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Abstract

In this paper, we address the challenges
posed by large amounts of text data by
exploiting the power of hashing in the
context of streaming data. We explore
sketch techniques, especially the Count-
Min Sketch, which approximates the fre-
quency of a word pair in the corpus with-
out explicitly storing the word pairs them-
selves. We use the idea of a conservative
update with the Count-Min Sketch to re-
duce the average relative error of its ap-
proximate counts by a factor of two. We
show that it is possible to store all words
and word pairs counts computed from37
GB of web data in just2 billion counters
(8 GB RAM). The number of these coun-
ters is up to30 times less than the stream
size which is a big memory and space gain.
In Semantic Orientation experiments, the
PMI scores computed from2 billion coun-
ters are as effective as exact PMI scores.

1 Introduction

Approaches to solve NLP problems (Brants et al.,
2007; Turney, 2008; Ravichandran et al., 2005) al-
ways benefited from having large amounts of data.
In some cases (Turney and Littman, 2002; Pat-
wardhan and Riloff, 2006), researchers attempted
to use the evidence gathered from web via search
engines to solve the problems. But the commer-
cial search engines limit the number of automatic
requests on a daily basis for various reasons such
as to avoid fraud and computational overhead.
Though we can crawl the data and save it on disk,
most of the current approaches employ data struc-
tures that reside in main memory and thus do not
scale well to huge corpora.

Fig. 1 helps us understand the seriousness of
the situation. It plots the number of unique word-
s/word pairs versus the total number of words in
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Figure 1:Token Type Curve

a corpus of size577 MB. Note that the plot is in
log-log scale. This78 million word corpus gen-
erates63 thousand unique words and118 million
unique word pairs. As expected, the rapid increase
in number of unique word pairs is much larger
than the increase in number of words. Hence, it
shows that it is computationally infeasible to com-
pute counts of all word pairs with a giant corpora
using conventional main memory of8 GB.

Storing only the118 million unique word pairs
in this corpus require1.9 GB of disk space. This
space can be saved by avoiding storing the word
pair itself. As a trade-off we are willing to tolerate
a small amount of error in the frequency of each
word pair. In this paper, we explore sketch tech-
niques, especially the Count-Min Sketch, which
approximates the frequency of a word pair in the
corpus without explicitly storing the word pairs
themselves. It turns out that, in this technique,
both updating (adding a new word pair or increas-
ing the frequency of existing word pair) and query-
ing (finding the frequency of a given word pair) are
very efficient and can be done in constant time1.

Counts stored in the CM Sketch can be used to
compute various word-association measures like

1depend only on one of the user chosen parameters



Pointwise Mutual Information (PMI), and Log-
Likelihood ratio. These association scores are use-
ful for other NLP applications like word sense
disambiguation, speech and character recognition,
and computing semantic orientation of a word. In
our work, we use computing semantic orientation
of a word using PMI as a canonical task to show
the effectiveness of CM Sketch for computing as-
sociation scores.

In our attempt to advocate the Count-Min
sketch to store the frequency of keys (words or
word pairs) for NLP applications, we perform both
intrinsic and extrinsic evaluations. In our intrinsic
evaluation, first we show that low-frequent items
are more prone to errors. Second, we show that
computing approximate PMI scores from these
counts can give the same ranking as Exact PMI.
However, we need counters linear in size of stream
to achieve that. We use these approximate PMI
scores in our extrinsic evaluation of computing se-
mantic orientation. Here, we show that we do not
need counters linear in size of stream to perform
as good as Exact PMI. In our experiments, by us-
ing only2 billion counters (8GB RAM) we get the
same accuracy as for exact PMI scores. The num-
ber of these counters is up to30 times less than the
stream size which is a big memory and space gain
without any loss of accuracy.

2 Background

2.1 Large Scale NLP problems

Use of large data in the NLP community is not
new. A corpus of roughly1.6 Terawords was used
by Agirre et al. (2009) to compute pairwise sim-
ilarities of the words in the test sets using the
MapReduce infrastructure on2, 000 cores. Pan-
tel et al. (2009) computed similarity between500
million terms in the MapReduce framework over a
200 billion words in50 hours using200 quad-core
nodes. The inaccessibility of clusters for every one
has attracted the NLP community to use stream-
ing, randomized, approximate and sampling algo-
rithms to handle large amounts of data.

A randomized data structure called Bloom fil-
ter was used to construct space efficient language
models (Talbot and Osborne, 2007) for Statis-
tical Machine Translation (SMT). Recently, the
streaming algorithmparadigm has been used to
provide memory and space-efficient platform to
deal with terabytes of data. For example, We
(Goyal et al., 2009) pose language modeling as

a problem of finding frequent items in a stream
of data and show its effectiveness in SMT. Subse-
quently, (Levenberg and Osborne, 2009) proposed
a randomized language model to efficiently deal
with unbounded text streams. In (Van Durme and
Lall, 2009b), authors extend Talbot Osborne Mor-
ris Bloom (TOMB) (Van Durme and Lall, 2009a)
Counter to find the highly rankedk PMI response
words given a cue word. The idea of TOMB is
similar to CM Sketch. TOMB can also be used to
store word pairs and further compute PMI scores.
However, we advocate CM Sketch as it is a very
simple algorithm with strong guarantees and good
properties (see Section 3).

2.2 Sketch Techniques

A sketch is a summary data structure that is used
to store streaming data in a memory efficient man-
ner. These techniques generally work on an input
stream, i.e. they process the input in one direc-
tion, say from left to right, without going back-
wards. The main advantage of these techniques
is that they require storage which is significantly
smaller than the input stream length. For typical
algorithms, the working storage is sublinear inN ,
i.e. of the order oflogk N , whereN is the input
size andk is some constant which is not explicitly
chosen by the algorithm but it is an artifact of it..
Sketch based methods use hashing to map items in
the streaming data onto a small-space sketch vec-
tor that can be easily updated and queried. It turns
out that both updating and querying on this sketch
vector requires only a constant time per operation.

Streaming algorithms were first developed in
the early 80s, but gained in popularity in the late
90s as researchers first realized the challenges of
dealing with massive data sets. A good survey
of the model and core challenges can be found in
(Muthukrishnan, 2005). There has been consid-
erable work on coming up with different sketch
techniques (Charikar et al., 2002; Cormode and
Muthukrishnan, 2004; Li and Church, 2007). A
survey by (Rusu and Dobra, 2007; Cormode and
Hadjieleftheriou, 2008) comprehensively reviews
the literature.

3 Count-Min Sketch

The Count-Min Sketch (Cormode and Muthukr-
ishnan, 2004) is a compact summary data structure
used to store the frequencies of all items in the in-
put stream. The sketch allows fundamental queries



on the data stream such as point, range and in-
ner product queries to be approximately answered
very quickly. It can also be applied to solve the
finding frequent items problem (Manku and Mot-
wani, 2002) in a data stream. In this paper, we are
only interested in point queries. The aim of a point
query is to estimate the count of an item in the in-
put stream. For other details, the reader is referred
to (Cormode and Muthukrishnan, 2004).

Given an input stream of word pairs of lengthN

and user chosen parametersδ andǫ, the algorithm
stores the frequencies of all the word pairs with the
following guarantees:

• All reported frequencies are within the true
frequencies by at mostǫN with a probability
of at leastδ.

• The space used by the algorithm is
O(1

ǫ
log 1

δ
).

• Constant time of O(log(1

δ
)) per each update

and query operation.

3.1 CM Data Structure

A Count-Min Sketch with parameters (ǫ,δ) is rep-
resented by a two-dimensional array with widthw

and depthd :






sketch[1,1] · · · sketch[1,w]
...

...
...

sketch[d,1] · · · sketch[d,w]







Among the user chosen parameters,ǫ controls the
amount of tolerable error in the returned count and
δ controls the probability with which the returned
count is not within the accepted error. These val-
ues ofǫ andδ determine the width and depth of the
two-dimensional array respectively. To achieve
the guarantees mentioned in the previous section,
we setw=2

ǫ
andd=log(1

δ
). The depthd denotes

the number of pairwise-independent hash func-
tions employed by the algorithm and there exists
an one-to-one correspondence between the rows
and the set of hash functions. Each of these hash
functionshk:{1 . . . N} → {1 . . . w} (1 ≤ k ≤ d)
takes an item from the input stream and maps it
into a counter indexed by the corresponding hash
function. For example,h2(w) = 10 indicates that
the word pairw is mapped to the10th position in
the second row of the sketch array. Thesed hash
functions are chosen uniformly at random from a
pairwise-independent family.

Figure 2: Update Procedure for CM sketch and conserva-
tive update (CU)

Initially the entire sketch array is initialized
with zeros.

Update Procedure:When a new item (w,c) ar-
rives, where w is a word pair andc is its count2,
one counter in each row, as decided by its corre-
sponding hash function, is updated byc. Formally,
∀1 ≤ k ≤ d

sketch[k,hk(w)] ← sketch[k,hk(w)] + c

This process is illustrated in Fig. 2 CM. The item
(w,2) arrives and gets mapped to three positions,
corresponding to the three hash functions. Their
counts before update were (4,2,1) and after update
they become (6,4,3). Note that, since we are using
a hash to map a word into an index, a collision can
occur and multiple word pairs may get mapped to
the same counter in any given row. Because of
this, the values stored by thed counters for a given
word pair tend to differ.

Query Procedure: The querying involves find-
ing the frequency of a given item in the input
stream. Since multiple word pairs can get mapped
into same counter and the observation that the
counts of items are positive, the frequency stored
by each counter is an overestimate of the true
count. So in answering the point query, we con-
sider all the positions indexed by the hash func-
tions for the given word pair and return the mini-
mum of all these values. The answer to Query(w)
is:

ĉ = mink sketch[k,hk(w)]

Note that, instead of positive counts if we had neg-
ative counts as well then the algorithm returns the
median of all the counts and the bounds we dis-
cussed in Sec. 3 vary. In Fig. 2 CM, for the word
pair w it takes the minimum over (6,4,3) and re-
turns3 as the count of word pair w.

2In our setting,c is always1. However, in other NLP
problem, word pairs can be weighted according to recency.



Both update and query procedures involve eval-
uatingd hash functions and a linear scan of all the
values in those indices and hence both these pro-
cedures are linear in the number of hash functions.
Hence both these steps requireO(log(1

δ
)) time. In

our experiments (see Section 4.2), we found that a
small number of hash functions are sufficient and
we use d=3. Hence, the update and query oper-
ations take only a constant time. The space used
by the algorithm is the size of the array i.e.wd

counters, wherew is the width of each row.

3.2 Properties

Apart from the advantages of being space efficient,
and having constant update and constant querying
time, the Count-Min sketch has also other advan-
tages that makes it an attractive choice for NLP
applications.

• Linearity: given two sketchess1 ands2 com-
puted (using the same parametersw andd)
over different input streams, the sketch of
the combined data stream can be easily ob-
tained by adding the individual sketches in
O(1

ǫ
log 1

δ
) time which is independent of the

stream size.

• The linearity is especially attractive because,
it allows the individual sketches to be com-
puted independent of each other. Which
means that it is easy to implement it in dis-
tributed setting, where each machine com-
putes the sketch over a sub set of corpus.

• This technique also extends to allow the dele-
tion of items. In this case, to answer a point
query, we should return the median of all the
values instead of the minimum value.

3.3 Conservative Update

Estan and Varghese introduce the idea of conser-
vative update (Estan and Varghese, 2002) in the
context of networking. This can easily be used
with CM Sketch to further improve the estimate
of a point query. To update an item, word pair, w
with frequency c, we first compute the frequency
ĉ of this item from the existing data structure and
the counts are updated according to:∀1 ≤ k ≤ d

sketch[k,hk(w)] ← max{sketch[k,hk(w)], ĉ + c}

The intuition is that, since the point query returns
the minimum of all thed values, we will update

a counter only if it is necessary as indicated by
the above equation. Though this is a heuristic, it
avoids the unnecessary updates of counter values
and thus reduces the error.

The process is also illustrated in Fig. 2CU.
When an item “w” with a frequency of2 arrives
in the stream, it gets mapped into three positions
in the sketch data structure. Their counts before
update were (4,2,1) and the frequency of the item
is 1 (the minimum of all the three values). In this
particular case, the update rule says that increase
the counter value only if its updated value is less
than ĉ + 2 = 3. As a result, the values in these
counters after the update become (4,3,3).

However, if the value in any of the counters
is already greater than3 e.g. 4, we cannot at-
tempt to correct it by decreasing, as it could con-
tain the count for other items hashed at that posi-
tion. Therefore, in this case, for the first counter
we leave the value4 unchanged. The query pro-
cedure remains the same as in the previous case.
In our experiments, we found that employing the
conservative update reduces the Average Relative
Error (ARE) of these counts approximately by a
factor of 2. (see Section 4.2). But unfortunately,
this update prevents deletions and items with neg-
ative updates cannot be processed3.

4 Intrinsic Evaluations

To show the effectiveness of the Count-Min sketch
in the context of NLP, we perform intrinsic evalu-
ations. The intrinsic evaluations are designed to
measure the error in the approximate counts re-
turned by CMS compared to their true counts. By
keeping the total size of the data structure fixed,
we study the error by varying the width and the
depth of the data structure to find the best setting
of the parameters for textual data sets. We show
that using conservative update (CU) further im-
proves the quality of counts over CM sketch.

4.1 Corpus Statistics

Gigaword corpus (Graff, 2003) and a copy of web
crawled by (Ravichandran et al., 2005) are used
to compute counts of words and word pairs. For
both the corpora, we split the text into sentences,
tokenize and convert into lower-case. We generate
words and word pairs (items) over a sliding win-
dow of size14. Unlike previous work (Van Durme

3Here, we are only interested in the insertion case.



Corpus Sub Giga 50% 100%
set word Web Web

Size .15 6.2 15 31GB
# of sentences 2.03 60.30 342.68 686.63(Million)

# of words 19.25 858.92 2122.47 4325.03(Million)
Stream Size 0.25 19.25 18.63 39.0510 (Billion)
Stream Size 0.23 25.94 18.79 40.0014 (Billion)

Table 1: Corpus Description

and Lall, 2009b) which assumes exact frequen-
cies for words, we store frequencies of both the
words and word pairs in the CM sketch4. Hence,
the stream size in our case is the total number of
words and word pairs in a corpus. Table 1 gives
the characteristics of the corpora.

Since, it is not possible to compute exact fre-
quencies of all word pairs using conventional main
memory of8 GB from a large corpus, we use a
subset of2 million sentences (Subset) from Giga-
word corpus for our intrinsic evaluation. We store
the counts of all words and word pairs (occurring
in a sliding window of length14) from Subset us-
ing the sketch and also the exact counts.

4.2 Comparing CM and CU counts and
tradeoff between width and depth

To evaluate the amount of over-estimation in CM
and CU counts compared to the true counts, we
first group all items (words and word pairs) with
same true frequency into a single bucket. We then
compute the average relative error in each of these
buckets. Since low-frequent items are more prone
to errors, making this distinction based on fre-
quency lets us understand the regions in which the
algorithm is over-estimating. Average Relative er-
ror (ARE) is defined as the average of absolute dif-
ference between the predicted and the exact value
divided by the exact value over all the items in
each bucket.

ARE =
1

N

N
∑

i=1

|Exacti − Predictedi|
Exacti

Where Exact and Predicted denotes values of exact
and CM/CU counts respectively;N denotes the
number of items with same counts in a bucket.

In Fig. 3(a), we fixed the number of counters
to 50 million with four bytes of memory per each

4Though a minor point, it allows to process more text.

counter (thus it only requires200 MB of main
memory). Keeping the total number of counters
fixed, we try different values of depth (2, 3, 5 and
7) of the sketch array and in each case the width
is set to 50M

d
. The ARE curves in each case are

shown in Fig. 3(a). There are three main observa-
tions: First it shows that most of the errors occur
on low frequency items. For frequent items, in al-
most all the different runs the ARE is close to zero.
Secondly, it shows that ARE is significantly lower
(by a factor of two) for the runs which use conser-
vative update (CUx run) compared to the runs that
use direct CM sketch (CMx run). The encouraging
observation is that, this holds true for almost all
different (width,depth) settings. Thirdly, in our ex-
periments, it shows that using depth of3 gets com-
paratively less ARE compared to other settings.

To be more certain about this behavior with re-
spect to different settings of width and depth, we
tried another setting by increasing the number of
counters to100 million. The curves in 3(b) follow
a pattern which is similar to the previous setting.
Low frequency items are more prone to error com-
pared to the frequent ones and employing conser-
vative update reduces the ARE by a factor of two.
In this setting, depth3 and5 do almost the same
and get lowest ARE. In both the experiments, set-
ting the depth to three did well and thus in the rest
of the paper we fix this parameter to three.

Fig. 4 studies the effect of the number of coun-
ters in the sketch (the size of the two-dimensional
sketch array) on the ARE. Using more number of
counters decreases the ARE in the counts. This is
intuitive because, as the length of each row in the
sketch increases, the probability of collision de-
creases and hence the array is more likely to con-
tain true counts. By using200 million counters,
which is comparable to the length of the stream
230 million (Table. 1), we are able to achieve al-
most zero ARE over all the counts including the
rare ones5. Note that the actual space required
to represent the exact counts is almost two times
more than the memory that we use here because
there are230 million word pairs and on an aver-
age each word is eight characters long and requires
eight bytes (double the size of an integer). The
summary of this Figure is that, if we want to pre-
serve the counts of low-frequent items accurately,
then we need counters linear in size of stream.

5Even with other datasets we found that using counters
linear in the size of the stream leads to ARE close to zero∀

counts.
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Figure 3:Comparing50 and100 million counter models with different (width,depth) settings. The notation CMxrepresents
the Count-Min Sketch with a depth of ’x’ and CUx represents the CM sketch along with conservative update and depth ’x’.
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Figure 4:Comparing different size models with depth3

4.3 Evaluating the CU PMI ranking

In this experiment, we compare the word pairs as-
sociation rankings obtained using PMI with CU
and exact counts. We use two kinds of measures,
namely accuracy and Spearman’s correlation, to
measure the overlap in the rankings obtained by
both these approaches.

4.3.1 PointWise Mutual Information

The Pointwise Mutual Information (PMI) (Church
and Hanks, 1989) between two wordsw1 andw2

is defined as:

PMI(w1, w2) = log2

P (w1, w2)

P (w1)P (w2)

Here,P (w1, w2) is the likelihood thatw1 andw2

occur together, andP (w1) andP (w2) are their in-
dependent likelihoods respectively. The ratio be-
tween these probabilities measures the degree of
statistical dependence betweenw1 andw2.

4.3.2 Description of the metrics

Accuracy is defined as fraction of word pairs that
are found in both rankings to the size of top ranked
word pairs.

Accuracy=
|CP-WPs∩ EP-WPs|

|EP-WPs|

Where CP-WPs represent the set of top rankedK

word pairs under the counts stored using the CU
sketch and EP-WPs represent the set of top ranked
word pairs with the exact counts.

Spearman’s rank correlation coefficient (ρ)
computes the correlation between the ranks of
each observation (i.e. word pairs) on two variables
(that are topN CU-PMI and exact-PMI values).
This measure captures how different the CU-PMI
ranking is from the Exact-PMI ranking.

ρ = 1−
6

∑

d2

i

F (F 2 − 1)

Wheredi is the difference between the ranks of
a word pair in both rankings andF is the number
of items found in both sets.

Intuitively, accuracy captures the number of
word pairs that are found in both the sets and then
Spearman’s correlation captures if the relative or-
der of these common items is preserved in both the
rankings. In our experimental setup, both these
measures are complimentary to each other and
measure different aspects. If the rankings match
exactly, then we get an accuracy of100% and a
correlation of1.

4.3.3 Comparing CU PMI ranking

The results with respect to different sized counter
(50, 100 and200 million) models are shown in Ta-
ble 2. Table 2 shows that having counters linear



Counters 50M 100M 200M
TopK Acc ρ Acc ρ Acc ρ

50 .20 -0.13 .68 .95 .92 1.00
100 .18 .31 .77 .80 .96 .95
200 .21 .68 .73 .86 .97 .99
500 .24 .31 .71 .97 .95 .99
1000 .33 .17 .74 .87 .95 .98
5000 .49 .38 .82 .82 .96 .97

Table 2: Evaluating the PMI rankings obtained using CM
Sketch with conservative update (CU) and Exact counts

in size of stream (230M ) results in better rank-
ing (i.e. close to the exact ranking). For example,
with 200M counters, among the top50 word pairs
produced using the CU counts, we found46 pairs
in the set returned by using exact counts. Theρ

score on those word pairs is1 means that the rank-
ing of these46 items is exactly the same on both
CU and exact counts. We see the same phenom-
ena for200M counters with other TopK values.
While both accuracy and the ranking are decent
with 100M counters, if we reduce the number of
counters to say50M , the performance degrades.

Since, we are not throwing away any infrequent
items, PMI will rank pairs with low frequency
counts higher (Church and Hanks, 1989). Hence,
we are evaluating the PMI values for rare word
pairs and we need counters linear in size of stream
to get almost perfect ranking. Also, using coun-
ters equal to half the length of the stream is decent.
However, in some NLP problems, we are not inter-
ested in low-frequency items. In such cases, even
using space less than linear in number of coun-
ters would suffice. In our extrinsic evaluations, we
show that using space less than the length of the
stream does not degrades the performance.

5 Extrinsic Evaluations

5.1 Experimental Setup

To evaluate the effectiveness of CU-PMI word
association scores, we infer semantic orientation
(S0) of a word from CU-PMI and Exact-PMI
scores. Given a word, the task of finding the SO
(Turney and Littman, 2002) of the word is to iden-
tify if the word is more likely to be used in positive
or negative sense. We use a similar framework as
used by the authors6 to infer the SO. We take the
seven positive words (good, nice, excellent, posi-
tive, fortunate, correct, and superior) and the nega-
tive words (bad, nasty, poor, negative, unfortunate,

6We compute this score slightly differently. However, our
main focus is to show that CU-PMI scores are useful.

wrong, and inferior) used in (Turney and Littman,
2002) work. The SO of a given word is calculated
based on the strength of its association with the
seven positive words, and the strength of its asso-
ciation with the seven negative words. We com-
pute the SO of a word ”w” as follows:

SO-PMI(W) = PMI(+, w)− PMI(−, w)

PMI(+,W) =
∑

p∈Pwords

log
hits(p, w)

hits(p) · hits(w)

PMI(-,W) =
∑

n∈Nwords

log
hits(n, w)

hits(n) · hits(w)

Where, Pwords and Nwords denote the seven pos-
itive and negative prototype words respectively.

We compute SO score from different sized cor-
pora (Section 4.1). We use the General Inquirer
lexicon7 (Stone et al., 1966) as a benchmark to
evaluate the semantic orientation scores similar to
(Turney and Littman, 2002) work. Words with
multiple senses have multiple entries in the lexi-
con, we merge these entries for our experiment.
Our test set consists of1619 positive and1989
negative words. Accuracy is used as an evaluation
metric and is defined as the fraction of number of
correctly identified SO words.

Accuracy=
Correctly Identified SO Words∗ 100

Total SO words

5.2 Results

We evaluate SO of words on three different sized
corpora: Gigaword (GW)6.2GB, GigaWord +
50% of web data (GW+WB1)21.2GB and Gi-
gaWord +100% of web data (GW+WB2)31GB.
Note that computing the exact counts of all word
pairs on these corpora is not possible using main
memory, so we consider only those pairs in which
one word appears in the prototype list and the
other word appears in the test set.

We compute the exact PMI (denoted using Ex-
act) scores for pairs of test-set wordsw1 and proto-
type wordsw2 using the above data-sets. To com-
pute PMI, we count the number of hits of individ-
ual wordsw1 andw2 and the pair (w1,w2) within a
sliding window of sizes10 and14 over these data-
sets. After computing the PMI scores, we compute
SO score for a word using SO-PMI equation from
Section 5.1. If this score is positive, we predict
the word as positive. Otherwise, we predict it as

7The General Inquirer lexicon is freely available at
http://www.wjh.harvard.edu/ inquirer/



Model Accuracy window 10 Accuracy window 14
#of counters Mem. Usage GW GW+WB1 GW+WB2 GW GW+WB1 GW+WB2

Exact n/a 64.77 75.67 77.11 64.86 74.25 75.30
500M 2GB 62.98 71.09 72.31 63.21 69.21 70.35

1B 4GB 62.95 73.93 75.03 63.95 72.42 72.73
2B 8GB 64.69 75.86 76.96 65.28 73.94 74.96

Table 3:Evaluating Semantic Orientation of words with different # of counters of CUsketch with increasing amount of data
on window size of 10 and 14. Scores are evaluated using Accuracy metric.

negative. The results on inferring correct SO for
a word w with exact PMI (Exact) are summarized
in Table 3. It (the second row) shows that increas-
ing the amount of data improves the accuracy of
identifying the SO of a word with both the win-
dow sizes. The gain is more prominent when we
add50% of web data in addition to Gigaword as
we get an increase of more than10% in accuracy.
However, when we add the remaining50% of web
data, we only see an slight increase of1% in accu-
racy8. Using words within a window of10 gives
better accuracy than window of14.

Now, we use our CU Sketches of500 million
(500M ), 1 billion (1B) and2 billion (2B) coun-
ters to compute CU-PMI. These sketches contain
the number of hits of all words/word pairs (not just
the pairs of test-set and prototype words) within a
window size of10 and 14 over the whole data-
set. The results in Table 3 show that even with
CU-PMI scores, the accuracy improves by adding
more data. Again we see a significant increase in
accuracy by adding50% of web data to Gigaword
over both window sizes. The increase in accuracy
by adding the rest of the web data is only1%.

By using 500M counters, accuracy with CU-
PMI are around4% worse than the Exact. How-
ever, increasing the size to1B results in only2
% worse accuracy compared to the Exact. Go-
ing to 2B counters (8 GB of RAM), results in ac-
curacy almost identical to the Exact. These re-
sults hold almost the same for all the data-sets
and for both the window sizes. The increase in
accuracy comes at expense of more memory Us-
age. However,8GB main memory is not large as
most of the conventional desktop machines have
this much RAM. The number of2B counters is
less than the length of stream for all the data-sets.
For GW, GW+WB1 and GW+WB2,2B counters
are10, 20 and30 times smaller than the stream
size. This shows that using counters less than the
stream length does not degrade the performance.

8These results are similar to the results reported in (Tur-
ney and Littman, 2002) work.

The advantage of using Sketch is that it con-
tains counts for all words and word pairs. Suppose
we are given a new word to label it as positive or
negative. We can find its exact PMI in two ways:
First, we can go over the whole corpus and com-
pute counts of this word with positive and nega-
tive prototype words. This procedure will return
PMI in time needed to traverse the whole corpus.
If the corpus is huge, this could be too slow. Sec-
ond option is to consider storing counts of all word
pairs but this is not feasible as their number in-
creases rapidly with increase in data (see Fig. 1).
Therefore, using a CM sketch is a very good al-
ternative which returns the PMI in constant time
by using only8GB of memory. Additionally, this
Sketch can easily be used for other NLP applica-
tions where we need word-association scores.

6 Conclusion

We have explored the idea of the CM Sketch,
which approximates the frequency of a word pair
in the corpus without explicitly storing the word
pairs themselves. We used the idea of a conserva-
tive update with the CM Sketch to reduce the av-
erage relative error of its approximate counts by
a factor of 2. It is an efficient, small-footprint
method that scales to at least37 GB of web data
in just2 billion counters (8 GB main memory). In
our extrinsic evaluations, we found that CU Sketch
is as effective as exact PMI scores.

Word-association scores from CU Sketch can be
used for other NLP tasks like word sense disam-
biguation, speech and character recognition. The
counts stored in CU Sketch can be used to con-
struct small-space randomized language models.
In general, this sketch can be used for any applica-
tion where we want to query a count of an item.
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Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distri-
butional and wordnet-based approaches. InNAACL
’09: Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large language
models in machine translation. InProceedings of
the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

Moses Charikar, Kevin Chen, and Martin Farach-
colton. 2002. Finding frequent items in data
streams.

K. Church and P. Hanks. 1989. Word Association
Norms, Mutual Information and Lexicography. In
Proceedings of the 27th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 76–83,
Vancouver, Canada, June.

Graham Cormode and Marios Hadjieleftheriou. 2008.
Finding frequent items in data streams. InVLDB.

Graham Cormode and S. Muthukrishnan. 2004. An
improved data stream summary: The count-min
sketch and its applications.J. Algorithms.

Cristian Estan and George Varghese. 2002. New direc-
tions in traffic measurement and accounting.SIG-
COMM Comput. Commun. Rev., 32(4).
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