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Examples of structured pradiction



Seqguence labeling

X = the monster ate the sandwich
y = Dt NN Vb Dt NN
X = Yesterday I traveled to Lille
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Natural language parsing

[root] OUTPUT

| ‘object

n-mod

n-mod subject ./ n-mod .\ p-mod n-mod

NLP algorithms use a kitchen sink of features
INPUT



Segmentation
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Simultaneous (machine) interpretation

> Dozens of defendants

> Judges from four nations
(three languages)

» Status quo: speak, then
translate

» After Nuremberg,
simultaneous
translations became the
norm

» Long wait — bad
conversation




Why simultaneous interp

retation Is ha

» Human languages have vastly c

d

ifferent word ord

> About half are OV, the other half are VO

» This comes with a lot more baggage than just verb-final

€rs

Running (German/En

ch bin mit dem Zug nach Ul
am with the train to Ul
(c..... waiting. . .. .. )

glish) Example:

m gefahren
m traveled
traveled by train

to Ulm




Model for interpretation decisions

> We have a set of actions (predict / translate)
> Wait
> Predict clause-verb
> Predict next word

» Commit (“speak”)

> In a changing environment (state)
> The words we've seen so far

> Our models’ internal predictions

> With well-defined notions of:

» Reward (or loss) at the end

» Optimal action at training time



Example of interpretation trajectory

& nach Ulm gefahren
g train to  Ulm traveled
traveled by train to Ulm
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Back to the original problem...
* How to optimize a discrete, joint loss?
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Back to the original problem...

* How to optimize a discrete, joint loss!?

* Input: Xe X

* Truth: y € Y(Xx)
* Outputs:  Y(x)

* Predicted: y € Y(x)
* Loss: lossl(y, V)
* Data: (x,y) ~ D




Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

S decision

action
decision

action

decision

N
qvﬂ action




Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

Encodes an output

Ta y =yle)
from which
loss(y, )
p— can be computed

(at training time)

end

mmwm?



Policies

* A policy maps observations to actions




An analogy from playing Mario

From Mario Al competition 2009

Output:
Jump in {0,1}
Right in {0,1}
Left in {0,1}

- Speed in {0,1}

High level goal:
Watch an expert play and
learn to mimic her behavior



Training (expert)
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Warm-up: Supervised learning

| .Collect trajectories from expert Tref
2.Store as dataset D = { (o, mf(0,y) ) | 0 ~ mef }
3.Train classifier M on D

* Let m play the game!




Test-time execution (sup. learning)
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What's the (biggest) faillure mode?

The expert never gets stuck next to pipes

— Classifier doesn't learn to recover!




Kittens, revisited.

i, 1936)




Warm-up II: Imitation learning

|. Collect trajectories from expert mref IfN=TlogT,

2. Dataset Do = { (o, m(0y) ) | o ~ ' } [Ngfer I Nes JNa g Yg

3. Train M| on Dy for some n

4. Collect new trajectories from m,
~ But let the expert steer!

5.Dataset D| ={ (o,mr**f(0,y) ) | 0o ~ T} }

6. Train M, on Dg U D,

* In general:
+ Dp={(0,m(oy)) |0~}

* Train Mh4+; on U<, D;



Test-time execution (DAgger)
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What's the biggest faillure mode?

Classifier only sees right versus not-right
* No notion of better or worse

* No partial credit

* Must have a single target answer




Learning to search: LOLS

|.Let learned policy 1t drive for t timesteps to obs. 0

2.For each possible action a:
* Take action a, and let expert 1¢! drive the rest

* Record the overall loss, C,

It

3.Update 11 based on example:
(0, {cy, Ca,..., Ck))
4.Goto (1)

Side note: can also be run
in “bandit” mode w/ sampling
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Two quick results

* If you don't backprop through time:
* POS tagging: no change

* Named entity recognition: marginal improvement

* Dependency parsing: | % gain over strong baseline
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* Simultaneous machine interpretation
is a super fun problem and you
should work on it!

* Not being able to backprop
something isn't always the end of the
world — you're not stuck with RL!

* RNIN+LOLS mashup appears
promising!

Thanks! Questions?
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