imitation learning
1. Learning from reinforcement alone is hard
 1. Exploration is hard
 2. Credit assignment is hard
 3. Designing rewards is hard

2. Yet people are pretty good at many tasks
3. Perhaps we can use them to help
An example from playing Mario

From Mario AI competition 2009

Input:

Interface

Output:

Jump in \{0,1\}
Right in \{0,1\}
Left in \{0,1\}
Speed in \{0,1\}

High level goal:
Watch an expert play and learn to mimic her behavior
Training (expert)
Policies

• A policy maps observations to actions

\[\pi() = \text{a} \]

- obs.
- screen: X
- timestep: t
- partial traj: \(\tau \)
- ... anything else
Warm-up: Supervised learning

1. Collect trajectories from expert π^ref
2. Store dataset $D = \{ (o, \pi^\text{ref}(o)) | o \sim \pi^\text{ref} \}$
3. Train classifier π on D

- Let π play the game!

sometimes called “behavioral cloning”
Test-time execution (sup. learning)
What's the (biggest) failure mode?

The expert never gets stuck next to pipes

\(\Rightarrow\) Classifier doesn't learn to recover!
Outline

- From demonstrations \rightarrow expert decisions
- From expert decisions \rightarrow expert costs
- Whence the expert?
- Combining experts and reward
What's the (biggest) failure mode?

The expert never gets stuck next to pipes
\[\rightarrow \text{Classifier doesn't learn to recover!} \]

- We'd like to train the policy on all states
- Can't do that
- Let's train it \textit{where it visits}
Learning from an expert: DAgger

1. Collect trajectories from expert π^{ref}
2. Dataset $D_0 = \{ (o, \pi^{\text{ref}}(o,y)) \mid o \sim \pi^{\text{ref}} \}$
3. Train π_1 on D_0
4. Collect new trajectories from π_1
 ➢ But let the expert steer!
5. Dataset $D_1 = \{ (o, \pi^{\text{ref}}(o,y)) \mid o \sim \pi_1 \}$
6. Train π_2 on $D_0 \cup D_1$

• In general:
 ➢ $D_n = \{ (o, \pi^{\text{ref}}(o,y)) \mid o \sim \pi_n \}$

If $N = T \log T$, $L(\pi_n) < T \epsilon_N + O(1)$ for some n
Test-time execution (DAgger)
how well does this strategy work?

Ross+Bagnell, AIStats’10
What's the biggest failure mode?

Classifier only sees right versus not-right

➢ No notion of better or worse
➢ No partial credit
➢ Must have a single target answer

π

π*

π₁

π₂

π₁

TT⁻¹

TT⁺
Aside: cost-sensitive classification

Classifier: $h : x \rightarrow [K]$

Multiclass classification
- $(x,y) \in X \times [K]$
- $\min_h \Pr(h(x) \neq y)$

Cost-sensitive classification
- $(x,c) \in X \times [0, \infty)^K$
- $\min_h E_{(x,c)} [c_{h(x)}]$
Easy solution to cost-sensitive cl

Classifier: $h : x \rightarrow [K]$
- $(x, c) \in X \times [0, \infty)^K$
- $\min_h E_{(x, c)}[c_{h(x)}]$

Solution learn a K-dimensional regressor on costs; pick minimal cost
Learning to search: AggraVaTe

1. Let learned policy π drive for t timesteps to obs. 0

2. For each possible action a:
 - Take action a, and let expert π^{ref} drive the rest
 - Record the overall loss, c_a

3. Update π based on example: $(0, \langle c_1, c_2, \ldots, c_K \rangle)$

4. Goto (1)
Outline

- From demonstrations → expert decisions
- From expert decisions → expert costs
- Whence the expert?
- Combining experts and reward
what is the expert’s API?

- **Behavioral cloning**

 Input: World

 Output: Set of trajectories

- **Dagger**

 Input: observation

 Output: optimal(ish) action

- **Aggrevate:**

 Input: observation

 Output: long term costs for all actions
where does an expert come from?

• Option 1: An actual real life human being

• Option 2: Simulation
Given partial traj. $a_1, a_2, \ldots, a_{t-1}$

The \textbf{(expected) minimum achievable loss} is:

$$\min \mathbb{E} \text{ loss}(\tilde{a})$$

(a_t, a_{t+1}, \ldots)

The \textbf{optimal action} (DAgger) is corresponding a_t

The \textbf{optimal Q values} (Aggrevate) are all the mins for each a_t
simulated experts

Rollout to some depth → Intermediate loss → Return best start

depth 1 depth 2 depth 4
beyond naive search: any planner

e.g., Monte Carlo Tree Search

Image credit: Michele Sebag and DeepMind
also effective for structured prediction

Image credit: Klein et al., 2017
how well does this strategy work?
Ross+Bagnell, AIStats'10
Chang+D+He+Langford+Ross, NIPS'16

Captioning
Parsing
ASR

Baseline
L2S

Bengio+Vinyals+Navdeep+Shazeer, NIPS’16
Outline

- From demonstrations \rightarrow expert decisions
- From expert decisions \rightarrow expert costs
- Whence the expert?
- Combining experts and reward
combining experts & rewards

- General solution... joint loss:
 optimize $E[\text{reward}] + z E[\text{imitation loss}]$

- Big question: how to set z?
LOLS: change rollout strategy

1. Let learned policy π^{in} drive for t timesteps to obs. 0

2. For each possible action a:
 - Take action a, and let something π^{out} drive the rest
 - Record the overall loss, c_a

3. Update π based on example: $(0, \langle c_1, c_2, ..., c_K \rangle)$

4. Goto (1)
The effect of roll-in & roll-out strategies is shown in the table below:

<table>
<thead>
<tr>
<th>roll-out →</th>
<th>Reference</th>
<th>Mixture</th>
<th>Learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ roll-in</td>
<td>Inconsistent</td>
<td>Good</td>
<td>RL</td>
</tr>
<tr>
<td>Reference</td>
<td>Not locally opt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learned</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In “Good” setting, can prove that:

➢ If ref is optimal, will compete with ref
➢ If ref is suboptimal, either:
 ➢ Improve upon ref
 ➢ Achieve approximate local optimality

Furthermore, whp:

\[\text{Regret} = O \left((KT)^{2/3} \sqrt{\frac{\log(N|\Pi|)}{N}} + T\delta_{\text{class}} \right) \]
combination via hierarchies
combination via hierarchies

Key insight: verifying if low-level trajectory is successful is cheaper than labeling low-level trajectory

→ labeling effort = high-level horizon + low-level horizon only a fraction of the full horizon (as low as sqrt of the full horizon)

→ subpolicies are only learnt in the relevant part of the state space
combination via hierarchies
• Dagger: A reduction of imitation and structured prediction to no-regret online learning; Ross, Gordon, Bagnell; ICML 2011

• Aggrevate: Ross & Bagnell, Reinforcement and Imitation Learning via No-Regret Learning; Arxiv 2013

• LOLS: Chang, Krishnamurthy, Agarwal, D, Langford; Learning to search better than your teacher; ICML 2015 (Follow-up by D, L, Sharaf, ICLR 2018)

• MCTree: Browne et al., A Survey of MC Tree Search Methods, 2012

• Hierarchies: Le, Jiang, …, Hierarchical Imitation and Reinforcement Learning; ICML 2018

• Other good stuff:
 • Corrections: Bajcsy, Losey, O’Malley, Dragan; Learning from Physical Human Corrections, One Feature at a Time; HRI 2018
 • Combination: Kim, Farahmanda, Pineau & Precup, Learning from Limited Demonstrations; NIPS 2013
 • GANs: Ho & Ermon, Generative Adversarial Imitation Learning, NIPS 2016
 • Interactive RL: Subramanian, Isbell, Thomaz; Exploration from Demonstration for Interactive Reinforcement Learning; 2015
 • IRL: Ziebart, Maas & Bagnell: Maximum Entropy Inverse Reinforcement Learning; AAAI 2008
 • 3rd person: Torabi, Warnell & Stone, Behavioral Cloning from Observation and Edwards, Sahni, Schroecker & Isbell, Imitating Latent Policies from Observation
imitation learning summary

successes:
- if all you have are demonstrations, life can be difficult
- if you have expert, iterate to get right state distribution
- experts come from people or planning
- several ways to combine experts and reinforcement

open problems:
- what is the right way to incorporate experts?
- can we learn from observations of experts?
- how to reduce # of expert samples needed?

Thank you! Queries!