterior scores
and the EM estimates for correct and incorrect detections
given an example query.

If we denote the posterior score of each candidate
by x, incorrect class by c0 and correct class by c1,
we have

p(x) = P (c0)p(x|c0) + P (c1)p(x|c1)
where the incorrect class likelihood
p(x|c0) = λ0e

−λ0x and correct class like-
lihood p(x|c1) = λ1e

−λ1(1−x). The model
parameters λ0, λ1, P (c0), P (c1) are estimated
using the EM algorithm given the scores xi for
i = 1, . . . , N . Each iteration consists of first
computing P (cj |xi) = P (cj)p(xi|cj)/p(xi) for
j = 1, 2 and then updating

P (cj) =
1
N

∑

i

P (cj |xi),

λ0 =
∑
i P (c0|xi)∑
i P (c0|xi)xi

,
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λ1 =
∑
i P (c1|xi)∑

i P (c1|xi)(1− xi)
.

After the mixture parameters are estimated, we as-
sume that each mixture represents a class and mix-
ture weights correspond to class priors. Then, the
Minimum Bayes Risk (MBR) detection threshold
for x is given as:

λ1 + log(λ0/λ1) + log(P (c0)/P (c1)) + logα
λ0 + λ1

.

3 Experiments

3.1 Data and Application
Turkish Radio and Television Channel 2 (TRT2)
broadcasts a news program for the hearing impaired
which contains speech as well as signs. We have
collected 11 hours (total speech time) of test ma-
terial from this broadcast and performed our ex-
periments on this data with a total of 10229 sin-
gle word queries extracted from the reference tran-
scriptions. We used IBM Attila speech recognition
toolkit (Soltau et al., 2007) at the back-end of our
system to produce recognition lattices. The ASR
system is trained on 100 hours of speech and tran-
scription data collected from various TV and radio
broadcasts including TRT2 hearing impaired news,
and a general text corpus of size 100 million words.

Our application uses the speech modality to re-
trieve the signs corresponding to a text query. Re-
trieved results are displayed as video demonstrations
to support the learning of sign language. Since the
application acts like an interactive dictionary of sign
language, primary concern is to return correct results
no matter how few they are. Thus high precision is
appreciated much more than high recall rates.

3.2 Evaluation Measures
In our experiments, we use precision and recall as
the primary evaluation metrics. For a set of queries
qk, k = 1, . . . , Q,

Precision =
1
Q

∑

k

C(qk)
A(qk)

Recall =
1
Q

∑

k

C(qk)
R(qk)

where:
R(qk): Number of occurences of query qk,
A(qk): Total no. of retrieved documents for qk,
C(qk): No. of correctly retrieved documents for qk.

We obtain a precision/recall curve by changing
the free parameter associated with each thresholding
method to simulate different decision cost settings.
Right end of these curves fall into the high precision
region which is the main concern in our application.

For the case of global thresholding (GT), the same
threshold θ is used for all queries. TWV based
term specific thresholding (TWV-TST) (Miller et al.,
2007) aims to maximize the TWV metric introduced
during NIST 2006 STD Evaluations (NIST, 2006).

TWV = 1− 1
Q

Q∑

k=1

{Pmiss(qk) + β.PFA(qk)}

Pmiss(qk) = 1−C(qk)
R(qk)

,PFA(qk) =
A(qk)− C(qk)
T − C(qk)

where T is the total duration of the speech archive
and β is a weight assigned to false alarms that is
proportional to the prior probability of occurence of
a specific term and its cost-value ratio. This method
sets individual thresholds for each query term con-
sidering per query expected counts and the tuning
parameter β. In the proposed method α plays the
same role as β and allows us to control the decision
threshold for different cost settings.

3.3 Results
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Figure 2: The precision and recall curves for various
thresholding techniques.

Figure 2 compares GT, TWV-TST, and the pro-
posed method that utilizes score distributions to de-
rive an optimal decision threshold. For GT and
TWT-TST, last precision/recall point in the figure
corresponds to the limit threshold value which is 1.0.
Both the TWV-TST and the proposed method out-
perform GT over the entire region of interest. While
TWV-TST provides better performance around the
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knees of the curves, proposed method achieves
higher maximum precision values which coincides
with the primary objective of our application.

Figure 2 also provides a curve of what happens
when the correct class labels are used to estimate
the parameters of the exponential mixture model in a
supervised manner instead of using EM. This curve
provides an upper bound on the performance of the
proposed method.

4 Discussion

In this paper, we proposed a TST scheme for STD
which works almost as good as TWV-TST. Extrapo-
lating from the cheating experiment, we believe that
the proposed method has potential for outperform-
ing the TWV-TST over the entire region of interest
given better initial estimates for the correct and in-
correct classes.

A special remark goes to the performance in the
high precision region where our method clearly out-
performs the rest. While GT and TWV-TST meth-
ods are bounded around 96.5% precision value, our
method reaches at higher precision figures. For GT,
this behavior is due to the inability to set differ-
ent thresholds for different queries. For TWT-TST,
in the high precision region where β is large, the
threshold is very close to 1.0 value no matter what
the expected count of the query term is, thus it es-
sentially acts like a global threshold.

Our current implementation of the proposed
method does not make use of training data to es-
timate the initial parameters for the EM algorithm.
Instead, it relies on some loose assumptions about
the initial parameters of the likelihood functions and
uses uninformative prior distributions. The signifi-
cant difference between the upper bound and the ac-
tual performance of the proposed method indicates
that the current implementation can be improved by
better initial estimates.

Our assumption about the parametric form of the
likelihood function may not be valid at all times.
Maximizing the likelihood with mismatched mod-
els degrades the performance even when initial
parameters are close to the optimal values. In the
future, other parametric forms can be utilized to bet-
ter model the posterior score distributions.

Maximum likelihood estimation with insufficient

data is prone to overtraining. This is a common sit-
uation with the STD task at hand. With the current
data, three or less results are returned for half of the
queries. Bayesian methods can be used to introduce
priors on the model parameters in order to make the
estimation more robust.
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