imitation learning

Recurrent

Nor Konno

Hal Daumé III | University of Maryland | me@hal3.name | @haldaume3

Hal Daumé III | U

Elizabeth TAYLOR Richard BURTON

EDWARD ALBEE'S

Wha's Afraid of NON-DIFFERENTIABLE DISCONTINUOUS NON-BACKPROPABLE DISCRETE CHOICES?

2008 moviescreenshots.blogspot.com

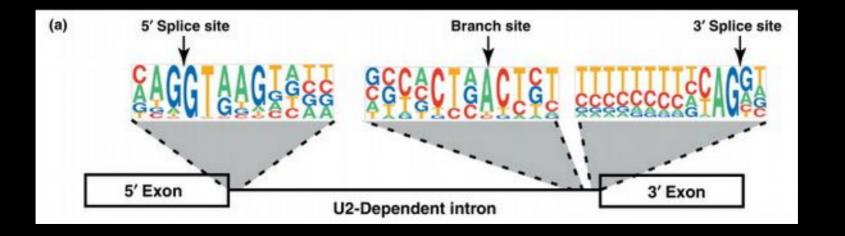
ume3

Examples of structured joint iction

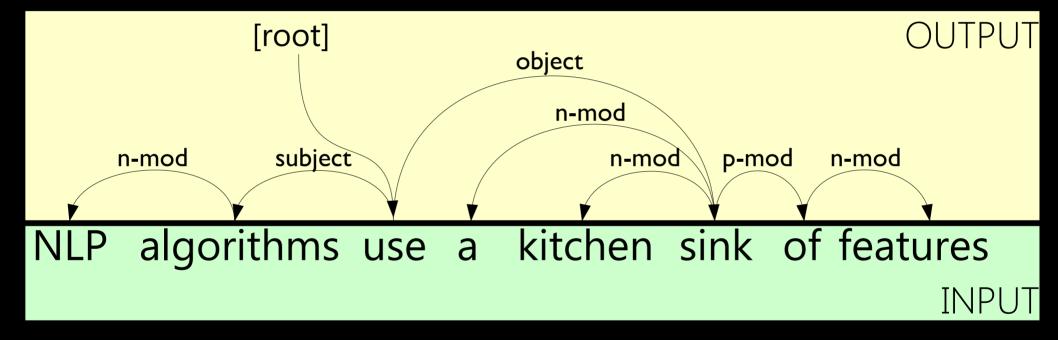
Sequence labeling

x = the monster ate the sandwichy = DtNnVbDtNn

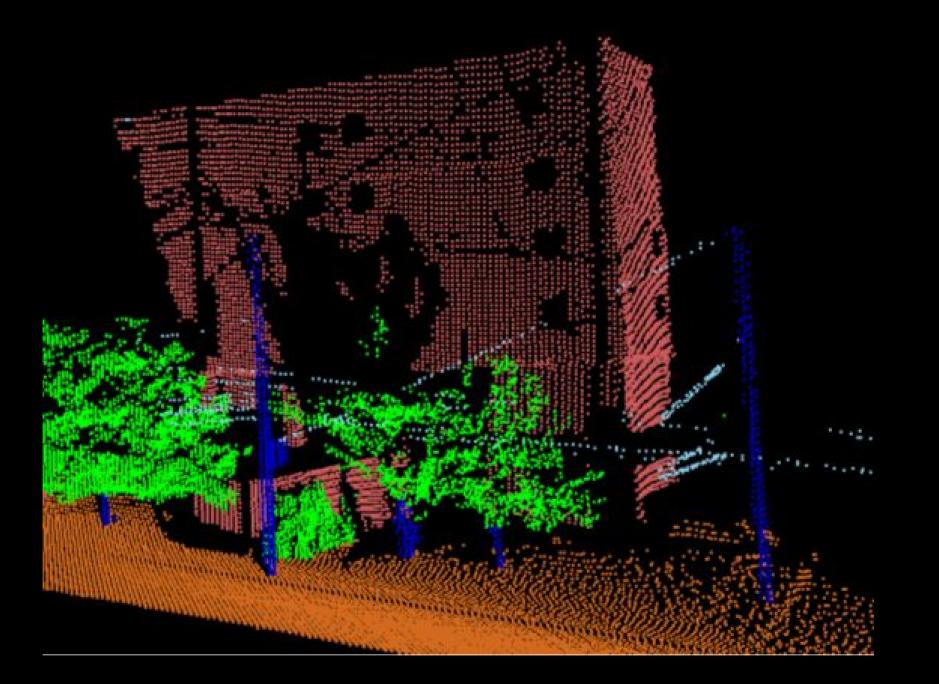
x = Yesterday I traveled to Lille y = - PER - - LOC



Natural language parsing



Segmentation



Simultaneous (machine) interpretation

Nuremburg Trials

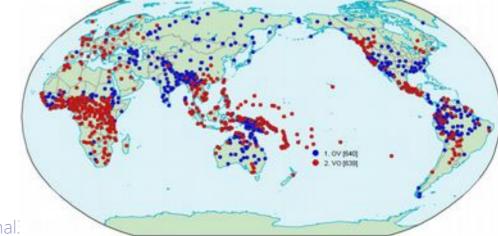
- Dozens of defendants
- Judges from four nations (three languages)
- Status quo: speak, then translate
- After Nuremberg,
 simultaneous
 translations became the
 norm
- Long wait → bad conversation

Why simultaneous interpretation is hard

- Human languages have vastly different word orders
 - About half are OV, the other half are VO
 - This comes with a lot more baggage than just verb-final

Running (German/English) Example:

IchbinmitdemZugnachUImgefahrenIamwiththetraintoUImtraveledI(.....waiting.....)traveledtraveledtraveledUIm



Model for interpretation decisions

- > We have a set of actions (predict / translate)
 - Wait
 - Predict clause-verb
 - Predict next word
 - Commit ("speak")

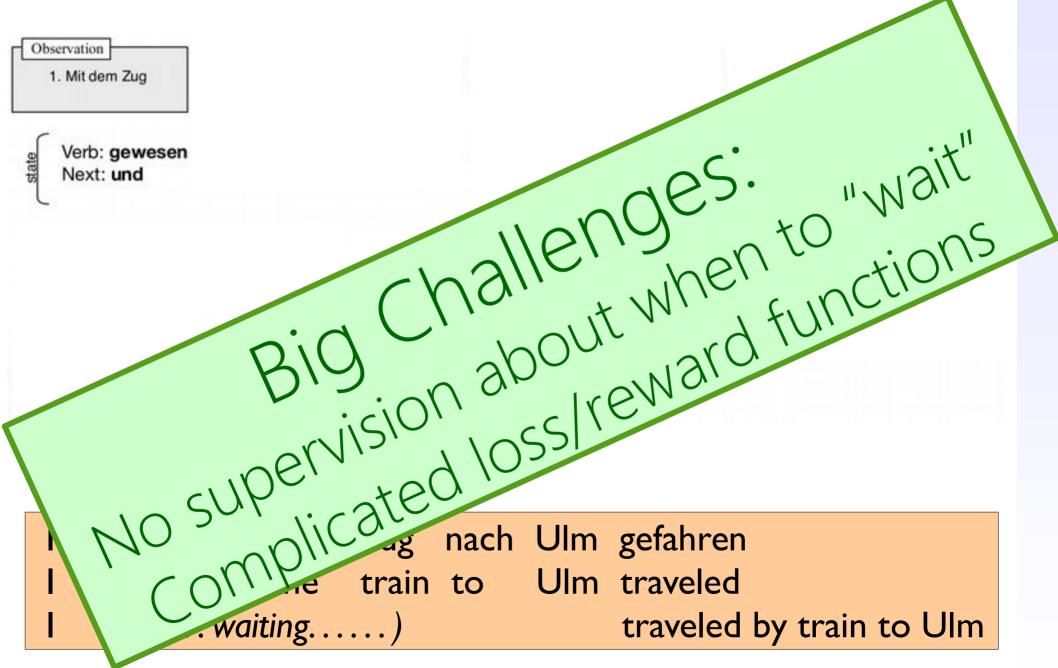
In a changing environment (state)

- The words we've seen so far
- Our models' internal predictions

With well-defined notions of:

- Reward (or loss) at the end
- Optimal action at training time

Example of interpretation trajectory



Back to the original problem...

• How to optimize a discrete, joint loss?

• Input:	$\mathbf{X} \in \mathbf{X}$	Ι	can	can	а	can
• Truth:		Pro	Md	Vb	Dt	Nn
• Iruun.	$y \in Y(x)$	Pro	Md	Md	Dt	Vb
• Outputs:	Y(x)	Pro	Md	Md	Dt	Nn
• Predicted:	ŷ∈ Y(x)	Pro	Md	Nn	Dt	Md
		Pro	Md	Nn	Dt	Vb
• Loss:	$loss(y, \hat{y})$	Pro	Md	Nn	Dt	Nn
• Data:	(x,y) ~ D	Pro	Md	Vb	Dt	Md
		Pro	Md	Vb	Dt	Vb

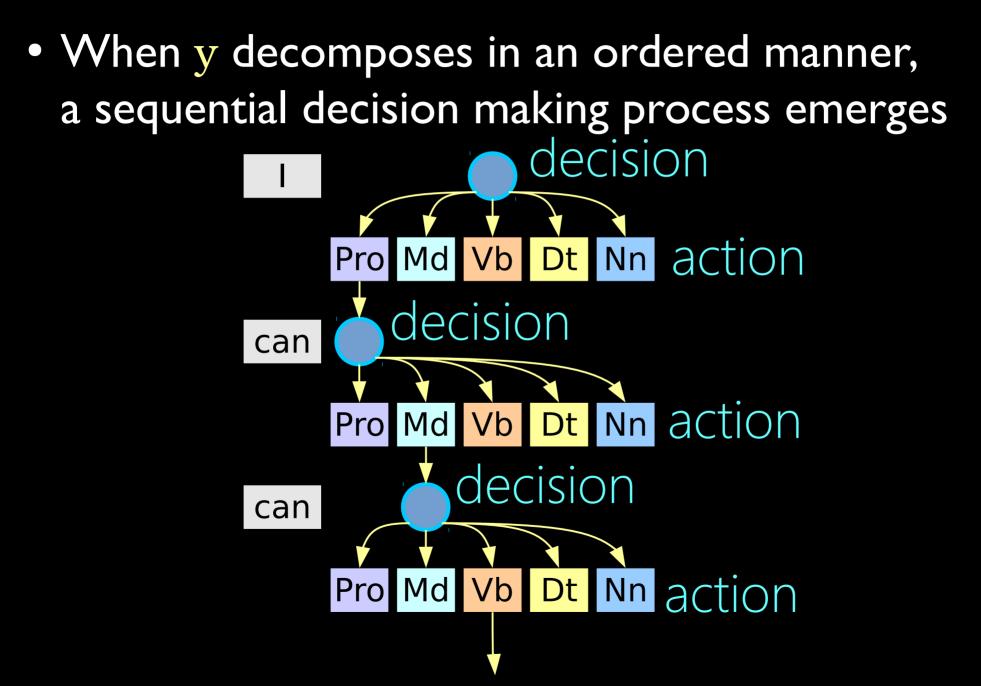
Back to the original problem...

• How to optimize a discrete, joint loss?

- Input: $x \in X$
- Truth: $y \in Y(x)$
- Outputs: Y(x)
- Predicted: $\hat{y} \in Y(x)$
- Loss: $loss(y, \hat{y})$
- Data: $(x,y) \sim D$

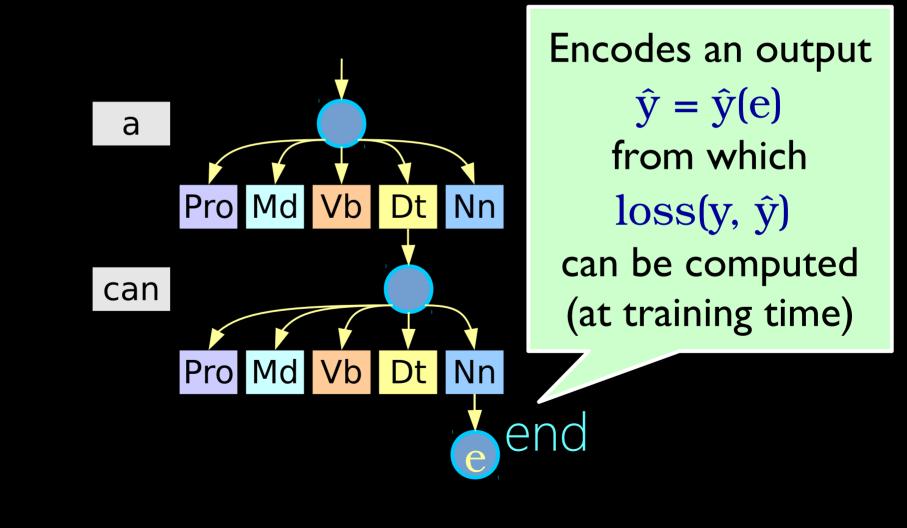
Goal: find $h \in H$ such that $h(x) \in Y(x)$ minimizing $E_{(x,y)\sim D}$ [loss(y, h(x))] based on N samples $(\mathbf{x}_n, \mathbf{y}_n) \sim \mathbf{D}$

Search spaces



Search spaces

• When y decomposes in an ordered manner, a sequential decision making process emerges



Policies

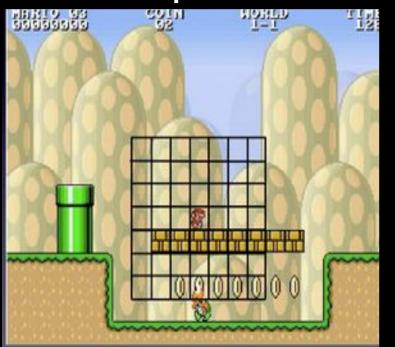
A policy maps observations to actions

ODS. input: x timestep: t partial traj: t ... anything else

An analogy from playing Mario

From Mario AI competition 2009

Input:



Output: Jump in {0,1} Right in {0,1} Left in {0,1} Speed in {0,1}

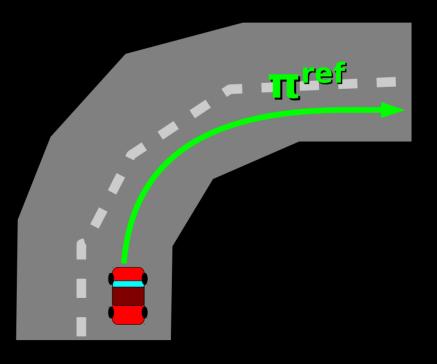
High level goal: Watch an expert play and learn to mimic her behavior

Training (expert)

Warm-up: Supervised learning

I.Collect trajectories from expert π^{ref} 2.Store as dataset $D = \{ (o, \pi^{ref}(o, y)) | o \sim \pi^{ref} \}$ 3.Train classifier π on D

• Let π play the game!

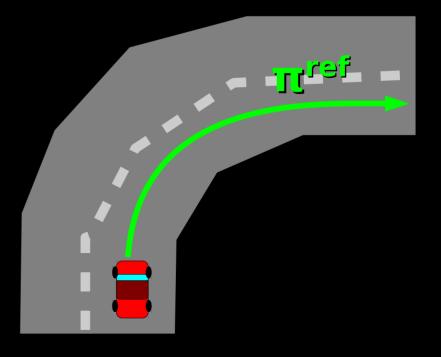


Test-time execution (sup. learning)

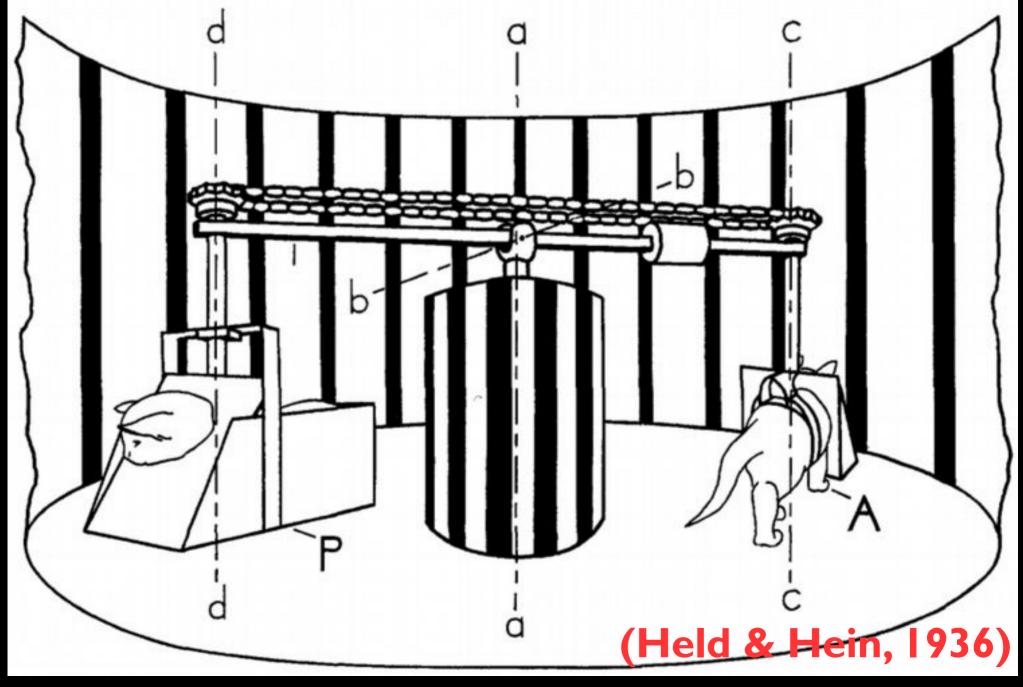
What's the (biggest) failure mode?

The expert never gets stuck next to pipes

 \Rightarrow Classifier doesn't learn to recover!



Kittens, revisited.

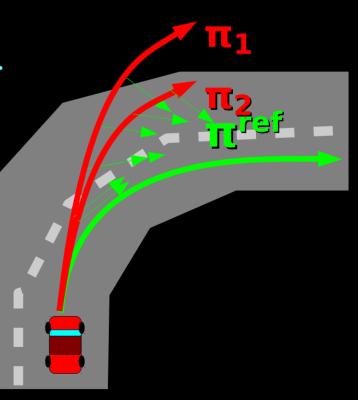


Warm-up II: Imitation learning

- I. Collect trajectories from expert $\mathbf{\pi}^{ref}$
- 2. Dataset $D_0 = \{ (o, \pi^{ref}(o, y)) | o \sim \pi^{ref} \}$
- 3. Train π_1 on D_0
- 4. Collect new trajectories from π_1
 - But let the expert steer!
- 5. Dataset $D_{I} = \{ (o, \pi^{ref}(o, y)) | o \sim \pi_{I} \}$
- 6. Train π_2 on $D_0 \cup D_1$
- In general:
 - $D_n = \{ (o, \pi^{ref}(o, y)) | o \sim \pi_n \}$
 - Train π_{n+1} on $U_{i\leq n} D_i$

If N = T log T, L(π_n) < T ϵ_N + O(1)

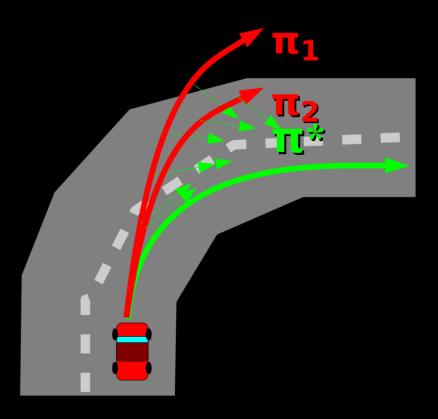
for some n



Test-time execution (DAgger)

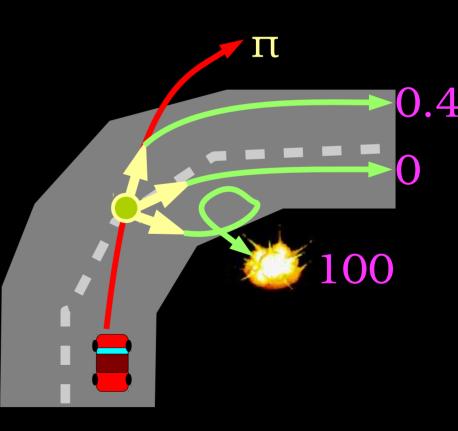
What's the biggest failure mode?

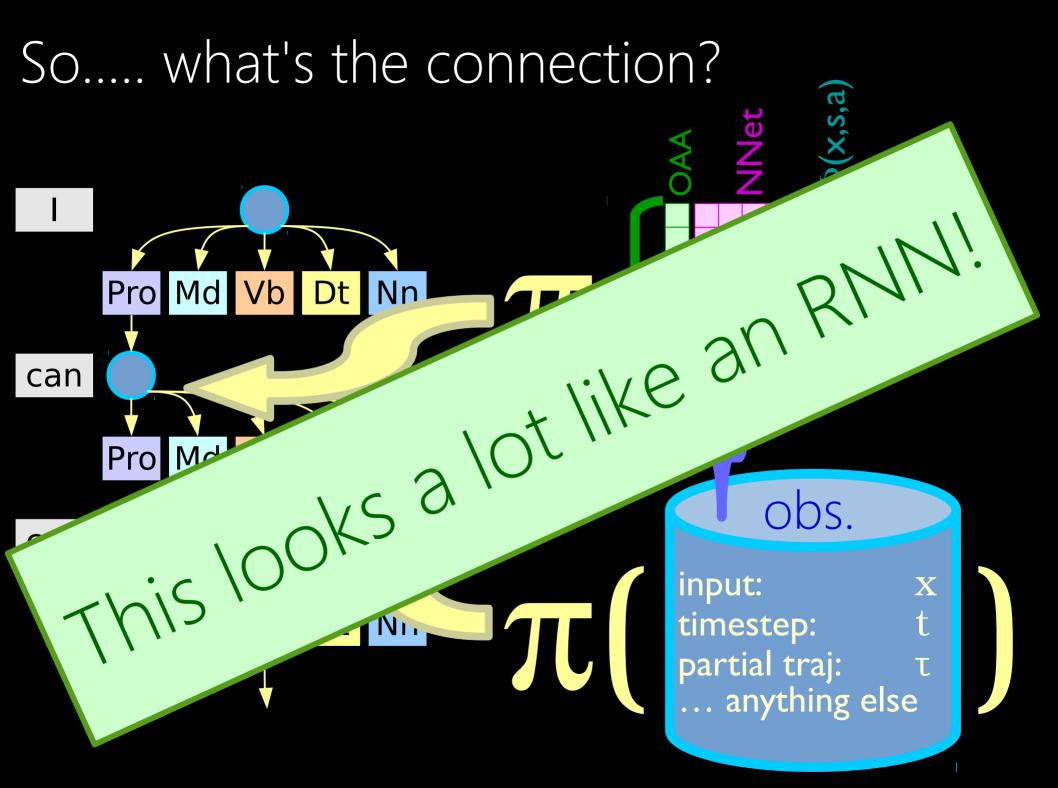
- Classifier only sees right versus not-right
- No notion of better or worse
- No partial credit
- Must have a single target answer



Learning to search: LOLS

- I.Let learned policy π drive for t timesteps to obs. 0
- 2. For each possible action a:
 - Take action **a**, and let expert π^{ref} drive the rest
 - Record the overall loss, Ca
- 3.Update π based on example: (0, $\langle c_1, c_2, ..., c_K \rangle$) 4.Goto (1)
 - Side note: can also be run in "bandit" mode w/ sampling





Two quick results

- If you *don't* backprop through time:
 - POS tagging: no change
 - Named entity recognition: marginal improvement
 - Dependency parsing: 1% gain over strong baseline

ICPR '10 EMNLP'13 ICC'15 CVPR '11 EMNLP'14 Fusion'15 EMNLP'12 NIPS '14 EMNLP'15 NIPS '12 SLT '14 + more

lam on the job market! umiacs.umd.edu/~hhe

- Simultaneous machine interpretation is a super fun problem and you should work on it!
- Not being able to backprop something isn't always the end of the world – you're not stuck with RL!
- RNN+LOLS mashup appears promising!

Thanks! Questions?