Beyond Structured Prediction: Inverse Reinforcement Learning

Hal Daumé III
Computer Science
University of Maryland
me@hal3.name
A Tutorial at ACL 2011
Portland, Oregon
Sunday, 19 June 2011

Acknowledgements

Some slides:
Stuart Russell
Dan Klein
J. Drew Bagnell
Nathan Ratliff
Stephane Ross

Discussions/Feedback:
MLRG Spring 2010
Examples of structured problems

Google Translate

This text has been automatically translated from Arabic:

Moscow stressed tone against Iran on its nuclear program. He called Russian Foreign Minister Tehran to take concrete steps to restore confidence with the international community, to cooperate fully with the IAEA. Conversely Tehran expressed its willingness

Translate text

شددت موسكو لهجتها ضد إيران بشأن برنامجها النووي. ودعا وزير الخارجية الروسي طهران إلى اتخاذ خطوات ملموسة لاستعادة الثقة مع المجتمع الدولي والتعاون الكامل مع الوكالة الدولية. بالنسبة لماب طهران استعدادها لاستكمال المهام بعمليات التفتيش المفاجئة بشرط إسقاط جلس الأمن منها النووي.

from Arabic to English BETA

Translate

The man ate a tasty sandwich
NLP as transduction

<table>
<thead>
<tr>
<th>Task</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Translation</td>
<td>Ces deux principes se tiennent à la croisée de la philosophie, de la politique, de l'économie, de la sociologie et du droit.</td>
<td>Both principles lie at the crossroads of philosophy, politics, economics, sociology, and law.</td>
</tr>
<tr>
<td>Document Summarization</td>
<td>Argentina was still obsessed with the Falkland Islands even in 1994, 12 years after its defeat in the 74-day war with Britain. The country's overriding foreign policy aim continued to be winning sovereignty over the islands.</td>
<td>The Falkland islands war, in 1982, was fought between Britain and Argentina.</td>
</tr>
<tr>
<td>Syntactic Analysis</td>
<td>The man ate a big sandwich.</td>
<td>The man ate a big sandwich.</td>
</tr>
</tbody>
</table>

...many more...
Structured prediction 101

Learn a function mapping inputs to complex outputs:

\[f : X \rightarrow Y \]
Learn a function mapping inputs to complex outputs:

\[f : X \rightarrow Y \]
Why is structure important?

- Correlations among outputs
 - Determiners often precede nouns
 - Sentences usually have verbs

- Global coherence
 - It just *doesn't make sense* to have three determiners next to each other

- My objective (aka “loss function”) forces it
 - Translations should have good sequences of words
 - Summaries should be coherent
Outline: Part I

- What is Structured Prediction?
- Refresher on Binary Classification
 - What does it mean to learn?
 - Linear models for classification
 - Batch versus stochastic optimization
- From Perceptron to Structured Perceptron
 - Linear models for Structured Prediction
 - The “argmax” problem
 - From Perceptron to margins
- Learning to Search
 - Stacking
 - Incremental Parsing
Outline: Part II

- Refresher on Reinforcement Learning
 - Markov Decision Processes
 - Q learning

- Inverse Reinforcement Learning
 - Determining rewards given policies
 - Maximum margin planning

- Apprenticeship Learning
 - Searn
 - Dagger

- Discussion
Refresher on Binary Classification
What does it mean to learn?

➢ Informally:
 ➢ to predict the future based on the past

➢ Slightly-less-informally:
 ➢ to take *labeled examples* and construct a function that will label them as a human would

➢ Formally:
 ➢ Given:
 ➢ A fixed unknown distribution D over X^*Y
 ➢ A loss function over Y^*Y
 ➢ A finite sample of (x,y) pairs drawn i.i.d. from D
 ➢ Construct a function f that has low expected loss with respect to D
Feature extractors

- A feature extractor Φ maps examples to vectors

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret. ...

\[\Phi \]

- Feature vectors in NLP are frequently sparse
Linear models for binary classification

- Decision boundary is the set of "uncertain" points.
- Linear decision boundaries are characterized by weight vectors.

\[
\Phi(x) = \sum_i w_i \Phi_i(x)
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\Phi(x))</th>
<th>(w)</th>
<th>(\sum_i w_i \Phi_i(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>“free”</td>
<td>BIAS : 1</td>
<td>BIAS : -3</td>
<td>(1)(-3) +</td>
</tr>
<tr>
<td>money”</td>
<td>free : 1</td>
<td>free : 4</td>
<td>(1)(4) +</td>
</tr>
<tr>
<td></td>
<td>money : 1</td>
<td>money : 2</td>
<td>(1)(2) +</td>
</tr>
<tr>
<td></td>
<td>the : 0</td>
<td>the : 0</td>
<td>(0)(0) +</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

= 3
The perceptron

- **Inputs** = feature values
- **Params** = weights
- **Sum** is the response

- If the response is:
 - Positive, output +1
 - Negative, output -1

When training, update on errors:

\[w = w + y \phi(x) \]

"Error" when:

\[yw \cdot \phi(x) \leq 0 \]
Why does that update work?

➢ When \(y \omega^{old} \cdot \phi(x) \leq 0 \), update \(\omega^{new} = \omega^{old} + y \phi(x) \)

\[
y \omega^{new} \phi(x) = y \left(\omega^{old} + y \phi(x) \right) \phi(x)
\]
\[
= y \omega^{old} \phi(x) + yy \phi(x) \phi(x)
\]
\[
<0 \qquad > 0
\]
Support vector machines

- Explicitly optimize the *margin*
- Enforce that all training points are correctly classified

\[
\begin{align*}
\max_w \text{ margin} & \quad \text{s.t.} \quad \text{all points are correctly classified} \\
\max_w \text{ margin} & \quad \text{s.t.} \quad y_n w \cdot \phi(x_n) \geq 1, \quad \forall n \\
\min_w \|w\|^2 & \quad \text{s.t.} \quad y_n w \cdot \phi(x_n) \geq 1, \quad \forall n
\end{align*}
\]
Support vector machines with *slack*

- Explicitly optimize the *margin*
- Allow some “noisy” points to be misclassified

\[
\min_{\mathbf{w}, \xi} \quad \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_n \xi_n \\
\text{s.t.} \quad y_n \mathbf{w} \cdot \phi(x_n) + \xi_n \geq 1 \quad \forall n \\
\xi_n \geq 0 \quad \forall n
\]
Batch versus stochastic optimization

- Batch = read in all the data, then process it
- Stochastic = (roughly) process a bit at a time

\[
\min_{w, \xi} \quad \frac{1}{2} \|w\|^2 + C \sum_n \xi_n
\]

s.t. \quad y_n w \cdot \phi(x_n) + \xi_n \geq 1

\quad \forall n

\xi_n \geq 0 \quad \forall n

- For n=1..N:
 - If \(y_n w \cdot \phi(x_n) \leq 0 \)
 - \(w = w + y_n \phi(x_n) \)
Stochastically optimized SVMs

SVM Objective

- For n=1..N:
 - If $y_n \mathbf{w} \cdot \phi(x_n) \leq 1$
 - $\mathbf{w} = \mathbf{w} + y_n \phi(x_n)$
 - $\mathbf{w} = \left(1 - \frac{1}{CN}\right)\mathbf{w}$

Implementation Note:
- Weight shrinkage is \texttt{SLOW}.
- Implement it lazily, at the cost of double storage.

- For n=1..N:
 - If $y_n \mathbf{w} \cdot \phi(x_n) \leq 0$
 - $\mathbf{w} = \mathbf{w} + y_n \phi(x_n)$
From Perceptron to Structured Perceptron
Perceptron with multiple classes

- Store separate weight vector for each class $w_1, w_2, ..., w_K$

- For $n=1..N$:
 - Predict:
 $$\hat{y} = \arg \max_k w_k \cdot \phi(x_n)$$
 - If $\hat{y} \neq y_n$
 $$w_{\hat{y}} = w_{\hat{y}} - \phi(x_n)$$
 $$w_{y_n} = w_{y_n} + \phi(x_n)$$

Why does this do the right thing?
Perceptron with multiple classes v2

- Originally:

 ![Diagram](image)

 \[w_1 \quad w_2 \quad w_3 \quad W \]

- For n=1..N:
 - Predict:
 \[\hat{y} = \arg \max_k w_k \cdot \phi(x_n) \]
 - If \(\hat{y} \neq y_n \)
 \[w_{\hat{y}} = w_{\hat{y}} - \phi(x_n) \]
 \[w_{y_n} = w_{y_n} + \phi(x_n) \]

- For n=1..N:
 - Predict:
 \[\hat{y} = \arg \max_k w \cdot \phi(x_n, k) \]
 - If \(\hat{y} \neq y_n \)
 \[w = w - \phi(x_n, \hat{y}) + \phi(x_n, y_n) \]
Perceptron

- Originally:
 - Predict:
 - If $\hat{y} \neq y_n$
 - $w_{\hat{y}} = w_{\hat{y}} - \phi(x_n)$
 - $w_{y_n} = w_{y_n} + \phi(x_n)$

- For $n=1..N$:
 - Predict:
 - $\hat{y} = \arg\max_k w_k \cdot \phi(x_n)$
 - If $\hat{y} \neq y_n$
 - $w_{\hat{y}} = w_{\hat{y}} - \phi(x_n)$
 - $w_{y_n} = w_{y_n} + \phi(x_n)$

- For $n=1..N$:
 - Predict:
 - $\hat{y} = \arg\max_k w \cdot \phi(x_n, k)$
 - If $\hat{y} \neq y_n$
 - $w = w - \phi(x_n, \hat{y}) + \phi(x_n, y_n)$

- x
 - $\Phi(x, 1)$
 - spam_BIAS : 1
 - spam_free : 1
 - spam_money : 1
 - spam_the : 0
 - ...
 - $\Phi(x, 2)$
 - ham_BIAS : 1
 - ham_free : 1
 - ham_money : 1
 - ham_the : 0
 - ...

- "free money"
Features for structured prediction

- Allowed to encode *anything* you want

\[\phi(x, y) = \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Md</td>
<td>Vb</td>
<td>Dt</td>
<td>Nn</td>
</tr>
<tr>
<td>I</td>
<td>can</td>
<td>can</td>
<td>a</td>
<td>can</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
I_{\text{Pro}} & : 1 & <s>-\text{Pro} & : 1 & \text{has_verb} & : 1 \\
\text{can}_{\text{Md}} & : 1 & \text{Pro}-\text{Md} & : 1 & \text{has_nn_lft} & : 0 \\
\text{can}_{\text{Vb}} & : 1 & \text{Md}-\text{Vb} & : 1 & \text{has_n_lft} & : 1 \\
a_{\text{Dt}} & : 1 & \text{Vb}-\text{Dt} & : 1 & \text{has_nn_rgt} & : 1 \\
\text{can}_{\text{Nn}} & : 1 & \text{Dt}-\text{Nn} & : 1 & \text{has_n_rgt} & : 1 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{align*}
\]

- Output features, Markov features, other features
Structured perceptron

For n=1..N:

- Predict:

\[\hat{y} = \arg \max_k w \cdot \phi(x_n, k) \]

- If \(\hat{y} \neq y_n \):

\[w = w - \phi(x_n, \hat{y}) + \phi(x_n, y_n) \]

For n=1..N:

- Predict:

\[\hat{y} = \arg \max_k w \cdot \phi(x_n, k) \]

- If \(\hat{y} \neq y_n \):

\[w = w - \phi(x_n, \hat{y}) + \phi(x_n, y_n) \]
Argmax for sequences

➢ If we only have output and Markov features, we can use Viterbi algorithm:

\[w \cdot [\text{Pro-Pro}] \]
\[w \cdot [\text{can_Pro}] \]
\[w \cdot [\text{can_Pro}] \]
\[w \cdot [\text{I_Pro}] \]
\[w \cdot [\text{can_Pro}] \]
\[w \cdot [\text{can_Pro}] \]
\[w \cdot [\text{I_Md}] \]
\[w \cdot [\text{can_Md}] \]
\[w \cdot [\text{can_Md}] \]
\[w \cdot [\text{I_Vb}] \]
\[w \cdot [\text{can_Vb}] \]
\[w \cdot [\text{can_Vb}] \]

(plus some work to account for boundary conditions)
Structured perceptron as ranking

- For n=1..N:
 - Run Viterbi: \(\hat{y} = \arg \max_k w \cdot \phi(x_n, k) \)
 - If \(\hat{y} \neq y_n \), \(w = w - \phi(x_n, \hat{y}) + \phi(x_n, y_n) \)

- When does this make an update?

```
Pro     Md     Vb     Dt     Nn
Pro     Md     Md     Dt     Vb
Pro     Md     Md     Dt     Nn
Pro     Md     Nn     Dt     Md
Pro     Md     Nn     Dt     Nn
Pro     Md     Vb     Dt     Md
Pro     Md     Vb     Dt     Vb
I      can    can    a     can
```
From perceptron to margins

Maximize Margin

\[\min_{w, \xi} \quad \frac{1}{2} \|w\|^2 + C \sum_n \xi_n \]

s.t. \[y_n w \cdot \phi(x_n) + \xi_n \geq 1 \]

Each point is correctly classified, modulo \(\xi \)

Minimize Errors

\[\min_{w, \xi} \quad \frac{1}{2} \|w\|^2 + C \sum_n \xi_n, \hat{y} \]

\[\text{Response for truth} \]

\[\text{Response for other} \]

s.t. \[w \cdot \phi(x_n, y_n) \]
\[-w \cdot \phi(x_n, \hat{y}) \]
\[+ \xi_n \geq 1, \forall n, \hat{y} \neq y_n \]

Each true output is more highly ranked, modulo \(\xi \)
From perceptron to margins

\[\min_{\mathbf{w}, \xi} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_n \xi_n, \hat{y} \]

s.t. \[
\begin{align*}
\mathbf{w} \cdot \phi(x_n, y_n) & \geq 1, \forall n, \hat{y} \neq y_n \\
- \mathbf{w} \cdot \phi(x_n, \hat{y}) & \geq -1, \forall n, \hat{y} \neq y_n
\end{align*}
\]

Each true output is more highly ranked, modulo \(\xi \).
Ranking margins

➢ Some errors are worse than others...

![Diagram of ranking margins with examples of errors and margins of one.]
Accounting for a loss function

➢ Some errors are worse than others...

Margin of $l(y, y')$

I can can a can
Accounting for a loss function

\[w \cdot \phi(x_n, y_n) - w \cdot \phi(x_n, \hat{y}) + \xi_n \geq 1 \]
Augmented argmax for sequences

➢ Add “loss” to each wrong node!

What are we assuming here?
Stochastically optimizing Markov nets

M3N Objective

SOME MATH

- For n=1..N:
 - Augmented Viterbi:
 \[\hat{y} = \text{arg max}_k w \cdot \phi(x_n, k) \]
 \[+ l(y_n, k) \]
 \[\text{if } \hat{y} \neq y_n \]
 \[w = w - \phi(x_n, \hat{y}) \]
 \[+ \phi(x_n, y_n) \]
 - \[w = \left(1 - \frac{1}{CN}\right)w \]

- For n=1..N:
 - Viterbi:
 \[\hat{y} = \text{arg max}_k w \cdot \phi(x_n, k) \]
 - \[\text{if } \hat{y} \neq y_n \]
 \[w = w - \phi(x_n, \hat{y}) \]
 \[+ \phi(x_n, y_n) \]
Learning to Search
Argmax is hard!

- Classic formulation of structured prediction:
 \[\text{score}(x, y) = \text{something we learn to make “good” x,y pairs score highly} \]

- At test time:
 \[f(x) = \arg\max_{y \in Y} \text{score}(x, y) \]

- Combinatorial optimization problem
 - Efficient only in very limiting cases
 - Solved by heuristic search: beam + A* + local search
Argmax is hard!

- Classi

- Combinatorial optimization problem
 - Efficient only in very limiting cases
 - Solved by heuristic search: beam + A* + local search

Order these words: bart better I madonna say than ,

Best search (32.3): I say better than bart madonna ,

Original (41.6): better bart than madonna , I say

Best search (51.6): and so could really be a neural apparently thought things as dissimilar firing two identical

Original (64.3): could two things so apparently dissimilar as a thought and neural firing really be identical

Stacking
Incremental parsing, early 90s style

Train a classifier to make decisions

NP → Unary
I / Pro

NP

S

Left

Right

VP

can / Md

can / Vb

can / Nn

a / Dt

Up

Left

Right

S

Left

Right
Incremental parsing, mid 2000s style

Train a classifier to make decisions

NP
I / Pro can / Md can / Vb a / Dt can / Nn

NP
VP
S
Learning to beam-search

- For n=1..N:
 - Viterbi:
 \[\hat{y} = \arg\max_k w \cdot \phi(x_n, k) \]
 - If \(\hat{y} \neq y_n \)
 \[w = w - \phi(x_n, \hat{y}) + \phi(x_n, y_n) \]
Learning to beam-search

For n=1..N:
- Run beam search until truth falls out of beam
- Update weights immediately!
Learning to beam-search

For n=1..N:
- Run beam search until truth falls out of beam
- Update weights immediately!
- Restart at truth
Incremental parsing results

- - No early update, no repeated use of examples
- - Early update, no repeated use of examples
- - Early update, repeated use of examples

F-measure parsing accuracy vs. Number of passes over training data
Generic Search Formulation

- Search Problem:
 - Search space
 - Operators
 - Goal-test function
 - Path-cost function

- Search Variable:
 - Enqueue function

Varying the `Enqueue` function can give us DFS, BFS, beam search, A* search, etc...

\[
\text{nodes} := \text{MakeQueue}(S0) \\
\text{while nodes is not empty} \\
\text{node} := \text{RemoveFront}(\text{nodes}) \\
\text{if node is a goal state} \\
\text{return node} \\
\text{next} := \text{Operators}(\text{node}) \\
\text{nodes} := \text{Enqueue}(\text{nodes}, \text{next}) \\
\text{fail}
\]
Online Learning Framework (LaSO)

- nodes := MakeQueue(S0)
- **while** nodes is not empty
 - node := RemoveFront(nodes)
 - **if** none of \{node\} ∪ nodes is y-good **or** node is a goal & not y-good
 - sibs := siblings(node, y)
 - $w := \text{update}(w, x, sibs, \{node\} ∪ nodes)$
 - nodes := MakeQueue(sibs)
 - **else**
 - **if** node is a goal
 - next := Operators(node)
 - nodes := Enqueue(nodes, next)

Monotonicity: for any node, we can tell if it can lead to the correct solution or not

If we erred...

Where should we have gone?

Update our weights based on the good and the bad choices

Continue search...
Search-based Margin

➢ The margin is the amount by which we are correct:

\[\begin{align*}
\bar{u}^T \Phi(x, g_1) \\
\bar{u}^T \Phi(x, g_2) \\
\bar{u}^T \Phi(x, b_1) \\
\bar{u}^T \Phi(x, b_2)
\end{align*} \]

➢ Note that the margin and hence linear separability is also a function of the search algorithm!
Syntactic chunking Results

- Large Margin (beam 25) [Collins 2002] (24 min)
- Large Margin (Exact) [Zhang+Damerau+Johnson 2002]; timing unknown
- Perceptron Search (Exact) [Collins 2002] (22 min)
- Standard Perceptron Updates [Collins 2002] (33 min)
- Semi-CRF model

Time: F-Score

Training Time (minutes)
Tagging+chunking results

Joint tagging/chunking accuracy vs. Training Time (hours) [log scale]

- 23 min
- 7 min
- 3 min
- 1 min

Large Margin (beam 25/50)
Large Margin (beam 10)
Sutton model

[Sutton+McCallum 2004]
Variations on a beam

Observation:

We needn't use the same beam size for training and decoding

Varying these values independently yields:

<table>
<thead>
<tr>
<th>Training Beam</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93.9</td>
<td>92.8</td>
<td>91.9</td>
<td>91.3</td>
<td>90.9</td>
</tr>
<tr>
<td>5</td>
<td>90.5</td>
<td>94.3</td>
<td>94.4</td>
<td>94.1</td>
<td>94.1</td>
</tr>
<tr>
<td>10</td>
<td>89.5</td>
<td>94.3</td>
<td>94.4</td>
<td>94.2</td>
<td>94.2</td>
</tr>
<tr>
<td>25</td>
<td>88.7</td>
<td>94.2</td>
<td>94.5</td>
<td>94.3</td>
<td>94.3</td>
</tr>
<tr>
<td>50</td>
<td>88.4</td>
<td>94.2</td>
<td>94.4</td>
<td>94.2</td>
<td>94.4</td>
</tr>
</tbody>
</table>
What if our model sucks?

- Sometimes our model *cannot* produce the “correct” output
 - canonical example: machine translation

```
<table>
<thead>
<tr>
<th>Model Outputs</th>
<th>Outputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good</td>
<td>Outputs</td>
</tr>
<tr>
<td></td>
<td>Outputs</td>
<td>Outputs</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td></td>
</tr>
</tbody>
</table>
```

```
```

- “Local” update
- “Bold” update
- N-best list or “optimal decoding” or ...

![Diagram](image)
Local versus bold updating...

Machine Translation Performance (Bleu)

- **Monotonic**
 - Bold: 34.0
 - Local: 34.5
 - Pharoah: 35.0

- **Distortion**
 - Bold: 33.0
 - Local: 34.0
 - Pharoah: 35.5
Take-home messages

➢ If you can predict (i.e., solve argmax) you can learn (use structured perceptron)

➢ If you can do loss-augmented search, you can do max margin (add two lines of code to perceptron)

➢ If you can do beam search, you can learn using LaSO (with no loss function)

➢ If you can do beam search, you can learn using Searn (with any loss function)

If not, this can be a really bad idea! [Kulesza+Pereira, NIPS07]
Coffee Break!!!
Refresher on Reinforcement Learning
Reinforcement learning

➢ Basic idea:
 ➢ Receive feedback in the form of rewards
 ➢ Agent’s utility is defined by the reward function
 ➢ Must learn to act to maximize expected rewards
 ➢ Change the rewards, change the learned behavior

➢ Examples:
 ➢ Playing a game, reward at the end for outcome
 ➢ Vacuuming, reward for each piece of dirt picked up
 ➢ Driving a taxi, reward for each passenger delivered
Markov decision processes

What are the values (expected future rewards) of states and actions?

$V(s)^* = 30$

$Q(s,a1)^* = 30$

$Q(s,a2)^* = 23$

$Q(s,a3)^* = 17$
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s,a,s')$
 - Prob that a from s leads to s'
 - i.e., $P(s' \mid s,a)$
 - Also called the model
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
- Total utility is one of:
 \[
 \sum_t r_t \quad \text{or} \quad \sum_t \gamma^t r_t
 \]
Solving MDPs

- In deterministic single-agent search problem, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy \(\pi(s) \)
 - A policy gives an action for each state
 - Optimal policy maximizes expected if followed
 - Defines a reflex agent

Optimal policy when \(R(s, a, s') = -0.04 \) for all non-terminals \(s \)
Example Optimal Policies

R(s) = -0.01

R(s) = -0.03

R(s) = -0.4

R(s) = -2.0
Optimal Utilities

- Fundamental operation: compute the optimal utilities of states s (all at once)

- Why? Optimal values define optimal policies!

- Define the utility of a state s: $V^*(s) =$ expected return starting in s and acting optimally

- Define the utility of a q-state (s,a): $Q^*(s,a) =$ expected return starting in s, taking action a and thereafter acting optimally

- Define the optimal policy: $\pi^*(s) =$ optimal action from state s
The Bellman Equations

➢ Definition of utility leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy

➢ Formally:

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Solving MDPs / memoized recursion

- Recurrences:

\[V_0^*(s) = 0 \]
\[V_i^*(s) = \max_a Q_i^*(s, a) \]
\[Q_i^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_{i-1}^*(s') \right] \]
\[\pi_i(s) = \arg \max_a Q_i^*(s, a) \]

- Cache all function call results so you never repeat work
- What happened to the evaluation function?
Q-Value Iteration

➢ Value iteration: iterate approx optimal values
 ➢ Start with $V_0^*(s) = 0$, which we know is right (why?)
 ➢ Given V_i^*, calculate the values for all states for depth $i+1$:

$$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

➢ But Q-values are more useful!
 ➢ Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 ➢ Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$
RL = Unknown MDPs

- If we *knew* the MDP (i.e., the reward function and transition function):
 - Value iteration leads to optimal values
 - Q-value iteration leads to optimal Q-values
 - Will always converge to the truth

- Reinforcement learning is what we do when we do *not* know the MDP
 - All we observe is a *trajectory*
 - \((s_1,a_1,r_1, s_2,a_2,r_2, s_3,a_3,r_3, \ldots)\)
Q-Learning

- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$

- Incorporate the new estimate into a running average:

$$sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

$$Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + (\alpha)[sample]$$
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability $1-\varepsilon$, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states:

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Very simple stochastic updates:

\[Q(s, a) \leftarrow Q(s, a) + \alpha [error] \]
\[w_i \leftarrow w_i + \alpha [error] f_i(s, a) \]
Inverse Reinforcement Learning

(aka Inverse Optimal Control)
Inverse RL: Task

- Given:
 - measurements of an agent's behavior over time, in a variety of circumstances
 - if needed, measurements of the sensory inputs to that agent
 - if available, a model of the environment.

- Determine: the reward function being optimized

- Proposed by [Kalman68]
- First solution, by [Boyd94]
Why inverse RL?

- Computational models for animal learning
 - “In examining animal and human behavior we must consider the reward function as an unknown to be ascertained through empirical investigation.”

- Agent construction
 - “An agent designer [...] may only have a very rough idea of the reward function whose optimization would generate 'desirable' behavior.”
 - eg., “Driving well”

- Multi-agent systems and mechanism design
 - learning opponents’ reward functions that guide their actions to devise strategies against them
IRL from Sample Trajectories

- Optimal policy available through sampled trajectories (e.g., driving a car)
- Want to find Reward function that makes this policy look as good as possible
- Write $R_w(s) = w \phi(s)$ so the reward is linear

and $V^\pi_w(s_0)$ be the value of the starting state

$$\max_w \sum_{k=1}^{K} f \left(V^\pi_w(s_0) - V^\pi_k(s_0) \right)$$

How good does the "optimal policy" look?

How good does the some other policy look?

Warning: need to be careful to avoid trivial solutions!
Optimizing Rewards from Trajectories
For $t = 1, 2, \ldots$

- **Inverse RL step:**
 Estimate expert’s reward function $R(s) = w^T \phi(s)$ such that under $R(s)$ the expert performs better than all previously found policies $\{\pi_i\}$.

- **RL step:**
 Compute optimal policy π_t for the estimated reward w.
Car Driving Experiment

- No explicit reward function at all!
- Expert demonstrates proper policy via 2 min. of driving time on simulator (1200 data points).
- 5 different “driver types” tried.
- Features: which lane the car is in, distance to closest car in current lane.
- Algorithm run for 30 iterations, policy hand-picked.
- Movie Time! (Expert left, IRL right)
“Nice” driver
“Evil” driver
Maxent IRL

Distribution over trajectories:
\[P(\zeta) \]

Match the reward of observed behavior:
\[\sum \zeta P(\zeta) f_\zeta = f_{\text{dem}} \]

Maximizing the **causal entropy** over trajectories given stochastic outcomes:
\[\max H(P(\zeta) || O) \]

(Condition on random uncontrolled outcomes, but only **after** they happen)

As uniform as possible
Data collection

Length

Speed

Road

Type

Lanes

Accidents

Construction

Congestion

Time of day

25 Taxi Drivers

Over 100,000 miles

[Ziebart+al, AAAI08]
Predicting destinations....
Planning as structured prediction
Maximum margin planning

- Let $\mu(s,a)$ denote the probability of reaching q-state (s,a) under current model w

$$\begin{align*}
\max_w & \text{ margin } \quad \text{s.t.} \quad \text{planner run with } w \text{ yields human output} \\
\min_w & \frac{1}{2} \|w\|^2 \quad \text{s.t.} \quad \mu(s,a) \cdot \phi(x_n,s,a) \\
& - \hat{\mu}(s,a) \cdot \phi(x_n,s,a) \geq 1, \quad \forall n, s, a
\end{align*}$$

Q-state visitation frequency by human

Q-state visitation frequency by planner

All trajectories, and all q-states
Optimizing MMP

M$_3$N Objective

For $n=1..N$:

- Augmented planning:
 Run A* on current (augmented) cost map to get q-state visitation frequencies $\mu(s,a)$

- Update: $w = w + \sum_s \sum_a [\hat{\mu}(s,a) - \mu(s,a)] \phi(x_n,s,a)$

- Shrink: $w = \left(1 - \frac{1}{CN}\right)w$
Maximum margin planning movies
Parsing via inverse optimal control

- State space = all partial parse trees over the full sentence labeled “S”
- Actions: take a partial parse and split it anywhere in the middle
- Transitions: obvious
- Terminal states: when there are no actions left
- Reward: parse score at completion
Parsing via inverse optimal control

![Bar chart showing performance comparison for Small, Medium, and Large datasets across different algorithms: Maximum Likelihood, Projection, Perceptron, Apprenticeship Learning, Maximum Margin, Maximum Entropy, and Policy Matching.]
Apprenticeship Learning
Integrating search and learning

Input: Le homme mange l' croissant.
Output: The man ate a croissant.

Hyp: The man ate
Cov: Le homme mange l' croissant.

Hyp: The man ate a croissant
Cov: Le homme mange l' croissant.

Hyp: The man ate a fox
Cov: Le homme mange l' croissant.

Hyp: The man ate happy
Cov: Le homme mange l' croissant.

Hyp: The man ate a
Cov: Le homme mange l' croissant.

Classifier 'h'
Reducing search to classification

- Natural chicken and egg problem:
 - Want h to get low expected future loss
 - … on future decisions made by h
 - … and starting from states visited by h

- Iterative solution

\[
\begin{align*}
&h(t) \\
&\text{Input: Le homme mange l' croissant.} \\
&\text{Output: The man ate a croissant.}
\end{align*}
\]

\[
\begin{align*}
&h(t-1) \\
&\text{Hyp: The man ate a fox} \\
&\text{Cov: Le homme mange l' croissant.} \\
&\text{Loss = 1.2}
\end{align*}
\]

\[
\begin{align*}
&\text{Hyp: The man ate a croissant} \\
&\text{Cov: Le homme mange l' croissant.} \\
&\text{Loss = 0}
\end{align*}
\]

\[
\begin{align*}
&\text{Hyp: The man ate happy} \\
&\text{Cov: Le homme mange l' croissant.} \\
&\text{Loss = 1.8}
\end{align*}
\]

\[
\begin{align*}
&\text{Hyp: The man ate a} \\
&\text{Cov: Le homme mange l' croissant.} \\
&\text{Loss = 0.5}
\end{align*}
\]

\[
\begin{align*}
&\text{Hyp: The man ate a} \\
&\text{Cov: Le homme mange l' croissant.} \\
&\text{Loss = 0}
\end{align*}
\]
Theoretical results

Theorem: After $2T^3 \ln T$ iterations, the loss of the learned policy is bounded as follows:

\[
L(h) \leq L(h_0) + 2T \ln T l_{avg} + (1 + \ln T) \frac{c_{max}}{T}
\]

- Loss of the optimal policy
- Average multiclass classification loss
- Worst case per-step loss
Argentina was still obsessed with the Falkland Islands even in 1994, 12 years after its defeat in the 74-day war with Britain. The country's overriding foreign policy aim continued to be winning sovereignty over the islands.

The Falkland islands war, in 1982, was fought between Britain and Argentina.

Standard approach is sentence extraction, but that is often deemed to "coarse" to produce good, very short summaries. We wish to also drop words and phrases => document compression.
Structure of search

- Lay sentences out sequentially
- Generate a dependency parse of each sentence
- Mark each root as a frontier node
- Repeat:
 - Choose a frontier node node to add to the summary
 - Add all its children to the frontier
 - Finish when we have enough words

Argentina was still obsessed with the Falkland Islands even in 1994, 12 years after its defeat in the 74-day war with Britain. The country's overriding foreign policy aim continued to be winning sovereignty over the islands.

= frontier node = summary node
Lay sentences out sequentially
Generate a dependency parse of each sentence
Mark each root as a frontier node
Repeat:
 Choose a frontier node to add to the summary
 Add all its children to the frontier
 Finish when we have enough words

Argentina was still obsessed with the Falkland Islands even in 1994, 12 years after its defeat in the 74-day war with Britain. The country's overriding foreign policy aim continued to be winning sovereignty over the islands.

The man ate a big sandwich
Argentina was still obsessed with the Falkland Islands even in 1994, 12 years after its defeat in the 74-day war with Britain.

Structure of search
Argentina and Britain announced an agreement, nearly eight years after they fought a 74-day war over the Falkland islands. Britain invited Argentina's minister Cavallo to London in 1992 in the first official visit since the end of the Falklands war in 1982.

Example output (40 word limit)

6 Diplomatic ties restored 3 Falkland war was in 1982
5 Major cabinet member visits 3 Cavallo visited UK
5 Exchanges were in 1992 2 War was 74-days long
3 War between Britain and Argentina
Learning to Drive

Input:

Camera Image

Output:

Policy

Steering in [-1,1]

Hard left turn

Hard right turn
DAgger: Dataset Aggregation

Collect trajectories with expert π^*
Theoretical Guarantees

Best policy \(\pi \) in sequence \(\pi[1:N] \) guarantees:

\[
J(\pi) \leq T(\varepsilon_N + \gamma_N) + O(T/N)
\]

Avg. Loss on Aggregate Dataset

Avg. Regret of \(\pi[1:N] \)

Iterations of DAgger
Experiments: Racing Game

Input:

Resized to 25x19 pixels (1425 features)

Output:

Steering in [-1,1]
Average Falls per Lap

![Graph showing average falls per lap against number of training data points.](image-url)
Super Mario Brothers

From Mario AI competition 2009

Input:

Output:

Jump in \{0,1\}
Right in \{0,1\}
Left in \{0,1\}
Speed in \{0,1\}

Extracted 27K+ binary features from last 4 observations
(14 binary features for every cell)
Test-time Execution

Click to edit Master text styles
Second level
Third level
Fourth level
Fifth level

FPS: 24
Attempt: 1 of 1
Agent: Linear
Selected Actions:
RIGHT
SPEED
Average Distance per Stage

![Graph showing average distance per stage](image)

Legend:
- DAgger
- Seam(1)
- Seam(0.4)
- SMILe(0.1)
- Supervised

Axes:
- Y-axis: Average Distance/Stage
- X-axis: Number of Training Data (10^4 x)
Perceptron vs. LaSO vs. Searn

- Incremental perceptron
- LaSO
- Searn

Un-learnable decision
Discussion
Relationship between SP and IRL

➢ Formally, they're (nearly) the same problem
 ➢ See humans performing some task
 ➢ Define some loss function
 ➢ Try to mimic the humans

➢ Difference is in philosophy:
 ➢ (I)RL has little notion of beam search or dynamic programming
 ➢ SP doesn't think about separating reward estimation from solving the prediction problem
 ➢ (I)RL has to deal with stochasticity in MDPs
Important Concepts

- Search and loss-augmented search for margin-based methods
- Bold versus local updates for approximate search
- Training on-path versus off-path
- Stochastic versus deterministic worlds
- Q-states / values
- Learning reward functions vs. matching behavior
Hal's Wager

➢ Give me a structured prediction problem where:
 ➢ Annotations are at the lexical level
 ➢ Humans can do the annotation with reasonable agreement
 ➢ You give me a few thousand labeled sentences

➢ Then I can learn reasonably well...
 ➢ ...using one of the algorithms we talked about

➢ Why do I say this?
 ➢ Lots of positive experience
 ➢ I'm an optimist
 ➢ I want your counter-examples!
Open problems

➢ How to do SP when argmax is intractable....
 ➢ Bad: simple algorithms diverge [Kulesza+Pereira, NIPS07]
 ➢ Good: some work well [Finley+Joachims, ICML08]
 ➢ And you can make it fast! [Meshi+al, ICML10]

➢ How to do SP with delayed feedback (credit assignment)
 ➢ Kinda just works sometimes [D, ICML09; Chang+al, ICML10]
 ➢ Generic RL also works [Branavan+al, ACL09; Liang+al, ACL09]

➢ What role does structure actually play?
 ➢ Little: only constraints outputs [Punyakanok+al, IJCAI05]
 ➢ Little: only introduces non-linearities [Liang+al, ICML08]
 ➢ Lots: ???
Things I have no idea how to solve...

\[\text{all} : (a \to \text{Bool}) \to [a] \to \text{Bool} \]

Applied to a predicate and a list, returns `\text{True}` if all elements of the list satisfy the predicate, and `\text{False}` otherwise.

```haskell
%module main:MyPrelude
%data main:MyPrelude.MyList aadj =
  {main:MyPrelude.Nil;
   main:MyPrelude.Cons aadj ((main:MyPrelude.MyList aadj))};
%rec
{main:MyPrelude.myzuall :: %forall tadA . (tadA ->
ghczmprim:GHCziBool.Bool)
  ->
  (main:MyPrelude.MyList tadA) ->
ghczmprim:GHCziBool.Bool =
  \ @ tadA
  (padk::tadA -> ghczmprim:GHCziBool.Bool)
  (dsddE::(main:MyPrelude.MyList tadA)) ->
  %case ghczmprim:GHCziBool.Bool dsddE
  %of (wildB1::(main:MyPrelude.MyList tadA))
  {main:MyPrelude.Nil ->
   ghczmprim:GHCziBool.True;
   main:MyPrelude.Cons
   (xadm::tadA) (xsadm::(main:MyPrelude.MyList tadA)) ->
   %case ghczmprim:GHCziBool.Bool (padk xadm)
   %of (wild1Xc::ghczmprim:GHCziBool.Bool)
   {ghczmprim:GHCziBool.False ->
    ghczmprim:GHCziBool.False;
    ghczmprim:GHCziBool.True ->
    main:MyPrelude.myzuall @ tadA padk xsadm})};
```
Things I have no idea how to solve...

(s1) A father had a family of sons who were perpetually quarreling among themselves. (s2) When he failed to heal their disputes by his exhortations, he determined to give them a practical illustration of the evils of disunion; and for this purpose he one day told them to bring him a bundle of sticks. (s3) When they had done so, he placed the faggot into the hands of each of them to break it into pieces with all their strength, and when they had done so, he opened the faggot, took the sticks again put them into their hands, and they broke them easily. (s6)

"My sons, if you are of one mind, and unite to assist each other, you will be as this faggot, uninjured by all the attempts of your enemies; but if you are divided among yourselves, you will be broken as easily as these sticks."
Software

➢ Sequence labeling
 ➢ Mallet http://mallet.cs.umass.edu
 ➢ CRF++ http://crfpp.sourceforge.net

➢ Search-based structured prediction
 ➢ LaSO http://hal3.name/TagChunk
 ➢ Searn http://hal3.name/searn

➢ Higher-level “feature template” approaches
 ➢ Alchemy http://alchemy.cs.washington.edu
 ➢ Factorie http://code.google.com/p/factorie
Summary

➢ Structured prediction is easy if you can do argmax search (esp. loss-augmented!)
➢ Label-bias can kill you, so iterate (Searn)
➢ Stochastic worlds modeled by MDPs
➢ IRL is all about learning reward functions
➢ IRL has fewer assumptions
 ➢ More general
 ➢ Less likely to work on easy problems
➢ We're a long way from a complete solution
➢ Hal's wager: we can learn pretty much anything

Thanks! Questions?
References

See also:

http://braque.cc/ShowChannel?handle=P5BVAC34
Stuff we talked about explicitly

Other good stuff