
Lossy Conservative Update (LCU) sketch: Succinct approximate count storage

Amit Goyal and Hal Daumé III
Dept. of Computer Science

University of Maryland
College Park, MD 20742

{amit,hal}@umiacs.umd.edu

Abstract

In this paper, we propose a variant of the conservative-
update Count-Min sketch to further reduce the over-
estimation error incurred. Inspired by ideas from lossy
counting, we divide a stream of items into multiple
windows, and decrement certain counts in the sketch
at window boundaries. We refer to this approach as a
lossy conservative update (LCU). The reduction in over-
estimation error of counts comes at the cost of introduc-
ing under-estimation error in counts. However, in our
intrinsic evaluations, we show that the reduction in over-
estimation is much greater than the under-estimation er-
ror introduced by our method LCU. We apply our LCU
framework to scale distributional similarity computa-
tions to web-scale corpora. We show that this technique
is more efficient in terms of memory, and time, and
more robust than conservative update with Count-Min
(CU) sketch on this task.

Introduction
Many Natural Language Processing (NLP) problems
(Ravichandran, Pantel, and Hovy 2005; Brants et al. 2007;
Turney 2008) have benefited from having large amounts of
data. Many of these problems boil down to counting items.
For example, in large scale language modeling (Brants et
al. 2007; Goyal, Daumé III, and Venkatasubramanian 2009),
we are interested in counting the number of unique n-
grams. In large scale Word similarity (Agirre et al. 2009;
Pantel et al. 2009), we are interested in frequency of pairs
of words, and their contexts. Most of the current approaches
employ data structures that reside in main memory and thus
do not scale well to large corpora. Hence, this has motivated
the use of clusters (Brants et al. 2007; Pantel et al. 2009) as
well as streaming, randomized, and approximate algorithms
(Ravichandran, Pantel, and Hovy 2005; Goyal et al. 2010b;
Van Durme and Lall 2010) to handle large amounts of data.

In this work, we focus on use of streaming approaches
especially conservative update with Count-Min sketch (Cor-
mode and Muthukrishnan 2004). Unfortunately prior work
using CU sketch shows that this method is more prone
to over-estimation error on low-frequency items (Cormode
and Hadjieleftheriou 2008; Goyal et al. 2010b). However,

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in most of the NLP applications, items frequently follow
a Zipfian distribution, and hence making an error on low-
frequency items can be devastating. In addition, if the counts
of low-frequency items are over-estimated, their association
scores like Pointwise Mutual Information (PMI) becomes
high too as PMI is sensitive to low-frequency item counts
(Church and Hanks 1989).

To overcome this problem, we combine the idea of lossy
counting (Manku and Motwani 2002) on top of CU sketch.
We refer to this approach as a lossy conservative update
(LCU). We propose 4 variants of LCU that differ in how
aggressively they discount items at window boundaries.
The one which is most conservative only reduces the error
slightly over the low-frequency items. Once, we gradually
make it more aggressive, the error of low-frequency items
decrease significantly. However, once it becomes more ag-
gressive, it only trades off error between low and mid fre-
quency items.

LCU framework can be useful for many data stream prob-
lems in AI. For example, keeping tracking of queries posed
to an Internet search engine, tracking the collection of trans-
actions across all branches of a supermarket chain, phone
conversations, and ATM transactions. Moreover, in many
AI problems, we are interested in storing frequent items
(not interested in rare items); e.g. frequent n-grams in lan-
guage modeling (Goyal, Daumé III, and Venkatasubrama-
nian 2009), and this framework can be applied to store
counts of frequent items efficiently in succinct space. In
this paper, we apply our LCU framework to a NLP problem
that is scaling distributional similarity computations to web-
scale corpora. We show that this technique is more efficient
in terms of memory, and time, and more robust than conser-
vative update with Count-Min (CU) sketch on this task.

Background
Distributional Similarity
Distributional similarity is based on the distributional hy-
pothesis that similar terms appear in similar contexts (Firth
1968; Harris 1954). The context vector for each term is rep-
resented by the strength of association between the term and
each of the lexical, semantic, syntactic, and/or dependency
units that co-occur with it. We use pointwise mutual infor-
mation to compute association measure between the term

and each of the context to generate the context vector. Once,
we have context vectors for each of the terms, cosine similar-
ity measure returns distributional similarity between terms.

The pointwise mutual information (PMI) (Church and
Hanks 1989) between a word “w” and its context “c” is:

PMI(w, c) = log2
P (w, c)

P (w)P (c)

Where, P (w, c) is the likelihood thatw and c occur together,
and P (w) and P (c) are their independent likelihoods.

Streaming
A sketch is a compact summary data structure to store the
frequencies of all items in the input stream. Sketching tech-
niques use hashing to map items in streaming data onto
a small sketch vector that can be updated and queried in
constant time. These techniques generally process the in-
put stream in one direction, say from left to right, without
re-processing previous input. The main advantage of using
these techniques is that they require a storage which is sub-
linear in size of the input stream. The following surveys
comprehensively review the streaming literature: (Rusu and
Dobra 2007; Cormode and Hadjieleftheriou 2008).

Recently in NLP community, the streaming algorithm
paradigm has become popular. It provides memory and
time-efficient framework to deal with terabytes of data. For
example, we (Goyal, Daumé III, and Venkatasubramanian
2009); Levenberg and Osborne (2009) build approximate
language models and show their effectiveness in Statisti-
cal Machine Translation (SMT). In Van Durme and Lall
(2009b), a TOMB Counter (Van Durme and Lall 2009a) was
used to find the top-K verbs “y” with the highest PMI given
verb “x”. An efficient online framework to locality sensitive
hashing (Van Durme and Lall 2010; 2011) was proposed for
large-scale word clustering. Our current work is most similar
to our earlier work (Goyal et al. 2010a). In our earlier work,
we showed the effectiveness of CU sketch on task of distri-
butional similarity. However, our earlier framework was sen-
sitive to correct frequency cutoff for a corpus. In this current
work, we show that using LCU is more robust to frequency
cutoff as compared to CU sketch.

CM sketch
The Count-Min sketch (Cormode and Muthukrishnan 2004)
with user chosen parameters (ε,δ) is represented by a two-
dimensional array with width w and depth d. Parameters
ε and δ control the amount of tolerable error in the re-
turned count (ε) and the probability with which the returned
count is not within this acceptable error (δ) respectively.
These parameters determine the width and depth of the two-
dimensional array. We set w= 2

ε , and d=log(1δ). The depth d
denotes the number of pairwise-independent hash functions
and there exists an one-to-one mapping between the rows
and the set of hash functions. Each of these hash functions
hk:{x1 . . . xN} → {1 . . . w}, 1 ≤ k ≤ d, takes an item
from the input stream and maps it into a counter indexed by
the corresponding hash function. For example, h3(x) = 8
indicates that the item “x” is mapped to the 8th position in
the third row of the sketch.

Update Procedure: When a new item “x” with count c,
the sketch is updated by: ∀1 ≤ k ≤ d

sketch[k,hk(x)]← sketch[k,hk(x)] + c

Query Procedure: Since multiple items can be hashed to
the same position, the stored frequency in any one row is
guaranteed to overestimate the true count. Thus, to answer
the point query, we return the minimum over all the positions
indexed by the k hash functions. The answer to Query(x) is:
ĉ = mink sketch[k, hk(x)].

Both update and query procedures involve evaluating d
hash functions. d is generally small; e.g. in our earlier work
(Goyal et al. 2010b; 2010a), we used d=3, hence update and
query operations take only constant time. Moreover, all re-
ported frequencies are within εN of true frequencies with
probability of at least 1-δ. The space used by the algorithm
is O(wd) that is the size of the 2-D array.
CU sketch
The Count-Min sketch with conservative update (CU sketch)
(Cormode 2009; Goyal et al. 2010b) is similar to CM sketch
except the update operation. It is based on the idea of conser-
vative update (Estan and Varghese 2002) introduced in the
context of networking. It is used with CM sketch to further
improve the estimate of a point query. To update an item, x
with frequency c, we first compute the frequency ĉ of this
item from the existing data structure and the counts are up-
dated according to: ∀1 ≤ k ≤ d, ĉ = mink sketch[k, hk(x)]

sketch[k,hk(x)]← max{sketch[k,hk(x)], ĉ+ c}

The intuition is that, since the point query returns the mini-
mum of all the d values, we will update a counter only if it is
necessary as indicated by the above equation. This heuristic
avoids the unnecessary updating of counter values and thus
reduces the over-estimation error. In our earlier work (Goyal
et al. 2010b), we found CU reduces the average relative error
of its approximate counts by a factor of two over CM sketch.
Lossy Counting
We present a brief description of a variant of original algo-
rithm presented by Manku in a presentation of the (Manku
2002) paper. For original lossy counting, refer (Manku and
Motwani 2002). The algorithm proceeds by conceptually di-
viding the stream into windows, each containing 1/γ items 1.
Note that there are γN windows. The algorithm stores (item,
count) pairs. For each item in the stream, if it is stored, then
the count is incremented; otherwise, it is initialized with a
count of 1. At the window boundary, the count of each item
is decremented by 1, and items with a count of zero after the
upgrade are deleted. At the end, when all items in the stream
have been processed, the algorithm returns all items where
count ≥ (s− γ)N .2

Lossy Conservative Update (LCU) sketch
Prior work using CU sketch (Cormode and Hadjielefthe-
riou 2008; Goyal et al. 2010b) shows that this method is

1γ is a user chosen parameter which controls the size of window
2s is support and is another user chosen parameter.

more prone to over-estimation error on low-frequency items.
However, in many NLP applications, items frequently fol-
low a Zipfian distribution, and hence making an error on
low-frequency items can be problematic. In addition, if
counts of low-frequency items are over-estimated, their as-
sociation scores like PMI becomes high too as PMI is sensi-
tive to low-frequency item counts (Church and Hanks 1989).

To overcome this problem, we combine the idea of lossy
counting on top of CU sketch. We refer to this approach as
a lossy conservative update (LCU). We conceptually divide
the stream into windows, each containing 1/γ items.3 Note
that there are γN windows. We propose four different tech-
niques of decrementing certain counts at window bound-
aries:
• LCU-ALL: This approach is most similar to the variant

of lossy counting (Manku 2002). At window boundaries,
∀ 1 ≤ i ≤ d, 1 ≤ j ≤ w, if (sketch[i, j] > 0), then
sketch[i, j] = sketch[i, j] − 1. The only difference is in
CU sketch, we do not have items stored explicitly. Hence,
we are decrementing the whole sketch itself rather than
explicitly decrementing the counts of all items by 1. In-
tuitively, over here we are only storing the frequent items
into the sketch.

• LCU-1: At window boundaries, ∀ 1 ≤ i ≤ d, 1 ≤
j ≤ w, if (sketch[i, j] > 0 and sketch[i, j] <= 1),
then sketch[i, j] = sketch[i, j] − 1. Intuitively, in this
approach, we are trying to reduce some error over low-
frequency counts by turning the count of 1’s to zero at the
window boundary.

• LCU-WS: This approach is similar to original lossy
counting (Manku and Motwani 2002). At window bound-
aries, ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ w, if (sketch[i, j] > 0
and sketch[i, j] <= windowIdX), then sketch[i, j] =
sketch[i, j] − 1. In this technique, we do not want to
decrement the frequent counts. Hence, we decrement only
those counts by 1 which are less than or equal to current
window index.

• LCU-SWS: In this approach, we decrement the counts of
sketch more conservatively. We only decrement counts if
they are less than or equal to ceil value of square root of
current window index.4 At window boundaries, ∀ 1 ≤ i ≤
d, 1 ≤ j ≤ w, if (sketch[i, j] > 0 and sketch[i, j] <=
d
√
windowIdXe), then sketch[i, j] = sketch[i, j]− 1.

All the four above variations are heuristics on top of CU
sketch. The motivation behind using these heuristics is that
by reducing certain counts in the sketch, we can reduce the
over-estimation error in low-frequency items without incur-
ring large under-estimation error on mid, and high frequency
counts. In future, in another line of work, we will like to do
the theoretical analysis of above approaches. We conjecture
that all the good properties of CU sketch holds. In addition
for all approaches, all reported frequencies f̂ have both un-
der and over estimation error: f − γN ≤ f̂ ≤ f + εN . In

3We fix γ such that size of each window is equal to size of the
sketch i.e. O(wd). In future, we will explore other settings of γ.

4We can also use log function instead of square root. Log func-
tion is even more conservative than square root.

next section, we experimentally study the Average Relative
Error (ARE) over LCU counts compared to their true counts.

Intrinsic Evaluations
We perform intrinsic evaluations to compare the errors
incurred in the approximate counts of different sketches
to their true counts. We also experiment to find the best
(width,depth) settings for LCU sketches. Finally, we show
the over-estimation (OE) and under-estimation (UE) errors
separately for the LCU sketches.

Data
We used the same pre-processed corpus as used in our ear-
lier work (Goyal et al. 2010a) that is Gigaword corpus (Graff
2003) and a copy of web crawled by (Ravichandran, Pan-
tel, and Hovy 2005). The context for a given word “x” is
defined as the surrounding words appearing in a window
of 2 words to the left and 2 words to the right. The con-
text words are concatenated along with their positions -2,
-1, +1, and +2. We store the counts of all words (exclud-
ing numbers, and stop words), their contexts, and counts of
word-context pairs in all the different sketches.5 To com-
pare our LCU sketches with CU sketch, we use four dif-
ferent sized corpora: SubSet, Gigaword (GW), GigaWord +
50% of web data (GW-WB1), and GigaWord + 100% of web
data (GW-WB2). It is memory, and time intensive to perform
many intrinsic evaluations on large data (Brants et al. 2007;
Ravichandran, Pantel, and Hovy 2005; Goyal et al. 2010b).
Hence, we use a subset of corpus of 2 million sentences
(Subset) for it. Corpus Statistics are shown in Table 1.

Corpus Sub GW GW- GW-
set WB1 WB2

Size .32 9.8 49 90(GB)
of sentences 2.00 56.78 462.60 866.02(Million)
Stream Size .25 7.65 37.93 69.41(Billion)

Table 1: Corpus Description

Comparing different sketches
To evaluate the amount of error in approximate counts of
sketches to their true counts, we first group all items with
same true frequency into a single bucket. This grouping done
based on frequency is to distinguish which sketch makes
mistakes on low, mid, and high frequency items. Average
Relative error (ARE) is defined as the average of absolute
difference between the approximated, and the true value di-
vided by the true value over all the items in each bucket.

ARE =
1

M

M∑
i=1

|Truei − Approximatei|
Truei

Where True, and Approximate denotes values of exact and
approximate sketch counts respectively; M denotes the
number of items with same counts in a bucket.

5From here on, words, their contexts, and word-context pairs
together will be referred as items.

10
0

10
1

10
2

10
3

0

2

4

6

True frequency counts of items

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

CU

LCU−1

LCU−SWS

LCU−WS

LCU−ALL

Figure 1: 10 million counter models with different decrement
count strategies with fixed depth=3.

In Figure 1, first we fix the size of sketches to 10 mil-
lion (10M) counters with four bytes of memory per each
counter (thus it only requires 40 MB of main memory). We
use depth of 3, and width 10M

3 as it performs the best for
CU sketch (Goyal et al. 2010b), and our goal is to show that
using LCU is better than the CU sketch. We can make sev-
eral key observations from Figure 1:
• Using the simple LCU-1 over CU: reduces the error

slightly over the low-frequency items.
• However, if we use LCU-SWS over CU and LCU-1, the

error over low-frequency items is reduced by a significant
factor of at most 3.

• If we move to LCU-WS over LCU-SWS, the error over
low-frequency items is again further reduced by a signifi-
cant factor of at most 2. However, this reduction comes
at the expense of generating some small error on mid-
frequency counts.

• LCU-ALL has similar errors like LCU-WS but they are
more than LCU-WS.
Overall LCU-SWS, and LCU-WS perform better than

CU, LCU-1, and LCU-ALL. In addition, both have errors
over different range of counts. Hence, we will compare these
sketches with respect to CU sketch on our extrinsic evalua-
tion that is distributional similarity.

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

True frequency counts of items

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(5M,2)

(3.33M,3)

(2M,5)

(1.43M,7)

Figure 2: Comparing LCU-SWS 10 million counter models with
different (width,depth) settings.

Varying (depth,width) settings
In this experiment, we will find best settings of (width,depth)
for LCU-SWS, and LCU-WS. Here again, we fix the size of

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

True frequency counts of items

A
v
e

ra
g

e
 R

e
la

ti
v
e

 E
rr

o
r

(5M,2)

(3.33M,3)

(2M,5)

(1.43M,7)

Figure 3: Comparing LCU-WS 10 million counter models with
different (width,depth) settings.

10
0

10
1

10
2

10
3

−1

−0.5

0

0.5

1

1.5

True frequency counts of items

A
v
e

ra
g

e
 R

e
la

ti
v
e

 E
rr

o
r

LCU−WS−OE

LCU−WS−UE

LCU−SWS−OE

LCU−SWS−UE

Figure 4: Over-estimation (OE), and under-estimation (UE) error
for LCU-WS, and LCU-SWS for 10 million counter models.

sketches to 10 million (10M) counters in Figure 2 and 3.
We try different values of depth (2, 3, 5, and 7) of the sketch
and in each case, the width is set to 10M

depth . In Figure 2, us-
ing depth of 5 gets comparatively smaller ARE compared to
other settings. However, in Figure 3, using depth of 5, and 7
gets comparatively smaller ARE compared to other settings.
Since using depth of 5 is faster than 7 when querying, and
updating requires depth # of operations. Hence, for the rest
of the paper we fix this parameter to 5.

Studying Over and Under Estimation Error
Here, we separately study the over-estimation (OE), and
under-estimation (UE) error for LCU-SWS, and LCU-WS
counts. To accomplish that, rather than using absolute error
values, we divide the values into OE (+ve), and UE (-ve)
buckets. Hence, to compute the OE ARE, we do the average
of positive values over all the items in each bucket For UE,
we do the average over the negative values. We fix the size
of sketches to 10 million (10M) counters with depth 5. We
can make following observations from Figure 4:
• The amount of OE ARE in LCU-WS for low-frequency

items is low i.e. at most 0.4 compared to LCU-SWS’s 1.6.
• However, the amount of UE over average counts for LCU-

WS is larger than LCU-SWS.

Extrinsic Evaluations
We use efficient distributional similarity (Goyal et al. 2010a)
as an application to show the effectiveness of LCU over CU

Data GW (400M) GW-WB1 (2B) GW-WB2 (2B)

Model Frequency cutoff Frequency cutoff Frequency cutoff
10 20 40 10 20 40 10 20 40

ρ ρ ρ
WS-353

Exact .36 .32 .30 .46 .45 .44 .47 .46 .45
CU -0.04 .34 .29 -0.09 -0.02 .05 -0.03 -0.03 -0.03

LCU-WS .34 .30 .28 .42 .47 .45 -0.06 .24 .47
LCU-SWS .01 .32 .29 .04 .49 .45 -0.04 -0.04 .46

WS-203
Exact .49 .44 .41 .57 .57 .56 .56 .57 .56
CU -0.07 .44 .38 -0.08 .02 .08 -0.06 -0.06 -0.02

LCU-WS .43 .39 .38 .56 .57 .55 -0.07 .40 .57
LCU-SWS .02 .41 .38 .10 .58 .56 -0.04 -0.03 .57

RG-65
Exact .14 .09 .15 .45 .36 .23 .47 .44 .31
CU -0.02 0.0 .11 -0.06 -0.02 .03 -0.05 -0.05 .06

LCU-WS .01 .04 .11 .58 .38 .22 .01 .42 .36
LCU-SWS -0.02 .03 .12 -0.13 .47 .23 -0.04 -0.04 .48

MC-30
Exact .27 .19 .18 .63 .53 .44 .59 .60 .49
CU -0.26 .23 .29 -0.08 .09 .06 -0.27 -0.27 -0.22

LCU-WS .24 .25 .26 .51 .56 .39 -0.46 .22 .49
LCU-SWS -0.27 .27 .27 -0.02 .58 .43 -0.48 -0.48 .53

Table 2: Evaluating word pairs ranking with Exact and CU counts. Scores are evaluated using ρ metric.

sketch. In first step, we store counts of all items in CU, LCU-
SWS, and LCU-WS sketches. In the second step, for a tar-
get word “x”, we consider all words (excluding numbers,
and stop words) as plausible context (since it is faster than
traversing the whole corpus.) and query the sketch for such
word-context pairs, and compute approximate PMI between
them. We maintain only top K PMI contexts using a prior-
ity queue for every target word “x” and store them onto the
disk. In the third step, we use cosine similarity using these
approximate top K context vectors to compute efficient dis-
tributional similarity. The efficient distributional similarity
using sketches has following advantages. • It can return se-
mantic similarity between any word pairs that are stored in
the sketch. • It can return the similarity between word pairs
in time O(K). •We do not store items explicitly, so the over-
all space required is sub-linear in input stream. • Most of
the steps can be parallelized and hence this framework can
be applied in distributed setting.
Test sets
We use four test sets which consist of word pairs, and their
corresponding human rankings. We generate the word pair
rankings using efficient distributional similarity. We report
the spearman’s rank correlation coefficient (ρ) between the
human and distributional similarity rankings.6 The four test
sets are: • WS-353 (Finkelstein et al. 2002) is a set of 353
word pairs. •WS-203: A subset of WS-353 containing 203
word pairs marked according to similarity7 (Agirre et al.
2009). • RG-65: (Rubenstein and Goodenough 1965) is set
of 65 word pairs. • MC-30: A smaller subset of the RG-65

6Goal of this work is not to improve distributional similarity but
to show the effectiveness of LCU sketches over CU sketch.

7http://alfonseca.org/pubs/ws353simrel.tar.gz

dataset containing 30 word pairs (Miller and Charles 1991).

Results
We compare LCU-SWS, LCU-WS with two baselines: Ex-
act (which uses exact counts), and CU sketch. For all the
approaches, we use top 1000 contexts based on PMI val-
ues for each word. We use GW, GW-WB1, and GW-WB2
whose corpus statics are shown in Table 1 on page 3 to com-
pute the counts. For each corpus, we use frequency cut-offs
of (10, 20, and 40) based on the frequency of word-context
pairs. These cut-offs were selected since sketch approaches
are sensitive to frequency cut-offs compared to the Exact as
found in our earlier work (Goyal et al. 2010a). The results
are shown in Table 2.

First, for GW corpus shown in second column of Table 2,
we use sketches with size 400 million (400M) counters us-
ing only 1.6 GB of main memory. Using this data-set, with
frequency cutoff of 10, both Exact, and LCU-WS performs
well on WS-353, WS-203, and MC-30 test-sets. However,
for CU, and LCU-SWS, we need frequency cutoff of 20 to
perform well. However, all the approaches on RG-65 per-
form better with a higher cutoff of 40. For GW-WB1 shown
in third column, and GW-WB2 shown in fourth column, we
use sketches with size 2 billion (2B) counters using 8 GB
of main memory which is easily available on conventional
desktop machines. For CU sketch, the results are terrible
with all the frequency cut-offs, showing that this sketch is
highly sensitive to frequency cutoff. For GW-WB1, using
LCU-WS, performs well with all frequency cut-offs com-
pared to Exact. However, LCU-SWS is sensitive with re-
spect to frequency cutoff of 10 but performs well with cut-
offs of 20, and 40. For GW-WB2, using LCU-WS, and LCU-
SWS, they need cutoff of 40 to perform comparable to Ex-

act. LCU-WS, also performs reasonable with a cutoff of 20.
From the above discussion, we learn that on distributional

similarity task using LCU-WS and LCU-SWS sketches are
more robust than CU sketch. Second for LCU-WS, the re-
duction in over-estimation error for low-frequency items is
more beneficial than incurring small error on mid-frequency
items. Third for LCU-SWS, the reduction in over-estimation
is less compared to LCU-WS but it has negligible error on
mid-frequency items, and the results show that this tech-
nique is also robust compared to CU. Fourth, since, both
LCU-WS, and LCU-SWS has smaller error compared to CU
sketches, we can use smaller number of counters for LCU-
WS, and LCU-SWS, and can get same performance as CU
sketch. This shows that using LCU techniques, we can save
time as well as memory.

Conclusion
In this work, we have proposed the framework of LCU
sketches by combining the idea of lossy counting on top
of CU sketch. In intrinsic evaluations, we show that LCU-
SWS is always better than using CU sketch as it reduces
over-estimation error significantly without even incurring
any error on mid-frequency items. For LCU-WS, the reduc-
tion in over-estimation is larger than LCU-SWS, however
this decrease comes at the expense of small error on average
counts. On the task of distributional similarity, we show that
using both LCU-WS, LCU-SWS is more robust, memory,
and time efficient compared to CU sketch.

Acknowledgments
The authors gratefully acknowledge the support of NSF
grant IIS-0712764 and Google Research Grant for Large-
Data NLP. Thanks to Suresh Venkatasubramanian and Ja-
gadeesh Jagarlamudi for useful discussions and the anony-
mous reviewers for many helpful comments.

References
Agirre, E.; Alfonseca, E.; Hall, K.; Kravalova, J.; Paşca, M.;
and Soroa, A. 2009. A study on similarity and related-
ness using distributional and wordnet-based approaches. In
NAACL ’09: Proceedings of HLT-NAACL.
Brants, T.; Popat, A. C.; Xu, P.; Och, F. J.; and Dean, J. 2007.
Large language models in machine translation. In Proceed-
ings of EMNLP-CoNLL.
Church, K., and Hanks, P. 1989. Word Association Norms,
Mutual Information and Lexicography. In Proceedings of
ACL, 76–83.
Cormode, G., and Hadjieleftheriou, M. 2008. Finding fre-
quent items in data streams. In VLDB.
Cormode, G., and Muthukrishnan, S. 2004. An improved
data stream summary: The count-min sketch and its applica-
tions. J. Algorithms.
Cormode, G. 2009. Encyclopedia entry on ’Count-Min
Sketch’. In Encyclopedia of Database Systems. Springer.
511–516.
Estan, C., and Varghese, G. 2002. New directions in traffic
measurement and accounting. SIGCOMM Comput. Com-
mun. Rev. 32(4).

Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.;
Solan, Z.; Wolfman, G.; and Ruppin, E. 2002. Placing
search in context: The concept revisited. In ACM Trans-
actions on Information Systems.
Firth, J. 1968. A synopsis of linguistic theory 1930-1955.
In Palmer, F., ed., Selected Papers of J. R. Firth. Longman.
Goyal, A.; Jagarlamudi, J.; Daumé III, H.; and Venkatasub-
ramanian, S. 2010a. Sketch techniques for scaling distribu-
tional similarity to the web. In GEMS workshop at ACL.
Goyal, A.; Jagarlamudi, J.; Daumé III, H.; and Venkatasub-
ramanian, S. 2010b. Sketching techniques for Large Scale
NLP. In 6th WAC Workshop at NAACL-HLT.
Goyal, A.; Daumé III, H.; and Venkatasubramanian, S.
2009. Streaming for large scale NLP: Language modeling.
In NAACL.
Graff, D. 2003. English Gigaword. Linguistic Data Consor-
tium, Philadelphia, PA.
Harris, Z. 1954. Distributional structure. Word 10 (23) 146–
162.
Levenberg, A., and Osborne, M. 2009. Stream-based ran-
domised language models for SMT. In EMNLP.
Manku, G. S., and Motwani, R. 2002. Approximate fre-
quency counts over data streams. In VLDB.
Manku, G. S. 2002. Frequency counts over data
streams. In http://www.cse.ust.hk/vldb2002/VLDB2002-
proceedings/slides/S10P03slides.pdf.
Miller, G., and Charles, W. 1991. Contextual correlates
of semantic similarity. Language and Cognitive Processes
6(1):1–28.
Pantel, P.; Crestan, E.; Borkovsky, A.; Popescu, A.-M.; and
Vyas, V. 2009. Web-scale distributional similarity and entity
set expansion. In Proceedings of EMNLP.
Ravichandran, D.; Pantel, P.; and Hovy, E. 2005. Random-
ized algorithms and nlp: using locality sensitive hash func-
tion for high speed noun clustering. In Proceedings of ACL.
Rubenstein, H., and Goodenough, J. 1965. Contextual cor-
relates of synonymy. Computational Linguistics 8:627–633.
Rusu, F., and Dobra, A. 2007. Statistical analysis of sketch
estimators. In SIGMOD ’07. ACM.
Turney, P. D. 2008. A uniform approach to analogies, syn-
onyms, antonyms, and associations. In Proceedings of COL-
ING 2008.
Van Durme, B., and Lall, A. 2009a. Probabilistic counting
with randomized storage. In IJCAI’09: Proceedings of the
21st international jont conference on Artifical intelligence.
Van Durme, B., and Lall, A. 2009b. Streaming pointwise
mutual information. In Advances in Neural Information Pro-
cessing Systems 22.
Van Durme, B., and Lall, A. 2010. Online generation of
locality sensitive hash signatures. In Proceedings of the ACL
2010 Conference Short Papers, 231–235.
Van Durme, B., and Lall, A. 2011. Efficient online locality
sensitive hashing via reservoir counting. In Proceedings of
the ACL 2011 Conference Short Papers.

