
Proceedings of NAACL HLT 2009: Short Papers, pages 109–112,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Using Integer Linear Programming for Detecting Speech Disfluencies

Kallirroi Georgila
Institute for Creative Technologies, University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292, USA
kgeorgila@ict.usc.edu

Abstract

We present a novel two-stage technique for de-
tecting speech disfluencies based on Integer
Linear Programming (ILP). In the first stage
we use state-of-the-art models for speech dis-
fluency detection, in particular, hidden-event
language models, maximum entropy models
and conditional random fields. During testing
each model proposes possible disfluency la-
bels which are then assessed in the presence of
local and global constraints using ILP. Our ex-
perimental results show that by using ILP we
can improve the performance of our models
with negligible cost in processing time. The
less training data is available the larger the im-
provement due to ILP.

1 Introduction

Speech disfluencies (also known as speech repairs)
occur frequently in spontaneous speech and can pose
difficulties to natural language processing (NLP)
since most NLP tools (e.g. parsers, part-of-speech
taggers, information extraction modules) are tradi-
tionally trained on written language. Speech dis-
fluencies can be divided into three intervals, the
reparandum, the editing term and the correction
(Heeman and Allen, 1999; Liu et al., 2006).
(it was) * (you know) it was set
In the above example, “it was” is the reparandum,

“you know” is the editing term and the remaining
sentence is the correction. The asterisk marks the in-
terruption point at which the speaker halts the origi-
nal utterance in order to start the repair. The edit-
ing term is optional and consists of one or more
filled pauses (e.g. uh, uh-huh) or discourse mark-
ers (e.g. you know, so). Some researchers include

editing terms in the definition of disfluencies. Here
we focus only on detecting repetitions (the speaker
repeats some part of the utterance), revisions (the
speaker modifies the original utterance) or restarts
(the speaker abandons an utterance and starts over).
We also deal with complex disfluencies, i.e. a series
of disfluencies in succession (“I think I think uh I
believe that...”).

In previous work many different approaches to
detecting speech disfluencies have been proposed.
Different types of features have been used, e.g. lexi-
cal features only, acoustic and prosodic features only
or a combination of both (Liu et al., 2006). Fur-
thermore, a number of studies have been conducted
on human transcriptions while other efforts have
focused on detecting disfluencies from the speech
recognition output.

In this paper we propose a novel framework for
speech disfluency detection based on Integer Lin-
ear Programming (ILP). With Linear Programming
(LP) problems the goal is to optimize a linear ob-
jective function subject to linear equality and linear
inequality constraints. When some or all the vari-
ables of the objective function and the constraints
are non-negative integers, LP becomes ILP. ILP has
recently attracted much attention in NLP. It has been
applied to several problems including sentence com-
pression (Clarke and Lapata, 2008) and relation ex-
traction (Roth and Yih, 2004). Some of these meth-
ods (e.g. (Roth and Yih, 2004)) follow the two-stage
approach of first hypothesizing a list of possible an-
swers using a classifier and then selecting the best
answer by applying ILP. We have adopted this two-
stage approach and applied it to speech disfluency
detection.

In the first stage we use state-of-the-art tech-

109



niques for speech disfluency detection, in particular,
Hidden-Event Language Models (HELMs) (Stolcke
and Shriberg, 1996), Maximum Entropy (ME) mod-
els (Ratnaparkhi, 1998) and Conditional Random
Fields (CRFs) (Lafferty et al., 2001). Nevertheless,
any other classification method could be used in-
stead. During testing each classifier proposes pos-
sible labels which are then assessed in the presence
of local and global constraints using ILP. ILP makes
the final decision taking into account both the con-
straints and the output of the classifier.

In the following we use the Switchboard corpus
and only lexical features for training our 3 classi-
fiers. Then we apply ILP to the output of each clas-
sifier. Our goal is not to investigate the best set
of features or achieve the best possible results. In
that case we could also use prosodic features as they
have been shown to improve performance. Our tar-
get is to show that by using ILP we can improve with
negligible cost in processing time the performance
of state-of-the-art techniques, especially when not
much training data is available.

The novelty of our work lies in the two follow-
ing areas: First, we propose a novel approach for
detecting disfluencies with improvements over state-
of-the-art models (HELMs, ME models and CRFs)
that use similar lexical features. Although the two-
stage approach is not unique, as discussed above,
the formulation of the ILP objective function and
constraints for disfluency detection is entirely novel.
Second, we compare our models using the tasks of
both detecting the interruption point and finding the
beginning of the reparandum. In previous work (Liu
et al., 2006) Hidden Markov Models (combination
of decision trees and HELMs) and ME models were
trained to detect the interruption points and then
heuristic rules were applied to find the correct on-
set of the reparandum in contrast to CRFs that were
trained to detect both points at the same time.

The structure of the paper is as follows: In sec-
tion 2 we describe our data set. In section 3 we de-
scribe our approach in detail. Then in section 4 we
present our experiments and provide results. Finally
in section 5 we present our conclusion and propose
future work.

2 Data Set

We use Switchboard (LDC catalog LDC99T42),
which is traditionally used for speech disfluency ex-
periments. We transformed the Switchboard annota-

tions into the following format:
I BE was IE one IP I was right
BE (beginning of edit) is the point where the

reparandum starts and IP is the interruption point
(the point before the repair starts). In the above ex-
ample the beginning of the reparandum is the first
occurrence of “I”, the interruption point appears af-
ter “one” and every word between BE and IP is
tagged as IE (inside edit). Sometimes BE and IP
occur at the same point, e.g. “I BE-IP I think”.

The number of occurrences of BE and IP in our
training set are 34387 and 39031 respectively, in our
development set 3146 and 3499, and in our test set
6394 and 7413.

3 Methodology

In the first stage we train our classifier. Any clas-
sifier can be used as long as it provides more than
one possible answer (i.e. tag) for each word in the
utterance. Valid tags are BE, BE-IP, IP, IE or O. The
O tag indicates that the word is outside the disflu-
ent part of the utterance. ILP will be applied to the
output of the classifier during testing.

Let N be the number of words of each utter-
ance and i the location of the word in the utterance
(i=1,...,N ). Also, let CBE(i) be a binary variable (1
or 0) for the BE tag. Its value will be determined
by ILP. If it is 1 then the word will be tagged as
BE. In the same way, we use CBE−IP (i), CIP (i),
CIE(i), CO(i) for tags BE-IP, IP, IE and O respec-
tively. Let PBE(i) be the probability given by the
classifier that the word is tagged as BE. In the same
way, let PBE−IP (i), PIP (i), PIE(i), PO(i) be the
probabilities for tags BE-IP, IP, IE and O respec-
tively. Given the above definitions, the ILP problem
formulation can be as follows:

max[
∑N

i=1[PBE(i)CBE(i) + PBE−IP (i)CBE−IP (i)
+PIP (i)CIP (i) + PIE(i)CIE(i) + PO(i)CO(i)]]

(1)
subject to:

CBE(i) + CBE−IP (i) + CIP (i) + CIE(i)
+CO(i) = 1 ∀i ∈ (1, ..., N) (2)

CBE(1) + CBE−IP (1) + CO(1) = 1 (3)

CBE−IP (N) + CIP (N) + CO(N) = 1 (4)

CBE(i)− CBE−IP (i− 1)− CIP (i− 1)
−CO(i− 1) ≤ 0 ∀i ∈ (2, ..., N) (5)

1− CBE(i)− CBE(i− 1) ≥ 0 ∀i ∈ (2, ..., N) (6)

110



Equation 1 is the linear objective function that we
want to maximize, i.e. the overall probability of the
utterance. Equation 2 says that each word can have
one tag only. Equation 3 denotes that the first word is
either BE, BE-IP or O. Equation 4 says that the last
word is either BE-IP, IP or O. For example the last
word cannot be BE because then we would expect to
see an IP. Equation 5 defines the transitions that are
allowed between tags as described in Table 1 (first
row). Equation 5 says that if we have a word tagged
as BE it means that the previous word was tagged as
BE-IP or IP or O. It could not have been tagged as
IE because IE must be followed by an IP before a
new disfluency starts. Also, it could not have been
BE because then we would expect to see an IP. From
Table 1 we can easily define 4 more equations for the
rest of the tags. Finally, equation 6 denotes that we
cannot transition from BE to BE (we need an IP in
between).

We also formulate some additional rules that
describe common disfluency patterns. First, let us
have an example of a long-context rule. If we have
the sequence of words “he was the one um you know
she was the one”, we expect this to be tagged as “he
BE was IE the IE one IP um O you O know O she O
was O the O one O”, if we do not take into account
the context in which this pattern occurs. We incor-
porate this rule into our ILP problem formulation as
follows: Let (w1,...,wN ) be a sequence of N words
where both w2 and wN−7 are personal pronouns,
the word sequence w3,w4,w5 is the same as the
sequence wN−6,wN−5,wN−4 and all the words in
between (w6,...,wN−8) are filled pauses or discourse
markers. Then the probabilities given by the classi-
fier are modified as follows: PBE(2)=PBE(2)+th1,
PIE(3)=PIE(3)+th2, PIE(4)=PIE(4)+th3 and
PIP (5)=PIP (5)+th4, where th1, th2, th3 and th4
are empirically set thresholds (between 0.5 and 1,
using the development set of the corpus).

Now, here is an example of a short-context rule.
If we have the same word appear 3 times in a row
(“do do do”) we expect this to be tagged as “do BE-
IP do IP do O”. To incorporate this rule into our ILP
problem formulation we can modify the probabili-
ties given by the classifier accordingly.

In total we have used 7 rules that deal with short-
context and 5 rules that deal with long-context de-
pendencies. From now on we will refer to the model
that uses all rules (general ILP formulation and all
pattern-based rules) as ILP and to the model that

From Tag To Tag
BE-IP or IP or O BE
BE-IP or IP or O BE-IP

BE or BE-IP or IP or IE IP
BE or BE-IP or IP or IE IE

BE-IP or IP or O O

Table 1: Possible transitions between tags.

uses only the general ILP constraints and the short-
context pattern-based rules as ILP-. In all rules, we
can skip editing terms (see example above).

4 Experiments

For HELMs we use the SRI Statistical Language
Modeling Toolkit. Each utterance is a sequence of
word and Part-of-Speech (POS) pairs fed into the
toolkit: i/prp BE was/vbd IE one/cd IP
i/prp was/vbd right/jj. We report results
with 4-grams. For ME we use the OpenNLP Max-
Ent toolkit and for CRFs the toolkit CRF++ (both
available from sourceforge). We experimented
with different sets of features and we achieved the
best results with the following setup (i is the loca-
tion of the word or POS in the sentence): Our word
features are 〈wi〉, 〈wi+1〉, 〈wi−1, wi〉, 〈wi, wi+1〉,
〈wi−2, wi−1, wi〉, 〈wi, wi+1, wi+2〉. Our POS fea-
tures have the same structure as the word features.
For ILP we use the lp solve software also avail-
able from sourceforge.

For evaluating the performance of our models we
use standard metrics proposed in the literature, i.e.
F-score and NIST Error Rate. We report results for
BE and IP. F-score is the harmonic mean of preci-
sion and recall (we equally weight precision and re-
call). Precision is computed as the ratio of the cor-
rectly identified tags X to all the tags X detected by
the model (where X is BE or IP). Recall is the ra-
tio of the correctly identified tags X to all the tags
X that appear in the reference utterance. The NIST
Error Rate measures the average number of incor-
rectly identified tags per reference tag, i.e. the sum
of insertions, deletions and substitutions divided by
the total number of reference tags (Liu et al., 2006).
To calculate the level of statistical significance we
always use the Wilcoxon signed-rank test.

Table 2 presents comparative results between our
models. The ILP and ILP- models lead to signif-
icant improvements compared to the plain models
for HELMs and ME (p<10−8, plain models vs. ILP
and ILP-). With CRFs the improvement is smaller,

111



BE IP
F-score Error F-score Error

4gram 60.3 54.8 67.0 50.7
4gram ILP 76.0 38.1 79.0 38.0
4gram ILP- 73.9 39.5 77.9 38.3
ME 63.8 52.6 72.8 44.3
ME ILP 77.9 36.3 80.8 35.4
ME ILP- 75.6 37.2 81.0 33.7
CRF 78.6 34.3 82.0 31.7
CRF ILP 80.1 34.5 82.5 33.3
CRF ILP- 79.8 33.5 83.4 30.5

Table 2: Comparative results between our models.

25% 50% 75% 100%
4gram 59.8 56.6 56.2 54.8
4gram ILP 40.2 38.9 38.2 38.0
4gram ILP- 42.1 40.7 39.8 39.5
ME 61.6 56.9 54.7 52.6
ME ILP 38.5 37.7 36.5 36.3
ME ILP- 39.7 38.7 37.6 37.2
CRF 40.3 37.1 35.5 34.3
CRF ILP 37.1 36.2 35.2 34.5
CRF ILP- 36.6 35.5 34.4 33.5

Table 3: Error rate variation for BE depending on the
training set size.

p<0.03 (CRF vs. CRF with ILP), not significant
(CRF vs. CRF with ILP-), p<0.0008 (CRF with ILP
vs. CRF with ILP-). HELMs and ME models ben-
efit more from the ILP model than the ILP- model
(ME only for the BE tag) whereas ILP- appears to
perform better than ILP for CRFs.

Table 3 shows the effect of the training set size on
the error rates only for BE due to space restrictions.
The trend is similar for IP. The test set is always the
same. Both ILP and ILP- perform better than the
plain models. This is true even when the ILP and
ILP- models are trained with less data (HELMs and
ME models only). Note that HELM (or ME) with
ILP or ILP- trained on 25% of the data performs bet-
ter than plain HELM (or ME) trained on 100% of the
data (p<10−8). This is very important because col-
lecting and annotating data is expensive and time-
consuming. Furthermore, for CRFs in particular the
training process takes long especially for large data
sets. In our experiments CRFs took about 400 iter-
ations to converge (approx. 136 min for the whole
training set) whereas ME models took approx. 48
min for the same number of iterations and training
set size. Also, ME models trained with 100 iter-
ations (approx. 11 min) performed better than ME

models trained with 400 iterations. The cost of ap-
plying ILP is negligible since the process is fast and
applied during testing.

5 Conclusion

We presented a novel two-stage technique for de-
tecting speech disfluencies based on ILP. In the first
stage we trained HELMs, ME models and CRFs.
During testing each classifier proposed possible la-
bels which were then assessed in the presence of lo-
cal and global constraints using ILP. We showed that
ILP can improve the performance of state-of-the-art
classifiers with negligible cost in processing time,
especially when not much training data is available.
The improvement is significant for HELMs and ME
models. In future work we will experiment with
acoustic and prosodic features and detect disfluen-
cies from the speech recognition output.

Acknowledgments

This work was sponsored by the U.S. Army Re-
search, Development, and Engineering Command
(RDECOM). The content does not necessarily re-
flect the position or the policy of the Government,
and no official endorsement should be inferred.

References
J. Clarke and M. Lapata. 2008. Global inference for

sentence compression: An integer linear programming
approach. Journal of Artificial Intelligence Research,
31:399–429.

P. Heeman and J. Allen. 1999. Speech repairs, in-
tonational phrases and discourse markers: Modeling
speakers’ utterances in spoken dialogue. Computa-
tional Linguistics, 25:527–571.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. of ICML.

Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Osten-
dorf, and M. Harper. 2006. Enriching speech recogni-
tion with automatic detection of sentence boundaries
and disfluencies. IEEE Trans. Audio, Speech and Lan-
guage Processing, 14(5):1526–1540.

A. Ratnaparkhi. 1998. Maximum Entropy Models for
natural language ambiguity resolution. Ph.D. thesis,
University of Pennsylvania.

D. Roth and W. Yih. 2004. A linear programming formu-
lation for global inference in natural language tasks. In
Proc. of CoNNL.

A. Stolcke and E. Shriberg. 1996. Statistical language
modeling for speech disfluencies. In Proc. of ICASSP.

112


