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Abstract

We design an active learning algorithm for cost-sensitive multiclass classification: problems where
different errors have different costs. Our algorithm, COAL, makes predictions by regressing on each label’s
cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data
to estimate possible costs for each label. It queries only the labels that could be the best, ignoring the sure
losers. We prove COAL can be efficiently implemented for any regression family that admits squared loss
optimization; it also enjoys strong guarantees with respect to predictive performance and labeling effort.
We empirically compare COAL to passive learning, showing significant improvements in labeling effort
and test cost.

1 Introduction
The field of active learning studies how to efficiently elicit relevant information so learning algorithms can
make good decisions. Almost all active learning algorithms are designed for binary classification problems,
leading to the natural question: How can active learning address more complex prediction problems?
Multiclass and importance-weighted classification require only minor modifications but we know of no active
learning algorithms that enjoy theoretical guarantees for more complex problems.

One such problem is cost-sensitive multiclass classification (CSMC). In CSMC with K classes, passive
learners receive input examples x and cost vectors c ∈ RK , where c(y) is the cost of predicting label y on x.1

A natural design for an active CSMC learner then is to adaptively query the costs of only a (possibly empty)
subset of labels on each x. Since measuring label complexity is more nuanced in CSMC (e.g., is it more
∗akshay@cs.umass.edu
†alekha@microsoft.com
‡tkhuang@protonmail.com
§hal@umiacs.umd.edu
¶jcl@microsoft.com
1Cost here refers to prediction cost and not labeling effort or the cost of acquiring different labels.
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Figure 1: Empirical evaluation of COAL on Reuters text categorization dataset. Active learning achieves
better test cost than passive, with a factor of 16 fewer queries.

expensive to query three costs on a single example or one cost on three examples?), we track both the number
of examples for which at least one cost is queried, along with the total number of queries issued. The first
corresponds to a fixed human effort for inspecting x. The second captures the additional effort for judging
the cost of each prediction, which depends on the number of labels queried. (By querying a label, we mean
querying the cost of that label given an example.)

In this setup, we develop a new active learning algorithm for CSMC called Cost Overlapped Active
Learning (COAL). COAL assumes access to a set of regression functions, and, when processing an example
x, it uses the functions with good past performance to compute the range of possible costs that each label
might take. Naturally, COAL only queries labels with large cost range, but furthermore, it only queries
y’s that could possibly have the smallest cost, avoiding the uncertain, but surely suboptimal labels. The
key algorithmic innovation is an efficient way to compute the cost range realized by good regressors. This
computation, and COAL as a whole, only requires that the regression set admits efficient squared loss
optimization, in contrast with prior algorithms that require 0/1 loss optimization [6, 16].

Among our results, we prove that when processing n (unlabeled) examples with K classes and N
regressors,
1. The algorithm needs to solve O(Kn2 log n) regression problems over the function class (Cor. 2), which

can be done in polynomial time for convex regression sets.
2. With no assumptions on the noise in the problem, the algorithm achieves generalization error Õ(

√
K lnN/n)

and requests Õ(nθ2

√
K lnN) costs from Õ(nθ1

√
K lnN) examples (Thms. 3 and 5) where θ1, θ2 are

the disagreement coefficients (Def. 1)2. The worst case offers minimal improvement over passive learning,
akin to binary classification.

3. With a favorable noise assumption (As. 2), the algorithm achieves generalization error Õ(K lnN/n)
while requesting Õ(Kc1/βnβθ2 lnN) labels from Õ(c1/βnβθ1K lnN) examples (Cor. 4 and Thm. 6),
where β ∈ (0, 1) is a safety parameter of the algorithm and c is a constant.
We also discuss some intuitive examples highlighting the benefits of using COAL.
CSMC provides a much more expressive language for success and failure than plain multiclass clas-

sification, which allows algorithms to make the tradeoffs necessary for good performance and broadens
the potential applications. For example, CSMC can naturally express partial failure in hierarchical clas-
sification [27]. Experimentally, we show that on a number of hierarchical classification datasets, COAL

2Õ(·) suppresses logarithmic dependence on n and K.
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substantially outperforms the passive learning baseline with orders of magnitude savings in the labeling effort
(see Figure 1 for an example on Reuters text categorization comparing passive learning to COAL).

CSMC also forms the basis of learning to avoid cascading failures in joint prediction tasks [13, 23, 11]
like structured prediction and reinforcement learning. As our second application, we consider learning to
search algorithms for joint (or structured) prediction [11], which operate by a reduction to CSMC. In this
reduction, evaluating the cost of a class often involves a computationally expensive “roll-out,” so using an
active learning algorithm inside such a (passive) joint prediction method can lead to significant computational
savings. We show that using COAL within the AGGRAVATE algorithm [23, 11] reduces the number of
roll-outs by a factor of 1

4 to 3
4 on several joint prediction tasks.

Related Work. Active learning is a thriving research area with many theoretical and empirical studies.
We recommend the survey of Settles [25] for an overview of more empirical research. We focus here on
theoretical results.

Theoretical results come in several flavors. Castro and Nowak [9] study active learning for binary
classification with non-parametric decision sets, while Balcan et al. [5], Balcan and Long [3] focus on linear
representations under distributional assumptions. Additionally, the selective sampling framework from the
online learning community derives regret and label complexity bounds for stream-based active learning of
linear separators under adversarial assumptions [10, 14, 22, 1].

Our work falls into the framework of disagreement-based active learning, which studies general hypothesis
spaces typically in an agnostic setup (see Hanneke [16] for an excellent survey). Existing results study binary
classification, while our work generalizes to CSMC. The main differences are that our query rule additionally
checks the range of predicted costs for a label, and we use a square loss oracle to search the version space.

In contrast, prior work either explicitly enumerates the version space [4, 30] or uses a 0/1 loss classification
oracle for the search [12, 6, 7, 17]. In most instantiations, the oracle solves an NP-hard problem and so does
not directly lead to an efficient active learning algorithm, although practical implementations using heuristics
are still quite effective. In contrast, our approach uses a squared-loss regression oracle, which can often be
implemented efficiently via convex optimization leading to a polynomial time algorithm.

Supervised learning oracles that solve NP-hard optimization problems in the worst case have been used in
other problems including contextual bandits [2, 28] and structured prediction [13]. Thus we hope that our
work can inspire new algorithms for these settings as well.

2 Problem Setting and Notations
We study a cost-sensitive multiclass classification problem with K classes, where there is an instance space
X , a label space Y = {1, . . . ,K}, and a distribution D supported on X × [0, 1]K .3 If (x, c) ∼ D, we refer to
c as the cost-vector where c(y) is the cost of predicting y ∈ Y . A classifier h : X → Y has expected cost
E(x,c)∼D[c(h(x))] and we aim to find a classifier with minimal expected cost.

Let G , {g : X 7→ [0, 1]} denote a set of base regressors and let F , GK denote a set of vector
regressors where the yth coordinate of f ∈ F is written as f(·; y). The set of classifiers under consideration is
H , {hf | f ∈ F} where each f defines a classifier hf : X 7→ Y by

hf (x) , argmin
y

f(x; y). (1)

3In general, labels just serve as indices for the cost vector in CSMC, and the data distribution is over (x, c) pairs instead of (x, y)
pairs as in binary and multiclass classification.
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Given a set of examples and queried costs, we often restrict attention to regression functions that predict these
costs well, and assess the uncertainty in their predictions given a new example x. For a set of regressors G,
we measure uncertainty over possible cost values for y given x with

γ(x,G) , c+(x,G)︸ ︷︷ ︸
,maxg∈G g(x)

− c−(x,G)︸ ︷︷ ︸
,ming∈G g(x)

. (2)

For vector regressors F ⊂ F , we define the cost range for a label y given x as γ(x, y, F ) , γ(x,GF (y))
where GF (y) , {f(·; y) | f ∈ F} is the induced set of base regressors by F for y.

When using a set of regression functions for a classification task, it is natural to assume that the expected
costs under D can be predicted well by the some function in the set. This motivates the following realizability
assumption.

Assumption 1 (Realizability). Define the Bayes-optimal regressor f?, which has f?(x; y) = Ec[c(y)|x],∀x ∈
X (with D(x) > 0), y ∈ Y . We assume that f? ∈ F .

f? is always well defined although the cost may be noisy, as given by the joint distribution D on (x, c).
In comparison with our assumption, the existence of a zero-cost classifier inH (which is often assumed in
active learning work) is stronger, while the existence of hf? in H is weaker but has not been leveraged in
active learning.

In typical settings, the set G is extremely large, which introduces a computational challenge in managing
the version space. To address this challenge, we leverage existing algorithmic research on supervised learning
and assume access to a regression oracle for G. Given an importance-weighted dataset D = {xi, ci, wi}ni=1

the regression oracle computes

ORACLE(D) ∈ argmin
g∈G

n∑
i=1

wi(g(xi)− ci)2. (3)

In many cases this is a convex problem and can be solved efficiently. In the special case of linear functions,
this is just least squares and can be computed in closed form.

To measure the labeling effort, we track the number of examples for which even a single cost is queried
as well as the total number of queries. Thus we capture settings where the editorial effort for inspecting
an example is high, but each cost requires minimal further effort as well as those where the goal is to just
minimize the total number of queries. Formally, we define Qi(y) to be the indicator that the algorithm queries
label y on the ith example and measure

L1 ,
n∑
i=1

∨
y

Qi(y), and L2 ,
n∑
i=1

∑
y

Qi(y). (4)

3 Cost Overlapped Active Learning
The pseudocode for our algorithm, Cost Overlapped Active Learning (COAL), is given in Algorithm 1. Given
an example x, COAL queries the costs of some of the labels y for x. These costs are chosen by (1) computing
an approximate version space based on the past data, (2) computing the range of predictions achievable by the
version space for each y, and (3) querying each y that could be the best label and has substantial uncertainty.
We now detail each step.
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Algorithm 1: Cost Overlapped Active Learning (COAL)

1: Input: Regressors G, failure probability δ ≤ 1/e, safety β ∈ (0, 1).
2: Set ηi = 1/

√
i, κ = 80, νn = log(2n2|G|K/δ).

3: Set ∆i = κεi−1

i−1 , εi =
(
n
i

)β
νn.

4: for i = 1, 2, . . . , n do
5: gi,y ← arg ming∈G R̂i(g; y). (See Eq. (5))
6: Define fi ← {gi,y}Ky=1.
7: Gi(y)← {g ∈ G | R̂i(g; y) ≤ R̂i(gi,y; y) + ∆i}.
8: Receive new example x.
9: for every y ∈ Y do

10: ĉ+(y)← MAXCOST((x, y),∆i,
ηi

4
√

3
, R̂i(·; y)).

11: ĉ−(y)← MINCOST((x, y),∆i,
ηi

4
√

3
, R̂i(·; y)).

12: end for
13: Y ′ ← {y ∈ Y | ĉ−(y) ≤ miny′ ĉ+(y′)}.
14: if |Y ′| > 1 then
15: Qi(y) = 1 if y ∈ Y ′ and ĉ+(y)− ĉ−(y) > ηi.
16: end if
17: Query costs of each y with Qi(y) = 1.
18: end for

To compute an approximate version space we first, for each label y, find the regression function that
minimizes the empirical risk for label y, which at round i is:

R̂i(g; y) =
1

i− 1

i−1∑
j=1

(g(xj)− cj(y))2Qj(y). (5)

Recall that Qj(y) is the indicator that we query label y on the jth example. Using the square loss is motivated
by the realizability assumption and computing the minimizer requires one oracle call. We implicitly construct
the version space Gi(y) in Line 7 as the regressors with low square loss regret to the empirical risk minimizer.
The tolerance on this regret is ∆i at round i, which depends on the safety parameter β ∈ (0, 1) in the
algorithm. When β is large, the tolerance is also large and the algorithm issues many queries. Conversely
when β is small the algorithm is more aggressive. However, for any strictly positive β, the definition of ∆i

ensures that f?(·; y) ∈ Gi(y) for all i, y.
COAL then computes the maximum and minimum costs predicted by the version space Gi(y) on the

new example x. Since the true expected cost is f?(x; y) and f?(·; y) ∈ Gi(y), these quantities serve as a
confidence bound for this value. The computation is done by the MAXCOST and MINCOST subroutines
which produce approximations to c+(x, y,Gi(y)) and c−(x, y,Gi(y)) (Eq. (2)) respectively.

Finally, using the predicted costs, COAL issues a set of (possibly zero) queries. The algorithm queries
any non-dominated label that has a sufficiently large cost range, where a label is non-dominated if its
estimated minimum cost is smaller than the smallest maximum cost (among all labels) and the cost range is
the difference between the label’s estimated maximum and minimum costs.

Intuitively, COAL queries the cost of every label which cannot be ruled out as having the smallest cost on
x, and where there is sufficient ambiguity about the actual value of the cost. The idea is that labels with little
disagreement do not provide much information for further reducing the version space, since by construction
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Algorithm 2: MAXCOST

1: Input: (x, y), ∆, ε, risk functional R̂(·; y)

2: gmin = argminginG R̂(g; y).
3: ` = 0, h = 1, c = 1.
4: while |h− `| ≥ 2

√
3ε do

5: gc ← argming∈G R̃(g,∆/ε2, c; y) (see Eq. 6).
6: If gc ∈ G(∆; y) (see Eq. 7), output gc(x) + ε.
7: (gl, gh)← BSEARCH((x, y, c), ε,∆, R̂(·; y)).
8: If gh ∈ G(4∆; y), output gh(x).
9: Else `← max{gl(x), `}, h← gh(x), c← h+`

2 .
10: end while
11: return c.

all functions would suffer similar loss. Moreover, only the labels that could be the best need to be queried at
all, since the cost-sensitive performance of a hypothesis hf depends only on the label that it predicts to be the
best. Hence labels that are dominated or have small cost range need not be queried.

Similar querying strategies were used in prior works on binary and multiclass classification [22, 14, 1],
but specialized to linear representations. The key advantage of the linear case is that the set F (formally, a
different set with similar properties) can be maintained in closed form. This further leads to closed form
solutions for c+(y) and c−(y), so that the algorithms are easily implemented. However, with a general set G
and a regression oracle, computing these confidence intervals is less straightforward. We use the MAXCOST
and MINCOST subroutines, and discuss this aspect of our algorithm next.

3.1 Efficient Computation of Cost Range
In this section, we describe the subroutines MAXCOST and MINCOST which use the oracle to compute
approximations to the maximum and minimum cost on label y realized by Gi(y), the current version space
(Eq. (2)).

Describing the algorithm requires some additional notation. Given the empirical risk functional R̂(g; y)
over a set of examples (we suppress the subscript as the number of examples is fixed here), we define a
weighted risk functional incorporating a fresh unlabeled example x as

R̃(g, w, c; y) = R̂(g; y) + w(g(x)− c)2. (6)

Finding argming R̃(g, w, c; y) involves a single oracle call. We also define a set of near-optimal regressors

G(∆; y) =
{
g ∈ G | R̂(g; y)−min

g′
R̂(g′; y) ≤ ∆

}
. (7)

Thus at round i, the set Gi(y) in COAL is equivalent to G(∆i; y), although we will use different radii here.
The algorithm for the maximum cost approximation, displayed in Algorithm 2, is based on a form of

binary search. (The minimum cost approximation is analogous.) The key idea is to solve a sequence of
carefully designed regression problems involving the data accumulated so far along with the (x, y) pair in
question with different weights.

When invoked with a radius parameter ∆, the algorithm maintains an interval [`, h] that contains
c+(x, y,G(∆; y)) and uses a binary search to refine the interval. Using a fixed cost c and starting with
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Algorithm 3: BINARYSEARCH(BSEARCH)

1: Input: (x, y, c), ε, ∆, risk functional R̂(·; y).
2: w1,` = 0, w1,h = ∆/ε2, t = 1.
3: while |wt,` − wt,h| ≥ 2∆ do
4: wt ← wt,`+wt,h

2 , gt = argming∈G R̃(g, wt, c; y).
5: If gt ∈ G(∆; y), wt+1,` ← wt, wt+1,h ← wt,h.
6: Else wt+1,` ← wt,`, wt+1,h ← wt.
7: t← t+ 1.
8: end while
9: return g` = argming R̃(g, wt,`, c; y), and gh = argming R̃(g, wt,h, c; y).

some initial weight w, at each iteration, the binary search computes argming R̃(g, w, c; y) and verifies if
the resulting regressor belongs to G(∆; y). If it does, it increases w, and otherwise it shrinks w. Once a
termination criteria is reached, the BINARYSEARCH routine outputs two regressors (g`, gh) that provide new
upper and lower bounds on c+(x, y,G(∆; y)).

The MAXCOST routine terminates and outputs gh(x) if it has reasonable empirical regret. Otherwise, it
updates parameters for the next binary search based on g`(x), gh(x).

Our main algorithmic result guarantees that this procedure produces an adequate approximation to
c+(x, y,G(∆; y)) without requiring too many oracle calls.

Theorem 1. For any (x, y),∆, and ε, the MAXCOST algorithm outputs ĉ satisfying

c+(x, y,G(∆; y)) ≤ ĉ ≤ c+(x, y,G(4∆; y)) +
√

3ε.

Further, the algorithm uses O(ε−2 log(1/ε)) oracle calls.

An immediate consequence of the theorem is a bound on the oracle complexity of COAL.

Corollary 2. Over the course of n examples, COAL makes O(Kn2 log(n)) calls to the square loss oracle.

Thus COAL can be implemented in polynomial time for any set G that admits efficient square loss
optimization. However, in practice, the number of oracle calls and the oracle itself are too computationally
demanding to scale to larger problems. Our implementation alleviates this with an alternative heuristic
approximation based on a sensitivity analysis of the oracle, which we detail in Section 6.

4 Generalization Analysis
In this section, we derive generalization guarantees for COAL. Our analysis assumes that the regressor set G
is large, but finite. We study two different settings: one with minimal assumptions and one low-noise setting.

Our low-noise assumption is related to the Massart noise condition [21], which in binary classification
posits that the Bayes optimal predictor is bounded away from 1/2 for all x. Our condition generalizes this
to CSMC and posits that, the expected cost of the best label is separated from the expected cost of all other
labels.

7



Assumption 2. A distribution D supported over (x, c) pairs satisfies the Massart noise condition, if there
exists τ > 0 such that for all x (with D(x) > 0),

f?(x; y?(x)) ≤ min
y 6=y?(x)

f?(x; y)− τ,

where y?(x) = argminy f
?(x; y).

The Massart noise condition describes favorable prediction problems that lead to sharper generalization
and label complexity bounds for COAL. COAL can also be analyzed under a milder assumption inspired by
the Tsybakov noise condition, an analysis that we defer to an extended version.

Our results depend on the noise level in the problem, which we define using the following quantity, given
any ζ > 0.

Pζ , Pr
x∼D

[ min
y 6=y?(x)

f?(x; y)− f?(x; y?(x)) ≤ ζ]. (8)

Pζ describes the probability that the expected cost of the best label, which is y?(x), is close to the expected
cost of the second best label. When Pζ is small for large ζ the labels are well-separated so learning is easier.
For instance, under a Massart condition Pζ = 0 for all ζ ≤ τ .

We now state our generalization guarantee.

Theorem 3. For any δ < 1/e, for all i ∈ [n], with probability at least 1− δ, we have

Ex,c[c(hfi+1(x))− c(hf?(x))] ≤ min
ζ>0

{
ζPζ +

2κKνn
ζi

}
,

where κ = 80, νn = log
(

2n2|G|K
δ

)
, fi is as defined in Line 6 of Algorithm 1, and hfi is defined in

Equation (1).

In the worst case, we bound Pζ by 1 and optimize for ζ to obtain an Õ(
√
K log(|G|/δ)/i) bound after i

samples. To compare, the standard generalization bound is Õ(
√

log(|F|/δ)/i) [20], which agrees with our
bound since |F| = |G|K in our case.

However, since the bound captures the difficulty of the CSMC problem as measured by Pζ , we can obtain
a sharper result under Assumption 2 by setting ζ = τ .

Corollary 4. Under Assumption 2, for any δ < 1/e, for all i ∈ [n], with probability at least 1− δ, we have

Ex,c[c(hfi+1
(x))− c(hf?(x))] ≤ 2κKνn

iτ
.

Thus, Massart-type conditions lead to a faster Õ(1/n) convergence rate. This agrees with the literature
on active learning for classification [21] and can be viewed as a generalization to CSMC. Importantly, both
generalization bounds recover the optimal rates and are independent of the safety parameter β.

5 Label Complexity Analysis
Without distributional assumptions, the label complexity of COAL can be O(n), just as in the binary
classification case, since there may always be confusing labels that force querying. In line with prior work,
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we introduce two disagreement coefficients that characterize favorable distributional properties. We first
define a set of good classifiers, the cost-sensitive regret ball:

Fcsr(r) =
{
f ∈ F

∣∣∣ E [c(hf (x))− c(hf?(x))] ≤ r
}
.

We may now define the disagreement coefficients.

Definition 1 (Disagreement coefficients). Define

γr(x, y) = γ(x, y,Fcsr(r)), and

DIS(r, y) = {x | ∃f, f ′ ∈ Fcsr(r), hf (x) = y 6= hf ′(x)}.

Then the disagreement coefficients are defined as:

θ1 , sup
η1,r>0

η1

r
P (∃y | γr(x, y) > η1 ∧ x ∈ DIS(r, y))

θ2 , sup
η1,r>0

η1

r

∑
y

P (γr(x, y) > η1 ∧ x ∈ DIS(r, y)) .

Intuitively, the conditions in both coefficients correspond to the checks on the domination and cost range of
a label in Lines 13 and 15 of Algorithm 1. Specifically, when x ∈ DIS(r, y), there is confusion about whether
y is the optimal label or not, and hence y is not dominated. The condition on γr(x, y) additionally captures
the fact that a small cost range provides little information, even when y is non-dominated. Collectively, the
coefficients capture the probability of an example x where the good classifiers disagree substantially on x in
both predicted costs and labels. Importantly, the notion of good classifiers is via the algorithm-independent
set Fcsr(r), and is only a property of F and D.

The definition is a natural adaptation from binary classification [16], where a similar disagreement region
to DIS(r, y) is used. Our definition asks for confusion about the optimality of a specific label y, which
provides more detailed information about the cost-structure than simply asking for any confusion among the
good classifiers. The 1/r scaling leads to bounded coefficients in many examples [16], and we also scale by
the cost range parameter η1, so that the favorable settings for active learning can be concisely expressed as
having θ1, θ2 bounded, as opposed to a complex function of η1.

The next two results bound the labeling effort (Def. (4)) in the high noise and low noise cases respectively.
The low noise assumption enables a significantly sharper bound.

Theorem 5. With probability at least 1 − 2δ, the label complexity of the algorithm over n examples is
bounded by,

L1 = O
(

(25)1/β
(
nθ1

√
Kνn + log(1/δ)

))
L2 = O

(
(25)1/β

(
nθ2

√
Kνn +K log(1/δ)

))
,

where νn = log
(

2n2|G|K
δ

)
.

9



Theorem 6. Assume the Massart noise condition holds. With probability at least 1− 2δ the label complexity
of the algorithm over n examples is at most,

L1 = O
(

251/β

τ2

(
nβK log(n)νnθ1 + log(1/δ)

))
L2 = O

(
251/βK

τ2

(
nβ log(n)νn [Kθ1 + θ2] + log(1/δ)

))
.

In the high-noise case, the bounds scales with nθ for the respective coefficients. This agrees with results
in binary classification, where at best constant-factor savings over passive learning are possible, when the
disagreement coefficient is small. On the other hand, in the low noise case, the label complexity scales as
Õ(c1/βnβθ/τ2) for the appropriate coefficient, which is a polynomial improvement over passive learning.
However, the constant in the label complexity scales exponentially with 1/β so β should not be chosen to be
arbitrarily small. The influence of β in our bound arises from using shrinking radii to ensure bad regressors
do not influence the query rule. However we do believe that sharper bounds are possible.

Note that θ2 can be much smaller than Kθ1, as demonstrated through an example in the next section. In
such cases, only a few labels are ever queried and the L2 bound in the high noise case is more interesting.
Unfortunately, under Massart-noise, the L2 bound depends directly on Kθ1 along with θ2, so that we do not
benefit when θ2 � Kθ1. If we allow the ηi parameter to depend on the noise level τ , we can obtain a better
bound solely depending on θ2 for L2. However, we prefer to use the more robust choice 1/

√
i which still

allows COAL to partially adapt to low-noise and achieves low label complexity.
Unfortunately, translating our bounds to binary classification reveals suboptimality here. In particular,

under Massart noise and bounded coefficients, the label complexity is typically log(n)/τ2 which contrasts
with our nβ/τ2 rate. Information-theoretically, the logarithmic rate is possible in CSMC, but it remains open
whether an efficient algorithm can achieve it.

Our loss in rate arises from setting β > 0, but when β = 0, sub-optimal regressors will leave the version
space at some round i < n, at which point we stop accumulating evidence against them. Since with β = 0 the
radius ∆i is non-decreasing, these regressors may re-enter the space at some later round and cause us to issue
more queries. In binary classification, ideas based on hallucinating labels for unqueried examples address this
issue [12], but this technique does not seem applicable here since the only safe choice of hallucinated cost
that avoids eliminating f∗ appears to be f∗(x; y), which is naturally unknown. Our solution uses β > 0 to
ensure a shrinking radius. However, in order to avoid eliminating f?, the initial radius ∆1 must be larger than
is required for standard concentration arguments, so the algorithm is somewhat conservative.

5.1 Some Examples
We now describe two examples to give more intuition for COAL and our label complexity bounds.

Our first example shows that querying only the non-dominated labels can dramatically reduce the label
complexity. Consider a problem under Assumption 2, where the optimal cost is predicted perfectly, the second
best cost is τ worse and all the other costs are substantially worse, but with variability in the predictions.
Since all classifiers predict the right label, we get θ1 = θ2 = 0, so our label complexity bound is O(1). More
intuitively, since every regressor is always certain of the optimal label and its cost, we actually make zero
queries. On the other hand, all of the suboptimal labels have large cost ranges, and hence querying based
solely on a cost range criteria leads to a large label complexity.

A related example demonstrates the improvement in our query rule over more naïve approaches where
we query either no label or all labels, which is the natural generalization of query rules from multiclass
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classification [1]. In the above example, if the best and second best labels are confused occasionally θ1 may
be large, but we expect θ2 � Kθ1 since only the second best label can have mr(x, y) small. Thus, the L2

bound for our algorithm is a factor of K smaller than with a naive query rule since COAL only queries the
best and second best labels.

6 Experiments
For computational efficiency, we implemented an approximate version of Algorithm 1 using online optimiza-
tion, based on online linear least-squares regression. The algorithm processes the data in one pass, computing
an approximate ERM and cost ranges as described below.

The idea is to replace gi,y , the ERM, with an approximation goi,y obtained by online updates, and compute
the minimum and maximum costs via a sensitivity analysis of the online update. Specifically, we define a
sensitivity value s(x, c, goi,y) ≥ 0, which is the derivative of the prediction on x as a function of the importance
weight w, for a fresh example x and cost c = 0 or c = 1 (for approximating c− and c+ respectively). Then
we approximate c− via goi,y(x)− wo · s(x, 0, goi,y) where wo is the largest weight w satisfying

w(goi,y(x)2 − (goi,y(x)− ws(x, 0, goi,y))2) ≤ ∆i,

where ∆i is the radius used at round i. We use an analogous technique to approximate the maximum cost.
See Appendix A for more details.

6.1 Simulated Active Learning
We performed simulated active learning experiments with three datasets. ImageNet 20 and 40 are sub-trees
of the ImageNet hierarchy covering 20 and 40 most frequent classes, where each example has a single
zero-cost label and the cost for incorrect labels is the tree-distance to the correct one. The feature vectors
are the top layer of the Inception neural network [29]. The third dataset, RCV1-v2 [19], is a multilabel
text-categorization dataset, which has 103 topic labels, organized as a tree with similar tree-distance cost
structure as the ImageNet data. Some dataset statistics are in Figure 2 (upper right).

We compare our online version of COAL to passive online learning. We use the cost-sensitive one-
against-all (CSOAA) implementation in Vowpal Wabbit4, which performs online linear regression for each
label separately. There are two tuning parameters in our implementation. First, instead of ∆i, we set the
radius of the version space to ∆′i = κνi−1

i−1 (i.e. β = 0 and the log factor νi = log
(

2(i−1)2|G|K
δ

)
scales with

i) and instead tune the constant κ. This alternate “mellowness" parameter controls how aggressive the query
strategy is. The second parameter is the learning rate used by online linear regression5.

For each parameter setting and each dataset, we make one pass through the training set and check the test
cost (which is just the normalized expected cost) of the model every doubling number of queries. We repeat
this on 100 random permutations of the training data and plot the results in Figure 2. For each mellowness,
we show the results of the best learning rate, which maximizes a notion of AUC that reflects the tradeoff
between test cost and number of queries (see Eq. (11) in Appendix A).

Figure 2 shows, for each dataset and mellowness, the number of queries against the median test cost
along with bars extending from the 15th to 85th quantile. Overall, COAL achieves a better trade-off between

4http://hunch.net/~vw
5We use the default online learning algorithm in Vowpal Wabbit, which is a scale-free [24] importance weight invariant [18] form of

AdaGrad [15].
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Figure 2: Experiments with COAL. Top row shows test cost vs. number of queries for simulated active
learning experiments. Bottom row shows accuracy vs. number of rollouts for active and passive learning as
the CSMC algorithm in learning-to-search. Upper-right shows dataset statistics for both experimental settings
(` is the average sequence length for the sequence labeling experiments).

performance and queries. With proper mellowness parameter, active learning achieve similar test cost as
passive learning with a factor of 8 to 32 less queries. On ImageNet 40 and RCV1-v2 (recall Figure 1), active
learning achieves better test cost with a factor of 16 less queries. On RCV1-v2, COAL queries like passive
up to around 256k queries, since the data is very sparse, and linear regression has the property that the cost
range is maximal when an example has a new unseen feature. Once COAL sees all features a few times, it
queries much more efficiently than passive. Note that these plots correspond to the label complexity L2, with
similar results for L1 in Appendix A.3.

While not always the best, we recommend using a mellowness setting of 0.01 in practice as it achieves
reasonable performance on all three datasets. This is also confirmed by the learning-to-search experiments,
which we discuss next.

6.2 Learning to Search
We also experiment with COAL as the base leaner in learning-to-search [13, 11], which reduces joint
prediction problems to CSMC. In this framework, a joint prediction example defines a search space, where a
sequence of decisions are made to generate the structured label. We focus here on sequence labeling tasks,
where the input is a sequence of words and the output is a sequence of labels (specifically, parts of speech or
named entities).

Learning-to-search solves joint prediction problems by generating the output one label at a time, con-
ditioning the input x on all past decisions. Since mistakes may lead to compounding errors, it is natural to
represent the decision space as a CSMC problem, where the classes are the “actions” available (possible
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labels for a word) and the costs reflect the long term loss of each choice. Intuitively, we should be able to
avoid expensive computation of long term loss on decisions like “is ‘the’ a DETERMINER?” once we are quite
sure of the answer. Similar ideas motivate adaptive sampling for structured prediction. [26].

We specifically use AGGRAVATE [23, 11], which runs a learned policy to produce a backbone sequence
of labels. For each position in the input sentence, it then considers all possible deviation actions and executes
an oracle for the rest of the sequence. The loss on this complete output is used as the cost for the deviating
action. Run in this way, AGGRAVATE requires mK roll-outs when the input sentence has m words and each
word can take one of K possible labels.

Since each roll-out takes O(m) time, this can be computationally prohibitive, and hence we use active
learning to reduce the number of roll-outs. We use COAL and a passive learning baseline inside AGGRAVATE
on three joint prediction datasets (dataset statistics are in Figure 2, upper right). As above, we use several
mellowness values and the same AUC criteria to select the best learning rate. The results are in the bottom
row of Figure 2, with the black arrow pointing to test cost for our recommended mellowness of 0.01.

Overall, active learning reduces the number of roll-outs required, but the improvements vary on the three
datasets. On the Wikipedia data, COAL performs a factor of 4 less rollouts to achieve similar performance
to passive learning, and it also achieves substantially better test performance. A similar, but less dramatic,
behavior arises on the NER task. On the other hand, COAL offers minimal improvement over passive
learning on the POS-tagging task.

7 Discussion
This paper presents a new active learning algorithm for cost-sensitive multiclass classification. The algorithm
enjoys strong theoretical guarantees on running time, generalization error, and label complexity, and also
outperforms passive baselines both in CSMC and structured prediction.

We close with some intriguing questions:
1. Can we use a square loss oracle in other partial information problems like contextual bandits?
2. Can we avoid the safety parameter to achieve the optimal complexity in the low noise case?
We hope to answer these questions in future work.
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A Experimental Details

A.1 Finding Cost Ranges with Online Approximation
Consider the maximum and minimum costs for a fixed label y at round i, both of which may be suppressed.
Owing to the monotonicity property of R̂(g, w, c; y) (Lemma 1), an alternative to MINCOST and MAXCOST
is to find

w := max{w | R̂(g
w

)− R̂(gi,y) ≤ ∆i} (9)

w := max{w | R̂(gw)− R̂(gi,y) ≤ ∆i} (10)

and return g
w

(x) and gw(x) as the minimum and maximum costs, where

g
w
, arg min

g∈G
R̂(g) + w(g(x)− 0)2

gw , arg min
g∈G

R̂(g) + w(g(x)− 1)2

and gi,y , argming∈G R̂(g) as in Algorithm 1. We use two steps of approximation here. Using the definition
of gw and g

w
we have:

R̂(g
w

)− R̂(gi,y) ≤ w · gi,y(x)2 − w · g
w

(x)2

R̂(gw)− R̂(gi,y) ≤ w · (gi,y(x)− 1)2 − w · (gw(x)− 1)2.

We use this upper bound in place of R̂(gw)− R̂(gi,y) in Eqs. (9) and (10). Second, we replace gi,y , g
w

, and
gw with approximations obtained by online updates. More specifically, we replace gi,y with goi,y , the current
regressor produced by all online updates so far, and approximate the others by

g
w

(x) ≈ goi,y(x)− w · s(x, 0, goi,y)

gw(x) ≈ goi,y(x) + w · s(x, 1, goi,y)

where s(x, y, goi,y) ≥ 0 is a sensitivity value that approximates the change in prediction on x resulting from
an online update to goi,y with features x and label y. The computation of this sensitivity value is governed by
the actual online update where we compute the derivative of the change in the prediction as a function of the
importance weight w for a hypothetical example with cost 0 or cost 1 and the same features. This is possible
for essentially all online update rules on importance weighted examples where it corresponds to taking the
limit as w → 0 of the change in prediction due to an update divided by w. By inspection this requires only
O(d) time per example, where d is the average number of non-zero features. With these two steps, we obtain
approximate minimum and maximum costs using:

goi,y(x)− wo · s(x, 0, goi,y)

goi,y(x) + wo · s(x, 1, goi,y)

where

wo , max{w | w
(
goi,y,(x)2 − (goi,y(x)− w · s(x, 0, goi,y))2

)
≤ ∆i}

wo , max{w | w
(
(goi,y,(x)− 1)2 − (goi,y(x) + w · s(x, 1, goi,y)− 1)2

)
≤ ∆i}.
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ImageNet 20 ImageNet 40 RCV1-v2 POS NER NER-wiki
passive 1 1 0.5 1.0 0.5 0.5
active (10−1) 0.05 0.1 0.5 1.0 0.1 0.5
active (10−2) 0.05 0.5 0.5 1.0 0.5 0.5
active (10−3) 1 10 0.5 10 0.5 0.5

Table 1: Best learning rates

The online update guarantees that goi,y(x) ∈ [0, 1]. Since the minimum cost is lower bounded by 0, we

have wo ∈
(

0,
goi,y(x)

s(x,0,goi,y)

]
. Finally, because the objective w(goi,y(x))2 − w(goi,y(x) − w · s(x, 0, goi,y))2 is

increasing in w within this range (which can be seen by inspecting the derivative), we can find wo with binary
search. Using the same techniques, we also obtain an approximate maximum cost.

It is worth noting that the approximate cost ranges (without the sensitivity trick) are contained in the exact
cost ranges because we approximate the difference in squared error by an upper bound. Hence, the query rule
in this online algorithm should be more aggressive than the query rule in Algorithm 1.

A.2 Choosing the Learning Rate
For all experiments, we show the results obtained by the best learning rate for each mellowness on each
dataset. We choose the best learning rate as follows. For each dataset let perf(m, l, q, t) denote the test
performance of the algorithm using mellowness m and learning rate l on the tth permutation of the training
data under a query budget of 2(q−1) · 10 · K, q ≥ 1. Let query(m, l, q, t) denote the number of queries
actually made. Note that query(m, l, q, t) < 2(q−1) · 10 ·K if the algorithm runs out of the training data
before reaching the qth query budget6 . To evaluate the trade-off between test performance and number of
queries, we define the following performance measure:

AUC(m, l, t) =
1

2

qmax∑
q=1

(
perf(m, l, q + 1, t) + perf(m, l, q, t)

)
·
(

log2

query(m, l, q + 1, t)

query(m, l, q, t)

)
, (11)

where qmax is the minimum q such that 2(q−1) ·10 is larger than the size of the training data. This performance
measure is the area under the curve of test performance against numbers of queries in log2 scale. A large
value means the test performance quickly improves with the number of queries. The best learning rate for
mellowness m is then chosen as

l?(m) , arg max
l

median1≤t≤100 AUC(m, l, t).

The best learning rates for different datasets and mellowness settings are in Table 1.

A.3 Additional Figures for Simulated Active Learning
In Figure 3, we plot the test error as a function of the number of examples for which at least one query was
requested, for each dataset and mellowness parameter. This experimentally corresponds to the L1 term in our
label complexity analysis.

6In fact, we check the test performance only in between examples, so query(m, l, q, t) may be larger than 2(q−1) · 10 ·K by an
additive factor of K, which is negligibly small.
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Figure 3: Additional figures for simulated active learning experiments. The plots show the test cost as a
function of the number of examples where even a single query was issued.

In comparison with Figure 2 involving the total number of queries, the improvements offered by active
learning are slightly less dramatic here. This suggests that our algorithm queries just a few labels for each
example, but does end up issuing at least one query on most of the examples. Nevertheless, one can still
achieve test cost competitive with passive learning using a factor of 2-16 less labeling effort, as measured by
L1.

B Running time analysis
Throughout this section, fix an x, y pair, an iteration i, as well a radius ∆ and an accuracy ε. We focus on
approximating c+(x,G(∆; y)) (See Eqs. (2) and (7)), approximating the minimum cost is very similar. To
simplify notation, we drop dependence on x and y. We recall our earlier notation R̂i(g; y) (Eq. (5)), except
we drop the dependence on both y and i which are fixed throughout this appendix. We also recall some other
important pieces of notation which are accordingly simplified for brevity

R̂(g) = Ê[(g(x)− c(y))21 (y queried on x)]

G(∆) = {g ∈ G : R̂(g)−min
g
R̂(g) ≤ ∆}

gmin = argmin
g∈G

R̂(g)

R̃(g, w, c) = R̂(g) + w(g(x)− c)2

c+(α∆) = max
g∈G(α∆)

g(x)

c? = c+(∆)

R̂(g) is the empirical square loss used to define the set of good regressors G(∆) in the algorithm. The precise
form of R̂(g) does not matter in this section. gmin is the empirical square loss minimizer, which is the center
of the ball G(∆). R̃(g, w, c) is the empirical square loss with one additional example, with features x, target
c, and weight w. This functional is used to define new square loss problems in our algorithm. Our goal is to
find a number ĉ such that,

c? ≤ ĉ ≤ c+(4∆) +
√

3ε.
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Finally, let g? be any function such that g?(x) = c? and R̂(g?)− R̂(gmin) ≤ ∆. In other words g? realizes the
maximum cost on example x. Note that g? is not the same regressor that satisfies the realizability condition.

We start the running time analysis with several lemmas that characterize the behavior of various compo-
nents of the algorithm.

An important structure to the square loss problem is a monotonicity property of both the risk functional
and the predictions.

Lemma 1. For any c and for w′ ≥ w ≥ 0, let g = argming R̃(g, w, c) and g′ = argming R̃(g, w′, c). Then

R̂(g′) ≥ R̂(g) and (g′(x)− c)2 ≤ (g(x)− c)2.

Proof. By the definitions,

R̂(g′) + w′(g′(x)− c)2 = R̃(g′, w′, c)

≤ R̂(g) + w′(g(x)− c)2

= R̂(g) + w(g(x)− c)2 + (w′ − w)(g(x)− c)2

≤ R̂(g′) + w(g′(x)− c)2 + (w′ − w)(g(x)− c)2.

Rearranging shows that

(w′ − w)(g′(x)− c)2 ≤ (w′ − w)(g(x)− c)2.

Since w′ ≥ w, we must have (g′(x)− c)2 ≤ (g(x)− c)2, which is the second claim. For the first claim, the
definition of g gives

R̂(g) + w(g(x)− c)2 ≤ R̂(g′) + w(g′(x)− c)2

Rearranging this inequality gives,

R̂(g′)− R̂(g) ≥ w((g(x)− c)2 − (g′(x)− c)2) ≥ 0.

The next critical lemma shows that the termination condition in Line 6 of MAXCOST meets the accuracy
guarantee.

Lemma 2. If c ≥ c?, w ≥ ∆/ε2 and g = argming R̃(g, w, c) then g(x) ≥ c? − ε. Further, if g ∈ G(∆),
then g(x) ≤ c?.

Proof. The second claim is straightforward by the definition of c?.
For the first claim, we work to establish a contradiction. Suppose that g(x) < c? − ε. By the facts that g

is the minimizer of R̃(g, w, c), gmin is the minimizer of R̂(g), and c ≥ c?, we have

w(c− (c? − ε))2 < w(c− g(x))2 ≤ R̃(g, w, c)− R̂(gmin) ≤ R̃(g?, w, c)− R̂(gmin) ≤ ∆ + w(c− c?)2.

We may further lower bound (again using c ≥ c?),

(c− c? + ε)2 = (c− c?)2 + 2(c− c?)ε+ ε2 ≥ (c− c?)2 + ε2.

Re-arranging proves that

w < ∆/ε2.

The contrapositive is that if w ≥ ∆/ε2, then we must have g(x) ≥ c? − ε, which is the desired claim.
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The next lemma is the main result for the BINARYSEARCH subroutine.

Lemma 3. Suppose we invoke the subroutine BINARYSEARCH with parameters ε and ∆. Then it terminates
in polynomial time with O(log2(1/(ε2))) oracle calls. The algorithm outputs two regressors (g`, gh) and if
c ≥ c? is passed as input then c? ∈ [g`(x), gh(x)]. If additionally, gh /∈ G(4∆) then c? ≤ (g`(x) + gh(x))/2.

Proof. The logarithmic running time is fairly straightforward since in each iteration the algorithm halves
the interval, has initial interval of size ∆/ε2 and terminates when the interval is smaller than 2∆. Thus for
T ≥ log2(1/(2ε2)) the interval has size at most

2−T (∆/ε2) ≤ 2− log2(1/(2ε2))(∆/ε2) = 2∆

Hence the number of iteration is upper bounded by dlog2(1/(2ε2))e.
For the first termination claim, the invariant that we maintain is that for all t ≥ 1, gt,h = argming R̃(g, wt,h, c)

satisfies gt,h(x) ≥ c? while gt,` = argming R̃(g, wt,`, c) satisfies gt,`(x) ≤ c?.
For gt,h, we first establish the base case. Observe that g1,h = gc (computed in MAXCOST just before

the invocation of BINARYSEARCH) and R̂(gc) ≥ R̂(gmin) + ∆ by the termination check in Line 6. By
construction, in this iteration and in all others, we have that gt,h /∈ G(∆), since this is the requirement for
updating wt,h. But since gt,h minimizes the risk function R̃(g, wt,h, c) we get,

R̂(gmin) + ∆ + wt,h(gt,h(x)− c)2 ≤ R̃(gt,h, wt,h, c) ≤ R̃(g?, wt,h, c) ≤ R̂(gmin) + ∆ + wt,h(c? − c)2.

Since c ≥ c?, this implies that gt,h(x) ≥ c?.
The proof for gt,` is simpler, since we only shrink the interval up if we find something in G(∆). By

definition of c? the cost of gt,`(x) for these iterations satisfies gt,`(x) ≤ c?.
For the second termination claim we must use the condition |wt,h − wt,`| ≤ 2∆ by the termination

condition and gh /∈ G(4∆). Let t be the terminal iteration, so g` = argming R̃(g, wt,`, c) and analogously
for gh. Assume for the sake of contradiction that c? ≥ (gh(x) + g`(x))/2. Since c ≥ c?, this implies that

R̂(gmin) + 4∆ + wt,h(gh(x)− c)2 ≤ R̃(gh, wt,h, c) ≤ R̃(g?, wt,h, c) ≤ R̂(gmin) + ∆ + wt,h(c− c?)2

≤ R̂(gmin) + ∆ + wt,h

(
c− gh(x) + g`(x)

2

)2

.

Similarly we have

R̂(gmin) + wt,`(g`(x)− c)2 ≤ R̃(g`, wt,`, c) ≤ R̃(g?, wt,`, c) ≤ R̂(gmin) + ∆ + wt,`

(
c− gh(x) + g`(x)

2

)2

.

Adding the two equations gives

2∆ + wt,`(c− g`(x))2 + wt,h(c− gh(x))2 ≤ (wt,h + wt,`)

(
c− gh(x) + g`(x)

2

)2

⇒ 2∆ + wt,h
[
(c− g`(x))2 + (c− gh(x))2

]
≤ 2wt,h

(
c− gh(x) + g`(x)

2

)2

+ (wt,h − wt,`)(c− g`(x))2

⇒ 2∆ + wt,h
[
(c− g`(x))2 + (c− gh(x))2

]
≤ 2wt,h

(
c− gh(x) + g`(x)

2

)2

+ 2∆ since c, g`(x) ∈ [0, 1]

⇒ 1

2
(c− g`(x))2 +

1

2
(c− gh(x))2 ≤

(
c− gh(x) + g`(x)

2

)2

.
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The last line is a contradiction since E[f(Z)] ≥ f(E[Z]) for convex f , which can be applied by taking
Z = Unif({g`(x), gh(x)}) and f(y) = (c− y)2.

The last lemma ensures sufficient progress in the case when gh /∈ G(4∆), which is crucial for the oracle
complexity bound.

Lemma 4. Suppose c ≥ c? and that there exists g ∈ G(∆) such that c− g(x) = δ with δ ∈ [
√

3ε, 1]. Then if
the output (g`, gh) of BINARYSEARCH satisfies R̂(gh)− R̂(gmin) > 4∆, then gh(x) ≤ c+ δ − ε2.

Proof. We know that we never use a weight larger than ∆/ε2 by the initialization of w1,`, w1,h. Now suppose
that we output gh such that R̂(gh) > 4∆, which by construction is the minimizer of R̃(g, w, c) for some
w ≤ ∆/ε2. Then

R̂(gmin) + 4∆ + w(gh(x)− c)2 ≤ R̃(gh, w, c) ≤ R̃(g, w, c) ≤ ∆ + w(g(x)− c)2 = R̂(gmin) + ∆ + wδ2.

Rearranging and using the upper bound w gives

(gh(x)− c)2 ≤ δ2 − 3ε2.

The condition on δ ensures that the right hand side is non-negative. It is easy to see that δ2−3ε2 ≤ (δ−ε2/δ)2

simply by expanding the square. Hence we get that

|gh(x)− c| ≤ |δ − ε2/δ| ≤ δ − ε2.

We can safely remove the absolute value since we have the condition that δ ≥
√

3ε, which ensures that
δ − ε2/δ is non-negative. Since gh is the result of an oracle call with weight w ≤ ∆/ε2, either it has
R̂(gh)− R̂(gmin) ≤ 4∆, or it must have gh(x) ≤ c+ δ − ε2.

We are now ready to prove Theorem 1

Proof of Theorem 1. The first step of the proof is to inductively verify that c ≥ c?, h ≥ c?, ` ≤ c? at all
steps in the algorithm execution. These invariants are clearly maintained at the onset of the algorithm. Now
suppose they are maintained at the onset of some iteration. If gc satisfies R̂(gc) ≤ R̂(gmin) + ∆, then by
Lemma 2 we are done. Otherwise, we obtain two regressors (g`, gh) from BINARYSEARCH. For the lower
bound, we always have g`(x) ≤ c? by Lemma 3, which verifies the inductive step for `. For the upper
bound to c?, if R̂(gh)− R̂(gmin) ≤ 4∆ then by Lemma 3, we know that c? ≤ gh(x), but we also know that
gh(x) ≤ c+(4∆) by the definition, so we are done. The last case is when R̂(gh) > 4∆, but here we may
apply the second statement of Lemma 3, which asserts that c? ≤ (gh(x) + gl(x))/2. The settings of `, h, c
now verify the inductive claim, since ` ≥ gl implies that (h+ l)/2 ≥ (gh(x) + gl(x))/2 ≥ c?.

This immediately proves the correctness of the algorithm, since the loop stopping condition, along with
the invariant, guarantees that c ≥ c? ≥ ` which means that

ĉ− c? ≤ c− ` =
h− `

2
≤
√

3ε.

For the iteration complexity, we must apply Lemma 4. In particular, we use the width of the interval [`, h]
which contains c? as a potential function and show that it decreases with every step. Let δt denote h − `,
which is the width of the interval before the tth iteration (so δ1 = 1). Every non-terminal iteration satisfies
c ≥ c?. Moreover, for any t > 1, we use as the regressor g, the one that achieved the value ` used to define c.
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This ensures that g(x) = `. Furthermore, in application of Lemma 4, we set δ , c− g(x) = c− `, which
conveniently gives 2δ = δt = h− `. Recall that we entered the loop at tth iteration, meaning that δt ≥ 2

√
3ε

and hence δ ∈ [
√

3ε, 1]. Lemma 4 states that either we terminate successfully, or we are guaranteed that
gh(x) ≤ c+ δ − ε2. This means that

δt+1 = gh(x)−max{`, g`(x)} ≤ c+ δ − ε2 − ` = δ + δ − ε2 = δt − ε2,

where the first equality used c− ` = δ which is true by definition. Since we terminate at the first T such that
δT ≤ 2

√
3ε, we require at most O(1/ε2) iterations. By Lemma 3, each iteration takes O(log(1/ε)) oracle

calls.

C Generalization analysis
To bound the generalization error of Algorithm 1, we start by defining the central random variable in the
analysis. At round i, recall our notation Qi(y) = 1 (query y on example xi) which indicates the query rule.
The central random variable we study is,

Mi(g; y) ,
(
(g(xi)− ci(y))2 − (f?(xi; y)− ci(y))2

)
Qi(y). (12)

Here (xi, ci) is the ith example and cost presented to the algorithm. For simplicity, we write Mi when the
dependence on g and y is clear from context. For a vector regressor f , we write

Mi(f ; y) ,Mi(f(·; y); y).

We also recall some of the key constants and notations which were defined in Algorithm 1 and are heavily
used throughout this appendix.

∆i =
κεi−1

i− 1
, εi =

(n
i

)β
log

(
2n2|G|K

δ

)
, κ = 80.

R̂i(g; y) =
1

i− 1

i−1∑
j=1

[
(g(xj)− cj(y))2Qj(y)

]
.

gi,y = argmin
g∈G

R̂i(g; y), and fi = {gi,y}Ky=1.

Gi(y) = {g ∈ G|∀y, R̂i(g; y) ≤ R̂i(gi,y; y) + ∆i},

Fi = {f ∈ GK |∀y, R̂i(f(·; y); y) ≤ R̂i(gi,y; y) + ∆i}.

For ∆1 we use the convention that 1/0 =∞ so the initial radius is infinite. Let Ei[·] and Vari[·] denote the
expectation and variance conditioned on all randomness up to round i− 1. With these definitions, we turn to
several supporting claims.

C.1 Supporting Lemmata
Theorem 7 (Freedman-type Inequality [8, 2]). Let X1, . . . , XT be a sequence of real-valued random
variables. Assume for all t ∈ {1, . . . , T} that |Xt| ≤ R and E[Xt|X1, . . . , Xt−1] = 0. Define S =

∑T
t=1Xt

and V =
∑T
t=1 E[X2

t |X1, . . . , Xt−1]. For any δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ,

S ≤ (e− 2)λV +
ln(1/δ)

λ
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Lemma 5 (Concentration of squared loss). For any δ ∈ (0, 1), with probability at least 1− δ, the following
holds for all g ∈ G, y ∈ Y, i ∈ [n], t ∈ [n],∣∣∣∣∣∣

i+t−1∑
j=i

Ej [Mj ]−
i+t−1∑
j=i

Mj

∣∣∣∣∣∣ ≤ 2

√√√√i+t−1∑
j=i

Var
j

[Mj ]νn + 2νn

where νn , log
(

2n2|G|K
δ

)
.

Note that εt = n
t
βνn, is a scaled version of the confidence bound here, where the scaling shrinks

polynomially with t.

Proof. First observe that by the rescaling of the failure parameter, we can apply Freedman’s inequality for
each i, t, y, g and for each tail and a union bound proves the result.

We now apply the Freedman-type inequality in Theorem 7. For a fixed g ∈ G, y ∈ Y , the random variable
Mi is measurable with respect to the filtration {(xj , {(c(xj ; y), Qj(y))}y∈Y )}ij=1), so Mi − Ei[Mi] forms a
martingale difference sequence, where Ei[·] denotes expectation conditioned on all randomness up to round
i− 1. Moreover Mi − Ei[Mi] and Ei[Mi]−Mi are both conditionally centered and clearly at most 2. Thus
Freedman’s inequality gives,

i+t−1∑
j=i

Mj − Ej [Mj ] ≤ 2

√√√√i+t−1∑
j=i

Var
j

[Mj ]νn + 2νn,

except with probability δ
2n2|G|K . This follows by observing that (e − 2) ≤ 1 and setting λ =

√
νn/V ,

provided it meets the constraint λ ≤ 1/R. Otherwise we set λ = 1/R and use the fact that 1/R ≤
√
νn/V .

The bound on the right hand side also holds for the lower tail, again except with same probability. Thus a
union bound over both tails, all g ∈ G, y ∈ Y and pairs i, t gives the result.

Lemma 6 (Bounding variance of regression regret). We have for all (g, y) ∈ G × Y ,

Ei[Mi] = Ei
[
Qi(y)(g(xi)− f?(xi; y))2

]
,

Var
i

[Mi] ≤ 4Ei[Mi].

Proof. We take expectation of Mi over the cost conditioned on a fixed example xi = x and a fixed query
outcome Qi(y):

E[Mi | xi = x,Qi(y)] = Qi(y)× Ec[g(x)2 − f?(x; y)2 − 2c(y)(g(x)− f?(x; y)) | xi = x]

= Qi(y)
(
g(x)2 − f?(x; y)2 − 2f?(x; y)(g(x)− f?(x; y))

)
= Qi(y)(g(x)− f?(x; y))2.

The second equality is by Assumption 1, which implies E[c(y) | xi = x] = f?(x; y). Taking expectation
over xi and Qi(y), we have

Ei[Mi] = Ei
[
Qi(y)(g(xi)− f?(xi; y))2

]
.
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For the variance:

Var
i

[Mi] ≤ Ei[M2
i ]

= ·Ei
[
Qi(y)(g(xi)− f?(xi; y))2(g(xi) + f?(xi; y)− 2c(y))2

]
≤ 4 · Ei

[
Qi(y)(g(xi)− f?(xi; y))2

]
= 4Ei[Mi].

Lemma 7 (Sharp cost-sensitive bound). For all i > 0 if f? ∈ Fi, then for all f ∈ Fi

Ex,c[c(hf (x))− c(hf?(x))] ≤ min
ζ>0

{
ζPζ + 1 (ζ ≤ 2ηi) 2ηi +

4η2
i

ζ
+

6

ζ

∑
y

Ei [Mi(f ; y)]

}
,

where Pζ = Prx∼D[miny 6=hf? (x) f
?(x, y) ≤ f?(x, hf?(x)) + ζ] is the probability that the expected cost of

second best and best label are within ζ of each other.

Proof. Let y(x) = hf (x) and y?(x) = hf?(x) for shorthand. Define Sζ(x) = 1 (f?(x, y(x)) ≤ f?(x, y?(x)) + ζ)
and S′ζ(x) = 1

(
miny 6=y?(x) f

?(x, y) ≤ f?(x, y?(x)) + ζ
)
. Observe that for fixed ζ , Sζ(x)1 (y(x) 6= y?(x)) ≤

S′ζ(x) for all x. We can also majorize the complementary indicator to obtain the inequality

SCζ (x) ≤ (f?(x, y(x))− f?(x, y?(x))

ζ
.

We begin with the definition of realizability, which gives

Ex,c[c(hf (x))− c(hf?(x)] = Ex [f?(x, y(x))− f?(x, y?(x))1 (y(x) 6= y?(x))]

= Ex
[(
Sζ(x) + SCζ (x)

)
(f?(x, y(x))− f?(x, y?(x)))1 (y(x) 6= y?(x))

]
≤ ζExS′ζ(x) + Ei

[
SCζ (x)1 (y(x) 6= y?(x)) (f?(x, y(x))− f?(x, y?(x)))

]
The first term here is exactly the ζPζ term in the bound. We now focus on the second term, which depends on
our query rule. For this we must consider three cases.

Case 1. If both y(x) and y?(x) are not queried, then it must be the case that both have small cost
ranges. This follows since f ∈ Fi and hf (x) = y(x) so y?(x) does not dominate y(x). Moreover, since the
cost ranges are small on both y(x) and y?(x), since we know that f? is well separated under event SCζ (x),
the relationship between ζ and ηi governs whether we make a mistake or not. Specifically, we get that
SCζ (x)1 (y(x) 6= y?(x))1 (no query) ≤ 1 (ζ ≤ 2ηi) at round i. In other words, if we do not query and the
separation is big but we make a mistake, then it must mean that the cost range threshold ηi is also big.

Using this argument, we can bound the second term as,

Ei
[
SCζ (x)1 (y(x) 6= y?(x))1 (y(x), y?(x) not queried) (f?(x, y(x))− f?(x, y?(x)))

]
≤ Ei

[
SCζ (x)1 (y(x) 6= y?(x))1 (y(x), y?(x) not queried) (f?(x, y(x))− f(x, y(x) + f(x, y?(x))− f?(x, y?(x)))

]
≤ Ei

[
SCζ (x)1 (y(x) 6= y?(x))1 (y(x), y?(x) not queried) 2ηi

]
≤ Ei [1 (ζ ≤ 2ηi) 2γ] = 1 (ζ ≤ 2ηi) 2ηi.
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Case 2. If both y(x) and y?(x) are queried, we can easily relate the second term to the square loss,

Ei
[
SCζ (x)1 (y(x), y?(x) both queried) (f?(x, y(x))− f?(x, y?(x)))

]
≤ 1

ζ
Ei
[
1 (y(x), y?(x) both queried) (f?(x, y(x))− f?(x, y?(x)))

2
]

≤ 1

ζ
Ei
[
1 (y(x), y?(x) both queried) (f?(x, y(x))− f(x, y(x)) + f(x, y?(x))− f?(x, y?(x)))

2
]

≤ 2

ζ
Ei
[
1 (y(x) queried) (f?(x, y(x))− f(x, y(x)))2 + 1 (y?(x) queried) (f(x, y?(x))− f?(x, y?(x)))2

]
≤ 2

ζ

∑
y

Ei
[
Qi(y)(f?(x, y(x))− f(x, y(x)))2

]
=

2

ζ

∑
y

Ei [Mi(f ; y)] .

Passing from the second to third line here is justified by the fact that f?(x, y(x)) ≥ f?(x, y?(x)) and
f(x, y(x)) ≤ f(x, y?(x)) so we added two non-negative quantities together. The last step uses Lemma 6.
While not written, we also use the event 1 (y(x) 6= y?(x)) to avoid losing a factor of 2.

Case 3. The last case is if one label is queried and the other is not. Both cases here are analogous, so we
do the derivation for when y(x) is queried but y?(x) is not. Since in this case, y?(x) is not dominated (hf (x)
is never dominated provided f ∈ Fi), we know that the cost range for y?(x) must be small. Using this fact,
and essentially the same argument as in case 2, we get

Ei
[
SCζ (x)1 (y(x) queried, y?(x) not) (f?(x, y(x))− f?(x, y?(x)))

]
1

ζ
Ei
[
1 (y(x) queried, y?(x) not) (f?(x, y(x))− f?(x, y?(x)))

2
]

≤ 2

ζ
Ei
[
1 (y(x) queried, y?(x) not) (f?(x, y(x))− f(x, y(x)))

2
+ (f(x, y?(x))− f?(x, y?(x)))

2
]

≤ 2η2
i

ζ
+

2

ζ
Ei
[
1 (y(x) queried) (f?(x, y(x))− f(x, y(x)))

2
]

≤ 2η2
i

ζ
+

2

ζ

∑
y

Ei [Mi(f ; y)] .

We also obtain this term for the other case where y?(x) is queried by y(x) is not.
To summarize, adding up the contributions from these cases (which is an over-estimate since at most one

case can occur and all are non-negative), we get

Ex,c[c(hf (x))− c(hf?(x)] ≤ ζPζ + 1 (ζ ≤ 2ηi) 2ηi +
4η2
i

ζ
+

6

ζ

∑
y

Ei [Mi(f ; y)] .

This bound holds for any ζ, so it holds for the minimum.

C.2 Proof of Theorem 3
Conditioning on the high-probability event in Lemma 5, we prove the theorem by induction. Define

∆′i = min{1, κνn
i− 1

}, νn = log

(
2n2|G|K

δ

)
.
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Here and throughout we will make use of the following simple fact, which applies since i ≤ n, so the
premultiplier on εi is at least 1.

Fact 1. For all i ∈ [n], we have

νn ≤ εi.

Concretely we consider the inductive hypothesis:

∀i ≥ 1, R̂i(f
?(·; y); y) ≤ min

g∈G
R̂i(g; y) +

c0νn
i− 1

and Ex,c[c(hfi(x))− c(hf?(x))] ≤ min
ζ>0

{
ζPζ +

2K∆′i
ζ

}
(13)

where c0 = 10. The first claim in particular implies that f?(·; y) ∈ Fi since we chose ∆i+1 = κεi/i and
using Fact 1. For the base case i = 1, observe that the right hand side of the first inequality is infinity but the
empirical squared loss is 0 for all regressors. Hence the first claim is trivially satisfied. Moreover, because the
excess cost-sensitive classification risk is always upper-bounded by 1, it is trivially bounded by 2K∆′1

ζ for any
ζ ∈ [0, 1]. For ζ > 1, we have ζPζ = ζ so again the bound is trivial.

Now assume the inductive hypothesis holds for the first i rounds, i ≥ 1. We want to analyze the set
Fi+1, which is computed at the end of the ith iteration of Algorithm 1 based on i examples (technically the
beginning of the (i+ 1)st iteration). Invoking Lemma 5, with parameters 1 and i, and Lemma 6, we have for
all (g, y) ∈ G × Y ,

i∑
j=1

Ej [Mj(g; y)]−
i∑

j=1

Mj(g; y) ≤ 2

√√√√4νn

i∑
j=1

Ej [Mj(g; y)] + 2νn

≤ 2

4νn +
1

4

i∑
j=1

Ej [Mj(g; y)]

+ 2νn

= 10νn +
1

2

i∑
j=1

Ej [Mj ].

This bound implies that

−
i∑

j=1

Mj ≤ 10νn, (since Ej [Mj(g; y)] ≥ 0 by Lemma 6)

and therefore
R̂i+1(f?(·; y); y) ≤ R̂i+1(g; y) +

c0νn
i
. (14)

Since this bound applies for all g ∈ G, it proves the first part of the inductive claim.
Next we prove that the empirical squared loss minimizer fi+1 after iteration i has small excess risk. Fix

some label y. To simplify notations, we drop the dependence on y and define for any j:

gj , fj(·; y), g? , f?(·; y), Gj , Gj(y), R̂j(g) , R̂j(g; y).

Let Mj be defined for gi+1 and y according to Eq. (12). We first prove that since gi+1 is the empirical loss
minimizer at round i for label y, it must have been in the version space Gj(y) for all j ∈ {1, . . . , i+ 1}.
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Because gi+1 is the loss minimizer for label y after round i, we have

i∑
j=1

Mj =

i∑
j=1

Mj(gi+1; y) ≤ 0.

Now suppose gi+1 /∈ Gt+1 for some t ∈ {0, . . . , i}. We have

t∑
j=1

Mj = t
(
R̂t+1(gi+1)− R̂t+1(g?)

)
= t

(
R̂t+1(gi+1)− R̂t+1(gt+1) + R̂t+1(gt+1)− R̂t+1(g?)

)
≥ κεt − c0νn. (15)

The last inequality here follows since gi+1 /∈ Gt+1 so it must have R̂t+1(gi+1) − R̂t+1(gt+1) ≥ κεt/t by
the elimination rule. Simultaneously, we use Eq. (14) which lower bounds the second term. Combining this
inequality with the fact that

∑i
j=1Mj ≤ 0 gives

i∑
j=t+1

Mj ≤ c0νn − κεt. (16)

Applying Lemmas 5 and 6 along with the inequality
√

4ab ≤ a/α+ αb for all α > 0, gives

i∑
j=t+1

Ej [Mj ]−
i∑

j=t+1

Mj ≤ 2

√√√√4νn

i∑
j=t+1

Ej [Mj ] + 2νn ≤
1

2

i∑
j=t+1

Ej [Mj ] + 10νn. (17)

Combining the last inequality and Eq. (16), we get

i∑
j=t+1

Ej [Mj ] ≤ 20νn + 2c0νn − 2κεt ≤ (40− 2κ)εt < 0.

The strict inequality here is based on Fact 1 and the parameter setting κ = 80. This is a contradiction since
Ej [Mj ] is a quadratic form and hence non-negative by Lemma 6. The same analysis applies to every y.
Therefore, we know that the empirical square loss vector regressor fi+1 is in Fj for all j ∈ {1, . . . , i+ 1},
and hence we can apply Lemma 7 for all of these rounds, to obtain

i
(
Ex,c[c(hfi+1

(x))− c(hf?(x))]
)

≤ min
ζ>0


i∑

j=1

(
ζPζ + 1 (ζ ≤ 2ηj) 2ηj +

4η2
j

ζ
+

6

ζ

∑
y

Ej [Mj(fi+1; y)]

)
≤ min

ζ>0

iζPζ +

i∑
j=1

(
1 (ζ ≤ 2ηj) 2ηj +

4η2
j

ζ
+

6

ζ

∑
y

Ej [Mj(fi+1; y)]

) .
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We study the four terms separately. The first one is straightforward and contributes ζPζ to the instantaneous
cost sensitive regret. Using our definition of ηj = 1/

√
j the second term can be bounded as

i∑
j=1

1 (ζ < 2ηj) 2ηj =

d4/ζ2e∑
j=1

2√
j
≤ 4
√
d4/ζ2e ≤ 12

ζ
.

The inequality above,
∑n
i=1

1√
i
≤ 2
√
n, is well known. For the third term, using our definition of ηj gives

i∑
j=1

4η2
j

ζ
=

4

ζ

i∑
j=1

1

j
≤ 4

ζ
(1 + log(i)).

Finally, the fourth term can be bounded using Lemma 5 (Eq. (17) with t = 0), which reveals

i∑
j=1

Ej [Mj ] ≤ 2
i∑

j=1

Mj + 20νn

Since for each y,
∑i
j=1Mj(fi; y) ≤ 0 for the empirical square loss minimizer (which is what we are

considering now), we get

6

ζ

∑
y

i∑
j=1

Ej [Mj(fi+1; y)] ≤ 120

ζ
Kνn.

And hence, we obtain

Ex,c[c(x;hfi+1
(x))− c(x;hf?(x))] ≤ min

ζ>0

{
ζPζ +

1

ζi
(4 log(i) + 16 + 120Kνn)

}
≤ min

ζ>0

{
ζPζ +

140Kνn
ζi

}
≤ min

ζ>0

{
ζPζ +

2κKνn
ζi

}
To obtain this last bound, we observe that 1 ≤ log(i) ≤ νn under our assumption that δ < 1/e so the

coefficient in the numerator is at most 140. The inductive claim follows by the definition of ∆′i+1. Or more
precisely, if ∆′i+1 = 1 then the inductive claim is trivial and otherwise we have proved what is required.

D Label complexity analysis

D.1 Supporting Lemmata
Our label complexity analysis builds on the following lemma, which uses the sets G?i and Gi whose definitions
we reproduce here.

Gi(∆; y) , {g | R̂i(g; y)− min
g′∈G

R̂i(g
′; y) ≤ ∆}, (18)

G?i (∆; y) ,
{
g
∣∣∣ 1

i

i∑
j=1

Qj(y)(g(xj)− f?(xj ; y))2 ≤ ∆
}
. (19)
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Throughout we use the definitions.

∆i , κεi−1/(i− 1), κ , 80, c0 , 10, c1 , 25/3, c2 , 1/3, ηi , 1/
√
i.

νn , log

(
2n2|G|K

δ

)
These are the constants defined in Algorithm 1 with some additional numerical constants that we use in the
analysis. We also require a new definition:

Iβ(i) = max{t ∈ N|(t− 1) ≤ (c2/c1)1/β(i− 1)}. (20)

Note that Iβ(i) is well defined for i ≥ 1 since the right hand side is non-negative. However Iβ(i) could be as
small as 1. We first study the Iβ functional.

Fact 2. Define iβ , 2(c1/c2)1/β + 1. Then for i ≥ iβ , we have

Iβ(i)− 1 ≥ max{(c2/c1)1/β(i− 1)/2, 2}.

Proof. The proof is by direct calculation.

Iβ(i)− 1 = b(c2/c1)1/β(i− 1)c ≥ b(c2/c1)1/β(iβ − 1)c = 2

Iβ(i)− 1 ≥ (c2/c1)1/β(i− 1)− 1 = (c2/c1)1/β(i− 1)− (c2/c1)1/β(iβ − 1)

2
≥ (c2/c1)1/β(i− 1)

2
.

We now turn to the more intricate lemmas.

Lemma 8. For any δ ∈ (0, 1), with probability at least 1− δ, for all i ≥ 1 and all y,

G?i (c2∆i; y) ⊂ Gi(∆i; y) ⊂ Gi(4∆i; y) ⊂ G?i (c1∆i; y) ⊂ G?Iβ(i)(c2∆Iβ(i); y),

where Iβ(i) is in Eq. (20).

Proof. The second containment is trivial.
Recall our earlier definition that for a fixed g ∈ G and y ∈ Y ,

Mj ,
(
(g(xj)− c(xj ; y))2 − (f?(xj ; y)− c(xj ; y))2

)
Qj(y).

Let Ec[Mj ] and Varc[Mj ] denote the expectation and variance taken with respect to the cost c at round j,
conditioned on all randomness up to round j − 1 and on xj . Following the same proof for Lemma 6, we have
that

Ec[Mj ] = Qj(y)(g(xj)− f?(xj ; y))2,

Var
c

[Mj ] ≤ 4Ec[Mj(g; y)].

It is also easy to prove a concentration result similar to Lemma 5 where Ej [Mj ] and Varj [Mj ] are replaced
by Ec[Mj ] and Varc[Mj ], respectively. Thus we have for any δ ∈ (0, 1), with probability at least 1− δ, the
following holds for all (g, y) ∈ G × Y and all i, t ∈ [n]:∣∣∣∣∣∣

i+t−1∑
j=i

Ec[Mj ]−
i+t−1∑
j=i

Mj

∣∣∣∣∣∣ ≤ 2

√√√√4νn

i+t−1∑
j=i

Ec[Mj ] + 2νn, (21)
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where νn = log
(

2n2|G|K
δ

)
as in Lemma 5. This bound, via the inequality

√
4ab ≤ αa+ b/α implies

i+t−1∑
j=i

Ec[Mj ] ≤ 2

i+t−1∑
j=i

Mj + 20νn (22)

i+t−1∑
j=i

Mj ≤
3

2

i+t−1∑
j=i

Ec[Mj ] + 10νn (23)

We start with proving the first containment. Fix some round i, some label y and some g ∈ G?i (c2∆i; y).
Conditioning on the above high-probability event, and starting with Eq. (23) we have

i−1∑
j=1

Mj ≤
3

2
·

i−1∑
j=1

Ec[Mj ]

+ 10νn ≤
3

2
· (i− 1) · c2∆i + 10νn

=
3

2
c2κεi−1 + 10νn ≤

(κ
2

+ c0

)
εi−1.

Above, the second inequality is by

i−1∑
j=1

Ec[Mj ] =

i−1∑
j=1

Qj(y)(g(xj)− f?(xj ; y))2 ≤ c2∆i × (i− 1)

since g ∈ G?i (c2∆i; y), and the final inequality uses νn ≤ εi−1 (Fact 1) and our choices of κ, c0 and c2. Using
the above bound and with gi = argming∈G R̂i(g; y), we have

(i− 1) ·
(
R̂i(g; y)− R̂i(gi; y)

)
=

i−1∑
j=1

Mj + (i− 1)
(
R̂i(f

?; y)− R̂i(gi; y)
)

≤ (κ/2 + c0)εi−1 + c0νn ≤ κεi−1,

where the first inequality is by the above upper bound on
∑i−1
j=1Mj and Eq. (14), which upper bounds the

excess empirical square loss of f?. Thus, g ∈ Gi(∆i; y) ⊂ Gi(4∆i; y).
To prove the third containment, we fix some i, y, and g ∈ Gi(4∆i; y). Starting from (22) we have

i−1∑
j=1

Ec[Mj ] ≤ 2

i−1∑
j=1

Mj + 20νn

= 2(i− 1) · (R̂i(g; y)− R̂i(f?; y)) + 20νn

≤ 2(i− 1) · (R̂i(g; y)− R̂i(gi; y)) + 20νn

≤ 8κεi−1 + 20νn

≤ c1κεi−1,

where the second inequality is by the fact that gi is the minimizer of the squared loss at round i for label y,
the third inequality is by g ∈ Gi(4∆i; y), and the last inequality is by νn ≤ εi−1 (Fact 1) and our choices of
c1 and κ. Thus, g ∈ G?i (c1∆i; y).
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For the final containment, observe that

(i− 1)c1∆i = c1κεi−1 = c1κ

((
n

i− 1

)β
νn

)
= c2κ

[(c1
c2

)1/β
n

i− 1

]β
νn


Using the definition of Iβ(i) in Eq. (20), we get that (i − 1)c1∆i ≤ (Iβ(i) − 1)c2∆Iβ(i). Of course we
always have Iβ(i)− 1 ≤ i− 1 since c2 ≤ c1. Hence,

Iβ(i)−1∑
j=1

EjQj(y)(g(xj)− f?(xj ; y))2 ≤
i−1∑
j=1

EjQj(y)(g(xj)− f?(xj ; y))2 ≤ (i− 1)c1∆i ≤ (Iβ(i)− 1)c2∆Iβ(i).

Thus we get that G?i (c1∆i) ⊂ G?Iβ(i)(c2∆Iβ(i)).

Before bounding the label complexity, we first prove the following regret bound:

Lemma 9. For any δ ≤ 1/e, with probability at least 1 − δ, for all i ≥ 1 and for all vector regressors
f ∈ F?i (c2∆i) ,

∏
y G?i (c2∆i; y),

Ex,c [c(x, hf (x))− c(x, hf?(x))] ≤ min
ζ>0

{
ζPζ +

14K∆i

ζ

}
.

Note that this cost-sensitive regret bound is polynomially worse than the one in Theorem 3 that we prove
just for the empirical risk minimizer fi. This is because we set the confidence radius ∆i using a polynomial
function of n/i, which will be important for our label complexity analysis.

Proof. The proof follows a similar argument to that of Lemma 7 in that we must argue that each g ∈
G?i (c2∆i; y) is involved in driving the query rule for a large fraction of the rounds. First observe that
f? ∈ F?i (c2∆i) for i ≥ 1 by the definition of F?i .

Next, fix a label y and a function g ∈ G?i+1(c2∆i+1; y) for i ≥ 0. We prove that g ∈ Gt+1(∆t) for all
t ∈ {0, . . . , i}. In search of a contradiction, suppose that g /∈ Gt+1(∆t+1) for some t ∈ {0, . . . , i}. First,
since g ∈ G?i+1(c2∆i+1; y), using the Freedman-style deviation bound in Eq. (23), we have

i∑
j=1

Mj ≤
3

2

i∑
j=1

Ec[Mj ] + 10νn ≤
(

3

2
c2κ+ c0

)
εi.

Here we also use the definition of ∆i+1 = κεi/i, c0 = 10, and Fact 1.
At the same time, since g /∈ Gt+1(∆t+1; y), we know that

∆t+1 < R̂t+1(g)− R̂t+1(gt+1) < R̂t+1(g)− R̂t+1(g?) +
c0νn
t
.

The last inequality uses Eq. (14). Together with the above, this implies that

i∑
j=t+1

Mj ≤
(

3

2
c2κ+ c0

)
εi − κεt + c0νn.
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Now, since i ≥ t and β ∈ (0, 1), we get that εi < εt. Now, using Eq. (22) as before, we get

i∑
j=t+1

Ec[Mj ] ≤ 2

i∑
j=t+1

Mj + 20νn ≤ 2

(
3

2
c2κ+ c0

)
εi − 2κεt + 4c0νn ≤ (−κ+ 6c0)εt < 0.

The last non-strict inequality follows from the fact that εt ≥ εi ≥ νn since i ≥ t, and then the strict inequality
is by our choices for the constants. This is a contradiction since the left hand side is a quadratic form and so,
g ∈ Gt+1(∆t+1) for all t ∈ {0, . . . , i}.

This argument applies for all y, and hence, for these rounds we may apply Lemma 7, so that for all
regressors f ∈ F?i (c2∆i+1),

i · (Ex,c[c(x, hf (x))− c(x;hf?(x))]) ≤ min
ζ>0

iζPζ +

i∑
j=1

(
1 (ζ ≤ 2ηj) 2ηj +

4η2
j

ζ
+

6

ζ

∑
y

Ej [Mj(f ; y)]

)
≤ min

ζ>0

iζPζ +
16 + 4 log(i)

ζ
+

6

ζ

∑
y

i∑
j=1

Ej [Mj(f ; y)]

 .

The last inequality here uses identical bounds as the proof of Theorem 3.
In a similar way to (17), we use Lemma 5 to obtain

i∑
j=1

Ej [Mj(f ; y)] ≤ 2

i∑
j=1

Mj(f ; y) + 20νn = 2i ·
(
R̂i+1(f ; y)− R̂i+1(f?; y)

)
+ 20νn

≤ 2i ·
(
R̂i+1(f ; y)− R̂i+1(fi+1; y)

)
+ 20νn

≤ (2κ+ 20)εi

The last bound uses the definition of ∆i+1 and Fact 1, along with the fact that G?i+1(c2∆i+1; y) ⊂
Gi+1(∆i+1; y) so we know the empirical risk to fi+1 is controlled. Finally, we collect the latter three
terms and collect the constant 6(2κ+ 20) + 20 (which requires δ < 1/e). This gives,

Ex,c [c(x, hf (x))− c(x, hf?(x))] ≤ min
ζ>0

{
ζPζ +

14κKεi
iζ

}
.

This proves the statement since we are considering f ∈ F?i+1(c2∆i+1) and κεi/i = ∆i+1.

For the rest of the analysis, it will be convenient to introduce the shorthand γ̂(xi, y) = ĉ+(xi, y) −
ĉ−(xi, y), where ĉ+(xi, y) and ĉ−(xi, y) are the approximate maximum and minimum costs computed in
Algorithm 1 at round i.

Lemma 10 (Cost Range Translation). Fix i and suppose that the conclusions of Lemmas 8 and 9 hold. Then
for any x, y pair, we have

γ̂(xi, y) ≤ γ(xi, y,Fcsr(rIβ(i))) + ηi/2,

where ri = minζ>0

{
ζPζ + 14K∆i

ζ

}
and Iβ(i) is in Eq. (20).
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Proof. We have

γ̂(xi, y) ≤ γ(xi, y,G?i (c1∆i; y)) +
ηi
2

(By Theorem 1, setting of ε in Algorithm 1 and Lemma 8)

≤ γ(xi, y,Fcsr(rIβ(i)) +
ηi
2

(By Lemmas 8 and 9)

Lemma 11. Fix i and suppose that the conclusions of Lemmas 8 and 9 hold. Define y?i = argminy f
?(xi; y), ȳi =

argminy ĉ+(xi,Gi(y)), ỹi = argminy 6=y?i ĉ−(xi,Gi(y)). Then for y 6= y?i , we have

y ∈ Yi ⇒ f?(xi; y)− f?(xi; y?i )− ηi
2
≤ (γ(xi, y) + γ(xi, y

?
i )) ,

and for y?i :

|Yi| > 1 ∧ y?i ∈ Yi ⇒ f?(xi; ỹi)− f?(xi; y?i )− ηi
2
≤ (γ(xi, ỹi) + γ(xi, y

?
i )) .

In both bounds, all the cost ranges are computed using Fcsr(rIβ(i)).

Proof. Suppose y 6= y?i

y ∈ Yi ⇒ ĉ−(xi,Gi(y)) ≤ ĉ+(xi,Gi(ȳi))
⇒ ĉ−(xi,Gi(y)) ≤ ĉ+(xi,Gi(y?i ))

⇒ c−(xi,G?i (c1∆i; y)) ≤ c+(xi,G?i (c1∆i; y
?
i )) +

ηi
2

⇒ f?(xi; y)− γ(xi,G?i (c1∆i; y)) ≤ f?(xi; y?i ) + γ(xi,G?i (c1∆i; y
?
i ))) +

ηi
2

⇒ f?(xi; y)− f?(xi; y?i )− ηi
2
≤ γ(xi,G?i (c1∆i; y)) + γ(xi,G?i (c1∆i; y

?
i ))

⇒ f?(xi; y)− f?(xi; y?i )− ηi
2
≤
(
γ(xi, y,Fcsr(rIβ(i))) + γ(xi, y

?
i ,Fcsr(rIβ(i)))

)
.

For y?i we need to consider two cases. First assume y?i = ȳi. Then

|Yi| > 1 ∧ y?i ∈ Yi ∧ y?i = ȳi ⇒ ĉ−(xi,Gi(ỹi)) ≤ ĉ+(xi,Gi(y?i ))

⇒ f?(xi, ỹi)− f?(xi, y?i )− ηi
2
≤ γ(xi, ỹi) + γ(xi, y

?
i ).

This is true since if |Yi| > 1 then it must be the case that ỹi is confused, since it has the minimal lower cost
estimate. On the other hand if y?i 6= ȳi then

|Yi| > 1 ∧ y?i ∈ Yi ∧ y?i 6= ȳi ⇒ ĉ+(xi,Gi(ȳi)) ≤ ĉ+(xi,Gi(y?i ))

⇒ ĉ−(xi,Gi(ỹi)) ≤ ĉ+(xi,Gi(y?i ))

⇒ f?(xi, ỹi)− f?(xi, y?i )− ηi
2
≤ γ(xi, ỹi) + γ(xi, y

?
i ).

The second step here is because the search for ỹi includes ȳi, since the latter is not y?i . Thus we obtain

|Yi| > 1 ∧ y?i ∈ Yi ⇒ ĉ−(xi,Gi(ỹi)) ≤ ĉ+(xi,Gi(y?i ))

⇒ f?(xi; ỹi)− f?(xi; y?i )− ηi
2
≤ (γ(xi, ỹi) + γ(xi, y

?
i )) ,

as desired.
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D.2 Low Noise (Massart) Case (Theorem 6)
Fix some round i. Let Fi be the set of vector regressors used at round i of COAL and let Gi(y) be
the corresponding regressors for label y. Let ȳi , argminy ĉ+(xi,Gi(y)), y?i = argminy f

?(xi; y), and
ỹi , argminy 6=y?i ĉ−(xi,Gi(y)). Assume Lemmas 8 and 9 hold. The label complexity L2 for round i is∑

y

Qi(y) =
∑
y

1 (|Yi| > 1 ∧ y ∈ Yi)1 (γ̂(xi, y,Fi) > ηi) =
∑
y

1 (|Yi| > 1 ∧ y ∈ Yi)Qi(y).

We need to do two things with Qi(y), so we have duplicated it here. First, observe that y ∈ Yi implies that
there exists a vector regressor f ∈ Fi such that hf (xi) = y. This follows since the domination condition
means that there exists g ∈ Gi(y) such that g(xi) ≤ miny′ 6=y maxg′∈Gi(y′) g

′(xi). Since we are using a
factored representation, we can take f to use g on the yth coordinate and use the maximizers for all the other
coordinates. Moreover, |Yi| > 1 implies there exists a regressor that does not predict y. Of course, through
Lemmas 8 and 9, we know that Fi ⊂ Fcsr(rIβ(i)), and so we get the bound:

1 (|Yi| > 1 ∧ y ∈ Yi) ≤ 1
(
∃f, f ′ ∈ Fcsr(rIβ(i)) | hf (xi) = y ∧ hf ′(xi) 6= y

)
.

For y 6= y?i , we take f ′ to be f? which is always in the cost-sensitive regret ball. For y?i , we take f ′ to be
any regressor such that hf ′(xi) = ỹi, which must exist in the ball if |Yi| > 1. We will use these as an upper
bound on Qi(y) momentarily.

Secondly, we apply Lemma 11 along with the Massart noise assumption. For y 6= y?i

1 (|Yi| > 1 ∧ y ∈ Yi) ≤ 1
(
f?(xi; y)− f?(xi; y?i )− ηi

2
≤ γ(xi, y) + γ(xi, y

?
i )
)

≤ 1
(
τ − ηi

2
≤ γ(xi, y) + γ(xi, y

?
i )
)
.

Recall that we use the convention that all quantities without an explicit regressor ball use Fcsr(rIβ(i)). For y?i
we obtain the same inequality but using ỹi via Lemma 11. Together this gives the bound:

L2 ≤
∑
y 6=y?i

1 (τ − ηi/2 ≤ γ(xi, y) + γ(xi, y
?
i ))×Qi(y) + 1 (τ − ηi/2 ≤ γ(xi, ỹi) + γ(xi, y

?
i ))×Qi(y?i )

Let us focus on just one of these terms (say where y 6= y?i ) and consider any round i where τ ≥ 2ηi.

1 (τ − ηi/2 ≤ γ(xi, y) + γ(xi, y
?
i ))Qi(y) ≤ 1 (τ/2 ≤ γ(xi, y) + γ(xi, y

?
i ))Qi(y)

≤ 1 (τ/4 ≤ γ(xi, y))Qi(y) + 1 (τ/4 ≤ γ(xi, y
?
i ))Qi(y)

Using the upper bound on Qi(y), the first term here is clearly bounded by

1 (τ/4 ≤ γ(xi, y))1
(
∃f, f ′ ∈ Fcsr(rIβ(i)) | hf (xi) = y ∧ hf ′(xi) 6= y

)
, Di(y).

Fortunately, the second term is bounded in the same way, since we know that hf? ∈ Fcsr(rIβ(i)), the fact that
some f with hf (xi) = y 6= y?i exists implies that the second term is at most Di(y

?
i ).

The last term, which involves Qi(y?i ) is bounded in essentially the same way, since we know that
when |Yi| > 1 (which is all we are considering), we know there exists two functions f, f ′ ∈ Fi such that
hf (xi) = ỹi and hf ′(xi) = y?i . Thus we can bound the label complexity at round i by

Di(ỹi) +Di(y
?
i ) +

∑
y 6=y?i

(Di(y) +Di(y
?
i )) ≤ KDi(y

?
i ) + 2

∑
y

Di(y).
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For the rounds i where τ < 2ηi we simply upper bound the label complexity by K.
The last step in the proof is to apply Freedman’s inequality to the sequence of indicators. The conditional

mean of each term is at most (for rounds i where τ > 2ηi),

Ei

[
KDi(y

?
i ) + 2

∑
y

Di(y)

]
≤

4rIβ(i)

τ
[Kθ1 + 2θ2] .

The part involving θ2 is straightforward and the pre-multiplier follows since we are measuring the probability
of querying with a cost range parameter of τ/4 and over a cost-sensitive regret ball of radius rIβ(i) in Di(y).
To obtain θ1 we use the fact that if Di(y

?
i ) = 1, then certainly there exists some confused label, namely y?i ,

and hence the indicator in θ1 is also 1.
The range is 3K since Di(y) ∈ {0, 1} and since the terms are non-negative, the variance is at most the

range times the mean. In such cases, Freedman’s inequality gives

X ≤ EX + 2
√
REX log(1/δ) + 2R log(1/δ) ≤ 2EX + 3R log(1/δ),

with probability at least 1− δ where X is the non-negative random variable with range R and expectation
EX . The last step is by the fact that 2

√
ab ≤ a+ b.

In our case, we get that with probability at least 1− δ,
n∑

i=i?

KDi(y
?
i ) + 2

∑
y

Di(y) ≤
n∑

i=i?

8rIβ(i)

τ
[Kθ1 + 2θ2] + 9K log(1/δ).

Here we only consider rounds i ≥ i? where i? is the smallest index such that τ < 2ηi? and i? ≥ iβ (Recall
Fact 2). For the first i? rounds, we will upper bound the per-round label complexity by K, so that the overall
label complexity is at most

Ki? +

n∑
i=i?

8rIβ(i)

τ
[Kθ1 + 2θ2] + 9K log(1/δ)

≤ K
n∑
i=1

1 (τ ≤ 2ηi) +Kiβ + +

n∑
i=iβ

8rIβ(i)

τ
[Kθ1 + 2θ2] + 9K log(1/δ)

Using our choice of ηi = 1/
√
i, the first term is at most Kd4/τ2e. The second term is bounded by Fact 2.

The last step is to use the definition of rIβ(i) to simplify the sum. Since we are in the Massart noise case, we
will set ζ = τ in the definition of ri in Lemma 10. Since Pτ = 0 by the definition of the noise condition, this
yields ri = 14K∆i/τ . Substituting this choice, along with our definition of ∆i yields

n∑
i=iβ

rIβ(i) =
14κnβKνn

τ

n∑
i=iβ

(Iβ(i)− 1)−1−β

≤ 14κnβKνn
τ

×

2(1+β) ×
(
c1
c2

) 1+β
β

n∑
i=iβ

(i− 1)−1−β


≤ 56(c1/c2)κnβKνn

τ

[(
c1
c2

) 1
β

n∑
i=2

(i− 1)−1

]

≤ 56(c1/c2)κnβKνn
τ

(
c1
c2

) 1
β

(2× log(n)) .
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Including the extra O(K) term, the overall bound is

K

(
d 4

τ2
e+ 2(c1/c2)1/β + 1

)
+

8× 56× 25× 2κnβKνn
τ2

(
c1
c2

) 1
β

log(n)[Kθ1 + 2θ2] + 9K log(1/δ)

≤ a0251/β

(
nβK log(n)νn

τ2
[Kθ1 + 2θ2] +

K log(1/δ)

τ2

)
,

where a0 is a universal constant.
For L1 we can use a very similar argument. First,

L1 =
∑
i

1 (|Yi| > 1 ∧ ∃y ∈ Yi, γ̂(xi, y,Fi) > ηi) ≤
∑
i

1
(
|Yi| > 1 ∧ ∃y ∈ Yi, γ(xi, y,Fcsr(rIβ(i))) > ηi/2

)
.

This inequality is an application of Lemma 10. Now as above, we know that,

|Yi| > 1 ∧ y ∈ Yi ⇒ ∃f, f ′ ∈ Fcsr(rIβ(i)), hf (xi) = y ∧ hf ′(xi) 6= y,

since if y ∈ Yi then some classifier must select it, and since |Yi| > 1, something else must also be selected.
We also know that we can always take f ′ to be f? when y 6= y?i . For y?i we can always take the classifier to
be the one that predicts ỹi.

Moreover we also have that when τ ≥ 2ηi,

|Yi| > 1 ∧ y ∈ Yi ⇒ f?(xi; y)− f?(xi; y?i )− ηi/2 ≤ γ(xi, y) + γ(xi, y
?
i )

⇒ τ/4 ≤ γ(xi, y) ∨ τ/4 ≤ γ(xi, y
?
i )

Thus, putting things together, and considering only rounds where τ ≥ 2ηi we get

L1 ≤
n∑
i=1

1 (τ < 2ηi) +

n∑
i=1

1
(
∃y | ∃f, f ′ ∈ Fcsr(rIβ(i)), hf (xi) = y ∧ hf ′(xi) 6= y ∧ γ(x, y) ≥ τ/4

)
.

Here we seemingly dropped the γ(x; y?i ) ≥ τ/4 term from consideration since y?i is always in Yi and
hence the term gets included in the existential quantifier when the chosen label y = y?i . Now we may apply
Freedman’s inequality to upper bound L1 by

L1 ≤ iβ + d4/τ2e+ 2

n∑
i=iβ

4rIβ(i)

τ
θ1 + 2 log(1/δ) ≤ a0251/β

(
nβK log(n)νn

τ2
θ1 +

log(1/δ)

τ2

)
,

where a0 is a universal constant.

D.3 High noise case (Theorem 5)
Fix some round i. Let Fi be the set of vector regressors used at round i of COAL and let Gi(y) be
the corresponding regressors for label y. Let ȳi , argminy ĉ+(xi,Gi(y)), y?i = argminy f

?(xi; y), and
ỹi , argminy 6=y?i ĉ−(xi,Gi(y)). Assume Lemmas 8 and 9 hold. The label complexity L2 for round i is∑

y

Qi(y) =
∑
y

1 (|Yi| > 1 ∧ y ∈ Yi)1 (γ̂(xi, y,Fi) > ηi)
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First we apply Lemma 10 on the latter indicator to get∑
y

1 (|Yi| > 1 ∧ y ∈ Yi)1
(
γ(xi, y,Fcsr(rIβ(i))) ≥ ηi/2

)
.

For the former indicator, observe that y ∈ Yi implies that there exists a vector regressor f ∈ Fi such that
hf (xi) = y. This follows since the domination condition means that there exists g ∈ Gi(y) such that
g(xi) ≤ miny′ maxg′∈Gi(y′) g

′(xi). Since we are using a factored representation, we can take f to use g on
the yth coordinate and use the maximizers for all the other coordinates.

Since y ∈ Yi implies there exists f ∈ Fi such that hf (xi) = y, and by Lemmas 8 and 9, we get that
f ∈ Fcsr(rIβ(i)). Similarly there exists f ′ ∈ Fi such that hf ′(xi) 6= y. Thus we can bound the the label
complexity for round i as,∑

y

1
(
∃f, f ′ ∈ Fcsr(rIβ(i)) | hf (xi) = y 6= hf ′(xi)

)
1
(
γ(xi, y,Fcsr(rIβ(i))) ≥ ηi/2

)
=
∑
y

1
(
x ∈ DIS(rIβ(i), y) ∧ γ(xi, y,Fcsr(rIβ(i))) ≥ ηi/2

)
.

Now we can apply Freedman’s inequality on the sequence here to find that with probability at least 1− δ,

L2 ≤ Kiβ +

n∑
i=iβ

4rIβ(i)

ηi
θ2 + 3K log(1/δ)

Again iβ = 2(c1/c2)1/β + 1 is from Fact 2. We just need to bound upper bound the sequence

n∑
i=iβ

rIβ(i)

ηi
= 2

n∑
i=iβ

√
i

√
14Kκnβνn

(Iβ(i)− 1)1+β

≤ 2
√

14Kκnβνn ×
n∑

i=iβ

√
21+βi

(c2/c1)
1+β
β (i− 1)1+β

≤ 2
√

14Kκnβνn ×
n∑

i=iβ

√
22+β

(c2/c1)
1+β
β (i− 1)β

≤
√

448(c1/c2)
1+β
β Kκnβνn ×

n−1∑
i=1

i−β/2

≤ 2

√
448(c1/c2)

1+β
β Kκnβνn × n1−β/2

≤ 2

√
448(c1/c2)

1+β
β Kκνn × n.

The first line follows by the definition of ηi and by optimizing the bound in Lemma 9 using the definition of
∆i. The second line uses Fact 2. The remaining steps are simple calculations using β ∈ (0, 1) and an integral
bound.

Thus in total we get a label complexity of

L2 ≤ a0(25)1/β
(
nθ2

√
Kνn +K log(1/δ)

)
.
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Similarly for L1 we can derive the bound

L1 ≤
∑
i

1
(
∃y | γ(xi, y,Fcsr(rIβ(i))) ≥ ηi/2 ∧ x ∈ DIS(rIβ(i), y)

)
.

and then apply Freedman’s inequality to this sequence to obtain that with probability at least 1− δ

L1 ≤ iβ + 2

n∑
i=iβ

2rIβ
ηi

θ1 + 3 log(1/δ) ≤ a0(25)1/β
(
nθ1

√
Kνn + log(1/δ)

)
.
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