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Abstract

Given several related learning tasks, we pro-
pose a nonparametric Bayesian model that
captures task relatedness by assuming that
the task parameters (i.e., predictors) share
a latent subspace. More specifically, the in-
trinsic dimensionality of the task subspace is
not assumed to be known a priori. We use an
infinite latent feature model to automatically
infer this number (depending on and limited
by only the number of tasks). Furthermore,
our approach is applicable when the under-
lying task parameter subspace is inherently
sparse, drawing parallels with `1 regulariza-
tion and LASSO-style models. We also pro-
pose an augmented model which can make
use of (labeled, and additionally unlabeled
if available) inputs to assist learning this
subspace, leading to further improvements
in the performance. Experimental results
demonstrate the efficacy of both the pro-
posed approaches, especially when the num-
ber of examples per task is small. Finally, we
discuss an extension of the proposed frame-
work where a nonparametric mixture of lin-
ear subspaces can be used to learn a nonlin-
ear manifold over the task parameters, and
also deal with the issue of negative transfer
from unrelated tasks.

1 Introduction

Many learning settings consist of multiple prediction
problems that are related with each other in some
way. A common instance is multivariate regression
or multi-label classification where each example is as-
sociated with several response variables (real-valued
for regression, and discrete-valued for classification).
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For example, given a document, one may be inter-
ested in predicting its topic category as well as its
author. Clearly, such tasks are expected to be re-
lated. A näıve way to learn such multiple prediction
problems would be to simply treat them as separate
problems and learn separate models for each of them,
essentially ignoring any correlation that might exist
among them. Such an approach, however, fails to ex-
ploit any correlations that may be there among these
tasks, and it is desirable to share information across
tasks if they are related.

Motivated by this idea, a number of techniques have
been proposed to exploit task relatedness in order to
better learn a set of related tasks, rather than learning
them individually. This is commonly known as mul-
titask learning (Caruana, 1997), “learning to learn”
(Heskes, 2000), inductive bias (Baxter, 2000), or pre-
dicting multivariate responses (Breiman & Friedman,
1997), where multiple tasks are pooled together with
the goal of improving the generalization performance
of all the tasks. The idea is to use some aspect that
can be shared across all the tasks in order to share
their individual statistical strengths, compensating for
the paucity of labeled examples.

In this paper, we consider one such aspect, namely
a shared predictor subspace. The assumption here is
that all the task parameters share an underlying basis
space which accounts for the task relatedness. Each
individual task can then be represented as a linear
combination of the set of basis tasks. Our predictor
subspace model is similar in spirit to (Zhang et al.,
2006, 2008). In this work, we propose a nonpara-
metric, fully Bayesian framework that can learn this
subspace without making any parametric assumptions
(e.g., the framework does not assume the intrinsic di-
mensionality of the subspace to be known a priori).
We present two models to learn such a subspace, with
a special emphasis on cases when the number of tasks
and/or the number of examples per task is small. In
this paper, we concentrate Bayesian linear regression
(for regression) and Bayesian logistic regression (for
classification). The framework, however, is general
enough and can accommodate a variety of different
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probabilistic discriminative models. Moreover, our
model can easily extended to a mixture of subspaces
setting which allows the task parameters to share a
nonlinear manifold.

In section 2, we describe the problem setup and our
basic framework to model task relatedness. Section
3 gives a brief overview of the Indian Buffet Process,
a nonparametric Bayesian approach, our framework
is build upon. Section 4 describes both our models.
Section 5 talks about inference in our model, section
7 reports experimental results, and section 8 discusses
related work. We finally discuss the mixture extension
of our work and conclude with section 10.

2 Latent Subspace Model for Task
Parameters

To model task relatedness, we assume that the tasks
have an underlying basis space and each actual task
is a linear combination of the basis vectors (which
act as “source” tasks). More specifically, suppose we
have M tasks (regression/classification) represented
by task parameters θ1, . . . , θM where θm ∈ RD is the
task parameter for the m-th task. We assume the
following generative model for each task parameter:

θm = ZAm + εm

Here Z ∈ RD×K is a matrix in which each column
is a D dimensional basis vector, Am ∈ RK×1 is the
the set of coefficients for the mth task parameter, and
εm is task-specific noise. The matrix Z under this
model defines the latent space underlying the set of
predictors, and is shared across all tasks, justifying the
task relatedness. The same generative model, with all
task parameters grouped together in a matrix Θ =
[θ1 . . . θM ] ∈ RD×M can be written in a matrix form
as Θ = ZAθ + E, where Aθ = [A1 . . .AM ].

Together, the matrix Z of basis tasks, and the coef-
ficients [A1 . . .AM ] give the task parameters a parsi-
monious representation where each D × 1 task pa-
rameter vector is represented by a vector of size
K × 1, with K � D. Finally, each row em of the
D × M matrix E explains the task-specific idiosyn-
crasies and is assumed to be drawn from a multi-
variate Gaussian with a diagonal covariance matrix
Ψ = diag(ψ11, . . . , ψDD).

At a first blush, such a setup may seem like fac-
tor analysis (Bartholomew & Knott, 1999; Rai &
Daumé III, 2009). However, unlike factor analysis,
e.g., X = ZA + E type of set-up where the data X
is observed, in this case the matrix Θ of task parame-
ters is not observed. So the “data” Θ is itself a latent
variable in this model (others being Z,A,E, and the
associated hyperparameters). The goal is to learn Θ

along with all the other latent variables, harnessing
the data available from all the tasks. Note that it is a
supervised setting unlike standard factor analysis.

A crucial issue in the model is determining the intrin-
sic dimensionality and sparsity of the underlying pre-
dictor subspace defined by Z. We propose a nonpara-
metric Bayesian model based on the recently proposed
Indian Buffet Process (IBP) (Ghahramani et al., 2007)
to deal with both these issues. The dimensionality K
of the latent space and the degree of sparsity of the
basis space defined by Z is automatically determined
by the IBP prior. Note that the sparsity of Z is akin
to imposing an `1-type regularization on Z as in the
Lasso framework, or assuming a Laplace prior on the
columns of Z: Zk ∼

∏D
d=1 Laplace(0, η).

3 Indian Buffet Process

The Indian Buffet Process (IBP) (Ghahramani et al.,
2007) is a nonparametric Bayesian prior that defines
a distribution over infinite binary matrices. The IBP
was originally motivated by the need to model the la-
tent feature structure of a given set of observations.
The IBP has been a model of choice in variety of non-
parametric Bayesian applications, such as for factorial
structure learning, learning causal structures, model-
ing dyadic data, modeling overlapping clusters, and
others (Ghahramani et al., 2007).

In the latent feature model, each observation 1 is as-
sumed to consist of a set of latent features. Given
an N ×D matrix X of N observations having D fea-
tures each, we can consider a decomposition of the
form X = ZA + E where Z is an N × K binary
feature-assignment matrix describing which features
are present in each observation. Zn,k is 1 if feature
k is present in observation n, and is otherwise 0. A
is a K × D matrix of feature scores, and the matrix
E consists of observation specific noise. A crucial is-
sue in such models is the choosing the number K of
latent features. The standard formulation of IBP lets
us define a prior over the binary matrix Z such that it
can have an unbounded number of columns and thus
can be a suitable prior in problems dealing with such
structures.

The IBP derivation starts by defining a finite model
for K many columns of a N ×K binary matrix.

P (Z) =
K∏

k=1

α
K Γ(mk + α

K )Γ(N −mk − 1)
Γ(N + 1 + α

K )

1Note that, in our multitask learning setting, we use
IBP not to model the observations but to model the task
parameters Θ (which themselves are latent variables in
our case) which makes it different from the standard IBP
based latent feature models.
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Here mk =
∑

i Zik. In the limiting case, as K → ∞,
it as was shown in (Ghahramani et al., 2007) that the
binary matrix Z generated by IBP is equivalent to
one produced by a sequential stochastic process. This
process can be best understood by a culinary anal-
ogy of customers coming to an Indian restaurant and
selecting dishes from an infinite array of dishes. In
this analogy, customers represent observations (rows
of X) and dishes represent latent features (columns
of Z). Customer 1 selects Poisson(α) dishes to begin
with. Thereafter, each incoming customer n selects
an existing dish k with a probability mk/N , where
mk denotes how many previous customers chose that
particular dish. The customer n then goes on further
to additionally select Poisson(α/n) new dishes. This
process generates a binary matrix Z with rows rep-
resenting customer and columns representing dishes.
Many real world datasets have a sparseness property
which means that each observation depends only on
a subset of all the K latent features. Thus the bi-
nary matrix Z is expected to be reasonably sparse for
many datasets. This makes IBP a suitable choice for
capturing the underlying sparsity in addition to auto-
matically discovering the number of latent features.

4 Infinite Latent Subspace Models for
Multitask Learning

Our goal is to simultaneously learn several prediction
tasks. In the rest of the exposition and our experi-
ments, we consider the special case of multi-label pre-
diction where each input x is associated with multiple
labels, therefore predicting each label is a task. Our
framework is, however, more general and can also be
applied for cases where each prediction problem has
its own source of input.

In the multi-label setting, learning the prediction task
for the mth label amounts to learning the task pa-
rameter θm. Formally, given training data D =
{(x1, y

m
1 ), . . . , (xN , y

m
N )} for task m where xi ∈ RD

and ym
i is a real (for regression) or a binary valued

(for classification) response, a learning task parame-
terized by θm, can be defined as:

Regression: ym
i ∼ Nor(θT

mxi, ρ
2)

Classification: ym
i ∼ Bin(1/(1 + e−θT

mxi))

To follow a more compact notation, we shall denote
the inputs [x, . . . ,xN ] by an N × D matrix X the
responses for all the M tasks by an N ×M matrix
Y, and the M task parameters as a D ×M matrix
Θ = [θ1 . . . θM ] ∈ RD×M . With this notation, we can
define the prediction setting as a probabilistic model
Y|Θ,X ∼ Nor(Y|XT Θ, ρ2I) for regression (Bayesian
linear regression), and Y|Θ,X ∼ Bin(1/(1 + e−XT Θ))
for classification (Bayesian logistic regression).

Recall our original setup Θ = ZAθ + E. We wish
to model the matrix Z using the Indian Buffet Pro-
cess (IBP), thereby automatically choosing the intrin-
sic dimensionality of the task basis space defined by
Z. However, since IBP defines a distribution over bi-
nary matrices and Z needs to be a real-valued matrix,
we model Z as B � V, the element-wise product of a
binary matrix B and a real-valued matrix V, both of
size D × K. We place an IBP prior over the binary
matrix B and a Gaussian prior over the real-valued
matrix V. Our complete hierarchical model is the fol-
lowing (the corresponding graphical model shown in
Figure 1; error term not shown for the sake of brevity):

Y ∼ Nor(XT Θ, ρ2I)(regression)

Y ∼ Bin(1/(1 + e−XT Θ)(classification)
Θ = (B � V)Aθ + E

B ∼ IBP(α)
V ∼ Nor(0, σ2

vI), σv ∼ IG(a, b)
Aθ ∼ Nor(0, σ2

θI), σθ ∼ IG(c, d)
E ∼ Nor(0,Ψ), ΨD ∼ IG(e, f)

Here Θ, which is itself a latent variable, acts as the
“data” in the model and depends on other latent
variables in the model, and the data from actual
tasks (B,V,Aθ,E,X,Y). Our proposed model learns
Θ (along with learning the latent subspace underlying
Θ) by sharing information across all the tasks.

4.1 An augmented model for learning task
basis

Learning the task subspace Z (= B � V) reliably
would require a reasonable amount of data. In the ba-
sic model, the only available “data” for learning Z is Θ
(which, under our probabilistic model, is actually it-
self a latent variable to be learned). Given related but
only a small number of tasks M , the D×M matrix Θ
may not be enough to reliably learn the basis Z. This
motivates our second model that allows also using the
inputs X from each task to improve the learning of
Z. Under this model (shown in Figure 1: Right), it is
assumed that the task parameters Θ and the inputs
X both share the same basis space Z, with different
mixing matrices Aθ and Ax respectively. This model
can be thought of as simultaneously discovering both
the task parameter basis, as well as the latent fea-
tures underlying the data X. Furthermore, under this
model, the data matrix X need not only consist of ex-
amples for which labels are known. So the matrix X
shown in Figure 1 (right) can additionally also consist
of unlabeled examples which are relatively easier to
obtain.

The reason why having the input share the same sub-
space as the task parameters can be explained using
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a Representer theorem (Schölkopf et al., 2001) argu-
ment: write the solution of a regularized loss function
as: θ =

∑
i αixi (assume a linear kernel). Now if we

write each input vector xi as a combination of basis
vectors (Zai + εi) then (after rearranging the coeffi-
cients) one can also write the task parameter θ as a
combination of the same basis vectors defined by Z.
Therefore it makes sense to have both X and Θ share
the same subspace.

Figure 1: Left: our basic model. Right: the aug-
mented model using both task parameters and input
data. X in the augmented model can additionally also
consist of unlabeled data. Noise hyperparameters not
shown for the sake of brevity. In both the models, the
shaded nodes are observed, and the remaining ones
(including the matrix Θ consisting of task parameters,
and the noise hyperparameters) are latent variables to
be learned.

5 Inference

We take a fully Bayesian approach for inference in
this model. Inference is akin to the Gibbs sampler
for the IBP (Ghahramani et al., 2007), except for the
following differences:

• The matrix Z is no longer a binary matrix but is
expressed as an element-wise product of the bi-
nary matrix B and the real-valued matrix V. So
both B and V need to be sampled in conjunction
in our model.

• The latent variable Θ acts as the “data”
and therefore needs to be sampled from
its posterior P (Θ|D,B,V,Aθ) where D =
{(x1, y

m
1 ), . . . , (xN , y

m
N )}, (m = [1, . . . ,M ]) de-

notes the actual data the model has access to.

Inference in our model is done using Gibbs sampling
with a few Metropolis-Hastings steps. The sampler
draws posterior samples of B, V, Aθ, Θ, and the re-
maining hyperparameters of the model. Here we de-
scribe the sampling equations for all latent variables

in our basic model. Sampling the hyperparameters (α,
σv, etc.) is straightforward and we skip it due to the
space limitation. Sampling in the augmented model
is similar to the basic model and is described briefly
at the end of this section.

Sampling B: Sampling the binary IBP matrix B
consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on
the acceptance ratio in the associated M-H step.
For sampling existing dishes, an entry in B is set
as 1 according to p(Bik = 1|Θ, B−ik,V,Aθ,Ψ) ∝
m−i,k

D p(Θ|B,V,Aθ,Ψ) whereas it is set as 0 ac-
cording to p(Bik = 0|Θ, B−ik,V,Aθ,Ψ) ∝
D−m−i,k

D p(Θ|B,V,Aθ,Ψ). m−i,k =
∑

j 6=iBjk is how
many other customers chose dish k.

For sampling new dishes, we use an M-H step where
we simultaneously propose η = (Knew,Vnew,Anew

θ )
where Knew ∼ Poisson(α/D). We accept the pro-
posal with an acceptance probability given by a =
min{1, p(rest|η∗)

p(rest|η) }. Here, p(rest|η) is the probability
of the data given parameters η. We propose Vnew

from its prior (Gaussian) but, for faster mixing, we
propose Anew

θ from its posterior (a Gaussian).

Sampling V: We sample the real-valued ma-
trix V from its posterior p(Vi,k|Θ,B,Aθ,Ψ) ∼
Nor(Vi,k|µi,k,Σi,k), where Σi,k = (

∑N
n=1

Aθ
2
k,n

Ψi
+

1
σ2

v
)−1 and µi,k = Σi,k(

∑N
n=1Aθk,nΘ∗

i,k)Ψ−1
g . We de-

fine Θ∗
i,k = Θi,n−

∑K
l=1,l 6=k(Bi,lVi,l)Aθl,n. The hyper-

parameter σv on V has an inverse-gamma prior and
posterior also has the same form.

Sampling Aθ: We sample for Aθ from its poste-
rior p(Aθ|Θ,B,V,Ψ) ∼ Nor(Aθ|µ,Σ) where µ =
ZT(ZZT + Ψ)−1Θ and Σ = I − ZT(ZZT + Ψ)−1Z,
where Z = B � V

5.1 Sampling Θ

The posterior for Θ can be written as
P (Θ|D,B,V,Aθ) ∝ P (Y|XT Θ)P (Θ). The prior
on Θ is a Gaussian Nor((B � V)Aθ,Ψ). For the
likelihood term, there are 2 cases. For regression, the
likelihood P (Y |XT Θ) is Gaussian so the posterior
is available in closed form and is easy to sample
from. Specifically, the posterior P (Θ|D,B,V,Aθ) is
a Gaussian Nor(µθ,Σθ) where

µθ = Σθ(Ψ−1(B � V)Aθ + βXT Y)
Σ−1

θ = Ψ−1 + βXT X

where β is the precision (inverse variance) of the Gaus-
sian likelihood term P (Y |XT Θ).

For classification however, the likelihood is no longer
Gaussian so we lose conjugacy. There are several ways
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to deal with this. One way is to use Laplace ap-
proximation to the posterior (Bishop, 2006). Another
possibility is to use the variational method proposed
in (Jaakkola & Jordan, 1996) to approximate a non-
Gaussian likelihood by a Gaussian one. We instead
use another approach based on the auxiliary variable
based Gibbs sampler for logistic regression (Holmes &
Held, 2006) which is more appropriate in the Gibbs
sampling scheme we employ.

The auxiliary variable sampler (Holmes & Held, 2006)
for logistic regression associates with each response
yi ∈ {0, 1} an auxiliary variable ỹi = xT

i θ + εi with
ε ∼ Nor(0, λi), such that yi = 1 if ỹi > 0, and 0
otherwise. λi is assigned a Kolmogorov-Smirnov dis-
tribution. With a normal prior Nor(b, v) on θ, the
posterior on θ is still a Gaussian:

θ|ỹ, λ ∼ Nor(µθ,Σθ)
µθ = Σθ(v−1b+ βXT Wỹ)

Σ−1
θ = (v−1 + βXT WX)−1

W = diag(λ1, . . . , λN ), ỹ = [ỹ1, . . . , ỹN ]′

where the posterior over the auxiliary variables ỹi is a
truncated normal, which can be sampled from using
standard techniques.

ỹi|θ,xi, yi, λi ∼
{

Nor(xT
i θ, λi)I(ỹi > 0) if yi = 0

Nor(xT
i θ, λi)I(ỹi ≤ 0) if yi 6= 0

and in our case, the mean and covariance on the nor-
mal prior over Θ are given by b = (B � V)Aθ and
v = Ψ respectively.

5.2 Sampling in the augmented model

The sampling steps in our augmented model are es-
sentially the same as in the basic model, except that
we replace the D×M matrix Θ by the D× (M +N)
matrix [Θ X]. As in the basic model, Θ still needs to
be sampled as above, whereas X stays fixed and does
not have to be sampled.

We note here that although a fully Bayesian solution
can be slow with data having a large number of fea-
tures (since each feature corresponds to a customer
in the IBP model), one may address this by using a
number of recently proposed alternatives to the vanilla
Gibbs sampling (Teh et al., 2007; Doshi & Ghahra-
mani, 2009) for IBP that can be as much as an order
of magnitude faster.

6 Prediction
Having learned the task parameters Θ, we use these to
make predictions on the test data. For the test data
x of the mth task, the prediction can be written as

p(y|x) =
∫
p(y|x, θm)p(θm|µm,Σm)dθm

which is essentially averaging over the predictions
made by each of the posterior samples of θm, where
µm and Σm are the mean and covariance parameters
of the mth task. Since the posterior averaging can
be computationally expensive, it can also be replaced
by θ̂m, the MAP estimate of θm. Prediction for x
then simply requires plugging in the MAP estimate:
p(y|x) = p(y|x, θ̂m).

7 Experiments

We present our experimental results on two real-
world multi-label classification datasets (Yeast and
Scene) from the UCI repository, comparing our mod-
els against independently trained Bayesian logistic re-
gression, the pooling based approach, and another
state-of-the-art multitask learning baseline. The
Yeast dataset consists of 1500 training and 917 test
examples, each having 103 features. The number of
labels (or tasks) per example is 14. The Scene dataset
consists of 1211 training and 1196 test examples, each
having 294 features. The number of labels per exam-
ple for this dataset is 6. We use the following base-
lines:

• LR: Independent Bayesian logistic regression

• pool: Pooling all data and learning a single
model

• yaxue: The matrix stick-breaking process based
multitask learning model proposed in (Xue et al.,
2007a)

In the experimental results (table 1 and figure 2) ,
we refer to our basic model as model-1, and the aug-
mented model with input data as model-2. Note that
all the multitask approaches compared here use Lo-
gistic Regression as the base classifier. We use overall
accuracy, F1-Macro and F1-Micro (Yang, 1997), and
AUC (Area Under ROC Curve) as the performance
metrics. The Gibbs samplers used in Bayesian logis-
tic regression, the method of (Xue et al., 2007a), and
both of our models were run for 1000 iterations. Re-
sults on both datasets, with full training dataset used,
are shown in Table 1.

As the results show, both our models perform better
than independently trained Bayesian logistic regres-
sion which completely ignores the task relatedness.
When compared across all the baselines, we obtain
consistent improvements for almost all of the scores.
Also, the pooling based approach, surprisingly, ends
up hurting the overall performance here, suggesting
that a simple pooling may not always be a good idea.
Furthermore, our augmented model (model-2) does
best overall suggesting that incorporating the input
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Model Yeast Scene
Acc F1-macro F1-micro AUC Acc F1-macro F1-micro AUC

LR 0.5047 0.3415 0.3828 0.5049 0.7362 0.3132 0.3173 0.6153
pool 0.4983 0.3497 0.3910 0.5112 0.7862 0.2842 0.3012 0.5433
yaxue 0.5106 0.3897 0.4022 0.5105 0.7765 0.2669 0.2816 0.5603

Model-1 0.5212 0.3631 0.3901 0.5244 0.7756 0.3153 0.3242 0.6325
Model-2 0.5424 0.3946 0.4112 0.5406 0.7911 0.3214 0.3226 0.6416

Table 1: Comparison of Bayesian logistic regression, pooling approach, kernel stick-breaking approach (yaxue), our
basic model (model-1), and our augmented model (model-2), for two multilabel datasets. Bold face implies the best
performance. Results are averaged over 10 runs with different initializations.
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Figure 2: Performance comparison between our both multitask learning models, and Bayesian logistic regression trained
separately for each task. Left: Accuracy with varying training data size. Right: AUC score with varying training data
size.

data in learning the predictor subspace defined by Z
indeed helps in learning the task parameters even bet-
ter, especially when the number of tasks small (which
is indeed the case with Yeast and Scene datasets). We
also investigated the effect of varying the dataset size
starting with a small number of training examples and
incrementing slowly. The results on the Scene data are
shown in Figure 2. We see that both our models do
considerably better than Bayesian logistic regression
learned separately for each task, especially when the
training set size is small. Moreover, the augmented
model does best implying that the including the in-
put data while learning the predictor subspace indeed
helps. We also observe that even with a very small
training data, performance of both our models is rea-
sonably close to optimal, suggesting that it is possible
to learn reliably even with a small amount of data.
Logistic regression, on the other hand, falls behind by
quite a lot when the amount of training data is small.
It begins to catch up with our models but they still
do better, even with the full data. This evidence sup-
ports the model assumption that an underlying task
space is shared across all tasks and learning the task
parameters with this assumption indeed improves per-
formance of all the tasks.

8 Related Work

The recent interest in learning a set of related tasks
has spurted a range of work in multitask learning with

different notions of task relatedness being proposed
with varying degrees of success. One of the earliest
works on multitask learning includes sharing of the
hidden layers in neural networks to share information
across tasks (Caruana, 1997). Other prominent ap-
proaches include tasks based on the assumption of be-
ing generated from an IID space (Baxter, 2000), learn-
ing multiple tasks in a Bayesian setting using a hier-
archical prior over the task space (Xue et al., 2007b;
Daumé III, 2009), sharing parameters of Gaussian
processes (Lawrence & Platt, 2004), sharing a com-
mon structure on the predictor space (Ando & Zhang,
2005), and structured regularization in kernel meth-
ods (Evgeniou et al., 2006), among others. Extend-
ing the task-clustering model of (Xue et al., 2007b),
the matrix stick-breaking process (MSBP) model pro-
posed in (Xue et al., 2007a) (the yaxue model used
as one of our baselines) allows separate clustering and
borrowing of information for the different feature com-
ponents. This can be important if we expect the tasks
to be more closely related for some features than for
others.

Another notion of task relatedness assumes that the
data from related tasks share an underlying low-
dimensional feature space (Ji et al., 2008) that essen-
tially captures the task relatedness. This is in contrast
with our proposed approach where we assume that the
task-parameters share a latent low-dimensional sub-
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space. Note, however, that our model-2 additionally
also performs dimensionality reduction of the input
data, sharing information across tasks. Thus one may
as well use this alternate feature representation of data
to learn the multiple tasks

Structurally, our basic model (model-1) is most simi-
lar to the one proposed in (Zhang et al., 2006). Their
model however fixes the number of task basis vectors
to the number of tasks, whereas our model automat-
ically infers this. In addition to automatically de-
termining the predictor subspace dimensionality, our
second model can also use the inputs X to learn the
predictor subspace more reliably, especially when the
number of tasks is small. Another closely related work
similar in spirit to our model is the semiparametric
latent factor model (Teh et al., 2005) for regression.
This model makes use of a set of Gaussian Processes
(GP), linearly mixed to capture the possible depen-
dencies among the response variables. The difference
between this model and ours is that the former as-
sumes a linear mixing process in the instance space
whereas we assume it to hold in the predictor space.

Finally, the idea of encouraging sparsity of the task
basis space is also inline with recent work on taking
advantage of sparsity in multitask learning. (Lounici
et al., 2009) recently proposed a model based on
grouped Lasso which enforces sparsity directly on re-
gression vectors. Our proposed model addresses the
issue of sparsity in a somewhat different but comple-
mentary manner as our model assumes that the task
basis vectors are sparse.

9 A Mixture of Subspaces Model for
Multitask Learning

Our factor analysis based predictor subspace model
also admits natural extensions to more complex set-
tings. In this section, we briefly outline how a nonlin-
ear manifold underlying the task parameters can be
learned by extending our basic linear subspace model.
Note that a single shared linear subspace can be a
somewhat restrictive due to two reasons: a) when
there are outlier tasks for which it is unreasonable
to assume the same shared subspace as the other rel-
evant tasks, and b) when underlying task parameter
subspace is a nonlinear manifold. Our predictor sub-
space model can be easily generalized to deal with
such issues by assuming a mixture of subspaces model.

More specifically, the mixture of subspaces model does
not assume that all task parameters share a single
basis space, but instead each task parameter actu-
ally belongs to one of the subspaces from that mix-
ture (akin to the sense of a mixture model of data).
The mixture of subspaces model uses a collection of
locally linear subspaces, thereby effectively being able
to model nonlinear manifolds (Ghahramani & Hinton,

1997). The model also captures the notion of clustered
tasks in a way such that the task parameters belonging
to the same subspace are considered part of the same
cluster. So, in essence, such a model can capture task-
relatedness on two levels: task parameter clustering,
followed by a subspace assumption within each cluster
(and globally modeling a manifold structure underly-
ing the task parameters). In addition, the model can
be made fully nonparametric in that we do not need
to assume a fixed number of mixture components, or
a fixed dimensionality of the underlying subspaces in
each cluster. Furthermore, the model also allows the
intrinsic dimensionality of the manifold to be differ-
ent in different regions of the ambient task parameter
space.

To be concrete, let us again assume that we are given
M tasks and wish to learn the associated task param-
eters θ1, . . . , θM . In this case. we have the generative
model in which each task parameter θm is assumed to
be generated from the following mixture distribution:

p(θm) =
K∑

i=1

πiNor(µi,ZiZT
i + Ψi)

Here µi are the component means, Zi are the corre-
sponding factor loadings, and πi are the mixing pro-
portions. This is essentially a mixture of factor ana-
lyzers (MFA) model originally proposed in (Ghahra-
mani & Hinton, 1997) to learn the low-dimensional
structure of a set of observed data points. However,
in our model, the task parameters θm are latent vari-
ables. These can just be treated as random variables
(as we did in our original predictor subspace model)
and can be learned along with the rest of the model pa-
rameters for MFA. A hierarchical Bayesian, fully non-
parametric approach can then be used to do learning
in this model. In order to make the model fully non-
parametric, one can put a Dirichlet Process (DP) prior
(Antoniak, 1974) on the mixing proportions πi which
nonparametrically determines K - the true number of
mixture subspace components. To determine the di-
mensionality of each subspace, one can use the Indian
Buffet Process (IBP) prior (Ghahramani et al., 2007)
on each of the Zi (or alternatively, automatic rele-
vance determination prior (Bishop, 1999) can also be
used).

10 Conclusion

In this paper, we proposed a nonparametric, fully
Bayesian, probabilistic framework to learn the latent
shared subspace of a set of related tasks. The shared
subspace captures the task relatedness in a manner
that each task parameter (i.e., the weight vector of
a classification/regression model) can be treated as a
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linear combination of a set of basis tasks constituting
this subspace. More importantly, we do not restrict
the intrinsic dimensionality of this subspace to an a
priori fixed number, but discover it automatically. An
additional advantage of our proposed model is that
our prior promotes sparsity of the basis space, lead-
ing to LASSO style notion of model sparsity. Further-
more, we also propose an extension to the model which
can incorporate inputs from labeled data (and, poten-
tially, also inputs from additional unlabeled data), to
more reliably learn the model when the number of
tasks is small. Our model is also easily extendable
to a mixture of subspaces setting as described in sec-
tion 9, which can be appropriate for cases where the
task parameters lie on a nonlinear manifold, and/or if
there are outlier tasks. We believe that similar flexible
models lead to effective capturing of task relatedness,
and can result in improved model performance in mul-
titask learning problems.
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Daumé III, H. Bayesian Multitask Learning with Latent
Hierarchies. In Conference on Uncertainty in Artificial
Intelligence, Montreal, Canada, 2009.

Doshi, F. and Ghahramani, Z. Accelerated Gibbs Sam-
pling for the Indian Buffet Process. In ICML, 2009.

Evgeniou, T., Micchelli, C.A., and Pontil, M. Learning
Multiple Tasks with Kernel Methods. Journal of Ma-
chine Learning Research, 2006.

Ghahramani, Z. and Hinton, G. E. The EM Algorithm for
Mixtures of Factor Analyzers. Technical report, Tech-
nical Report, 1997.

Ghahramani, Z., Griffiths, T.L., and Sollich, P. Bayesian
Nonparametric Latent Feature Models. In Bayesian
Statistics 8. Oxford University Press, 2007.

Heskes, T. Empirical Bayes for Learning to Learn. In
Proc. of the 17th ICML, 2000.

Holmes, Chris C. and Held, Leonhard. Bayesian Auxiliary
Variable Models for Binary and Multinomial Regres-
sion. In Bayesian Statistics 8. Oxford University Press,
2006.

Jaakkola, T. S. and Jordan, M. I. A Variational Approach
to Bayesian Logistic Regression Models and Their Ex-
tensions. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, 1996.

Ji, S., Tang, L., Yu, S., and Ye, J. Extracting Shared
Subspace for Multi-label Classification. In 14th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2008.

Lawrence, N.D. and Platt, J.C. Learning to Learn with
the Informative Vector Machine. In Proceedings of the
twenty-first international conference on Machine learn-
ing. ACM New York, NY, USA, 2004.

Lounici, K., Pontil, M., Tsybakov, A. B., and Geer, S.
Taking Advantage of Sparsity in Multi-Task Learning.
In arXiv:0903.1468v1 [stat.ML], 2009.
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