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Abstract
Items=word—pairs

In this paper, we address the challenges 25| = = = Items=words
posed by large amounts of text data by
exploiting the power of hashing in the
context of streaming data. We explore
sketch techniques, especially the Count-
Min Sketch, which approximates the fre-
guency of a word pair in the corpus with-
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out explicitly storing the word pairs them- sl

selves. We use the idea of a conservative

update with the Count-Min Sketch to re- ® g, ofhotwords o
duce the average relative error of its ap-

proximate counts by a factor of two. We Figure 1:Token Type Curve

show that it is possible to store all words
and word pairs counts computed fra%
GB of web data in jus® billion counters

(8 GB RAM). The number of these coun-
ters is up to30 times less than the stream
size which is a big memory and space gain.
In Semantic Orientation experiments, the
PMI scores computed frobillion coun-
ters are as effective as exact PMI scores.

a corpus of sizé&77 MB. Note that the plot is in
log-log scale. Thisr8 million word corpus gen-
erates53 thousand unique words arid8 million
unique word pairs. As expected, the rapid increase
in number of unique word pairs is much larger
than the increase in number of words. Hence, it
shows that it is computationally infeasible to com-
pute counts of all word pairs with a giant corpora
1 Introduction using conventional main memory 8fGB.

Approaches to solve NLP problems (Brants et al., Storing only thel18 million unique word pairs

2007; Turney, 2008: Ravichandran et al., 2005) al!" IS corpus requird.9 GB of disk space. This

ways benefited from having large amounts of data>Pace can be saved by avoiding storing the word

In some cases (Turney and Littman, 2002; patPair itself. As a trade-off we are willing to tolerate
wardhan and Riloff, 2006), researchers attemptea srgall gm:nunr':_of error in the fr;equenkcy ?}f eachh
to use the evidence gathered from web via searcfford pair. in this paper, we explore sketch tech-

engines to solve the problems. But the commer'aues; especially the Count-Min Sketch, which

cial search engines limit the number of automatic@PProximates the frequency of a word pair in the

requests on a daily basis for various reasons suc‘l}frpus IW|thou|t explicitly str:)rlng_ thﬁ_ Wordhp_alrs
as to avoid fraud and computational overhead? emselves. |t turns out that, in this technique,

Though we can crawl the data and save it on disIJ_,JOth updating (adding a new word pair or increas-

most of the current approaches employ data strud™d the frequency of existing word pair) and query-

tures that reside in main memory and thus do not"9 (finding the frequency of a given word pair) are
scale well to huge corpora very efficient and can be done in constant ttme

Fig. 1 helps us understand the seriousness of Counts stqred in the CM Sketph can be used' to
the situation. It plots the number of unique word-¢ompute various word-association measures like

s/word pairs versus the total number of words in  *depend only on one of the user chosen parameters



Pointwise Mutual Information (PMI), and Log- a problem of finding frequent items in a stream
Likelihood ratio. These association scores are usesf data and show its effectiveness in SMT. Subse-
ful for other NLP applications like word sense quently, (Levenberg and Osborne, 2009) proposed
disambiguation, speech and character recognitiora randomized language model to efficiently deal
and computing semantic orientation of a word. Inwith unbounded text streams. In (Van Durme and
our work, we use computing semantic orientationLall, 2009b), authors extend Talbot Osborne Mor-
of a word using PMI as a canonical task to showris Bloom (TOMB) (Van Durme and Lall, 2009a)
the effectiveness of CM Sketch for computing as-Counter to find the highly rankeld PMI response
sociation scores. words given a cue word. The idea of TOMB is
In our attempt to advocate the Count-Min similar to CM Sketch. TOMB can also be used to
sketch to store the frequency of keys (words oistore word pairs and further compute PMI scores.
word pairs) for NLP applications, we perform both However, we advocate CM Sketch as it is a very
intrinsic and extrinsic evaluations. In our intrinsic simple algorithm with strong guarantees and good
evaluation, first we show that low-frequent itemsproperties (see Section 3).
are more prone to errors. Second, we show that
computing approximate PMI scores from these2-2 Sketch Techniques

counts can give the same ranking as Exact PMIa sketch is a summary data structure that is used
However, we need counters linear in size of streanfy store streaming data in a memory efficient man-
to achieve that. We use these approximate PMher. These techniques generally work on an input
scores in our extrinsic evaluation of Computing Se-Stream1 ie. they process the input in one direc-
mantic orientation. Here, we show that we do notjon, say from left to right, without going back-
need counters linear in size of stream to performyards. The main advantage of these techniques
as good as Exact PMI. In our experiments, by Usis that they require storage which is significantly
ing only 2 billion counters (8GB RAM) we getthe smaller than the input stream length. For typical
same accuracy as for exact PMI scores. The NUMHIgorithms, the working storage is sublineatiVn
ber of these counters is up30 times less thanthe je. of the order ofog® N, whereN is the input
stream size which is a big memory and space gaigize and: is some constant which is not explicitly
without any loss of accuracy. chosen by the algorithm but it is an artifact of it..
Sketch based methods use hashing to map items in
the streaming data onto a small-space sketch vec-
2.1 Large Scale NLP problems tor that can be easily updated and queried. Itturns
out that both updating and querying on this sketch

A ¢ WG T q q vector requires only a constant time per operation.
new. A corpus of roughly .6 Terawords was use Streaming algorithms were first developed in

by Agirre et al. (2009) to compute pairwise SIM” the early 80s, but gained in popularity in the late

:\I;Iemtl;s dOf th? fwortds Itn the tggg sets usgg the905 as researchers first realized the challenges of
apReduce Infrastructure an cores. man- dealing with massive data sets. A good survey

te!”gt alt. (200.9)tEOTApUt;d jlm”?”ty betwekéﬁj() of the model and core challenges can be found in
mifion terms In the Mapeduce framework over a(Muthukrishnan, 2005). There has been consid-

200 billion words in50 hours usin@00 quad-core erable work on coming up with different sketch

nodes. The inaccessibility of clusters for every anechniques (Charikar et al., 2002; Cormode and
has attracted the NLP community to use streamg, .. 1 ichooc 5004 Li a.rild Chu’rch 2007). A
ing, randomized, approximate and sampling algoéurvey by (Rus:u and ,Dobra, 2007: C'ormode and

fithms to handle large amounts of data. . Hadjieleftheriou, 2008) comprehensively reviews
A randomized data structure called Bloom f||-the literature

ter was used to construct space efficient language

models (Tglbot and storne, 2007) for Statisg  count-Min Sketch

tical Machine Translation (SMT). Recently, the

streaming algorithmparadigm has been used to The Count-Min Sketch (Cormode and Muthukr-
provide memory and space-efficient platform toishnan, 2004) is a compact summary data structure
deal with terabytes of data. For example, Weused to store the frequencies of all items in the in-
(Goyal et al., 2009) pose language modeling agut stream. The sketch allows fundamental queries

2 Background

Use of large data in the NLP community is not



on the data stream such as point, range and ir
ner product queries to be approximately answere
very quickly. It can also be applied to solve the
finding frequent items problem (Manku and Mot-
wani, 2002) in a data stream. In this paper, we ar |2 °
only interested in point queries. The aim of a point
guery is to estimate the count of an item in the in-
put stream. For other details, the reader is referre
to (Cormode and Muthukrishnan, 2004).

Given an input stream of word pairs of length
and user chosen parametérande, the algorithm

stores the frequencies of all the word pairs with the
following guarantees: Initially the entire sketch array is initialized

with zeros.
e All reported frequencies are within the true Update Procedure:When a new item (w) ar-
frequencies by at mostV with a probability  rives, where w is a word pair andis its count,
of at least). one counter in each row, as decided by its corre-
sponding hash function, is updateddyFormally,
Vi<k<d
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Figure 2: Update Procedure for CM sketch and conserva-
tive update (CU)

e The space used by the algorithm is
O(Llog?).

« Constant time of Qfg(})) per each update sketchlk(w)] « sketch(khy (w)] + ¢

and query operation. This process is illustrated in Fig. 2 CM. The item
3.1 CM Data Structure (w,2) arriveg and gets mapped to thret_e positions_,
) ] ) corresponding to the three hash functions. Their
A Count-Min Sketch with parameters) is rep- o nts hefore update weré,1) and after update
resented by a two-dimensional array with width they becomef(4,3). Note that, since we are using
and depthi : a hash to map a word into an index, a collision can
sketch[1,1] --- sketch[1,w] occur and multiple yvord pairs may get mapped to
. . _ the same counter in any given row. Because of
: K : this, the values stored by thlecounters for a given
sketch[d,1] --- sketch[d,w] word pair tend to differ.
Query Procedure: The querying involves find-
ing the frequency of a given item in the input

5amoutnt IOf :ﬁ Ierabl;: f)flr.fr m_:Ee rﬁ'tur:r:;:d cotunt ag tream. Since multiple word pairs can get mapped
controls the probability with which the returned; ., same counter and the observation that the

count is not within the accepted error. These val- . "
_ , counts of items are positive, the frequency stored
ues ofe andd determine the width and depth of the P d y

. . ) . by each counter is an overestimate of the true
two-dimensional array respectively. To achieve

. . _ ._count. So in answering the point query, we con-
the guarantees mentioned in the previous sectlo%ider all the positions indexed by the hash func-
we setw=2 andd=log(3). The depthd denotes

0N tions for the given word pair and return the mini-
the number of pairwise-independent hash func- ; P

tions employed by the algorithm and there existﬁrz_um of allthese values. The answer to Query(w)
an one-to-one correspondence between the rows
and the set of hash functions. Each of these hash
functionshy:{1...N} — {1...w} (1 <k <d) Notethat, instead of positive counts if we had neg-
takes an item from the input stream and maps igtive counts as well then the algorithm returns the
into a counter indexed by the corresponding hasmedian of all the counts and the bounds we dis-
function. For examplehs(w) = 10 indicates that cussed in Sec. 3 vary. In Fig. 2 CM, for the word
the word pairw is mapped to th&0*" position in  pair w it takes the minimum over6(4,3) and re-
the second row of the sketch array. Theseash turns3 as the count of word pair w.

functions are chosen uniformly at random from amng,c is always1. However, in other NLP
pairwise-independent family. problem, word pairs can be weighted according to recency.

Among the user chosen parameterspntrols the

¢ = miny, sketch[khy(w)]



Both update and query procedures involve evala counter only if it is necessary as indicated by
uatingd hash functions and a linear scan of all thethe above equation. Though this is a heuristic, it
values in those indices and hence both these pr@voids the unnecessary updates of counter values
cedures are linear in the number of hash functionsand thus reduces the error.

Hence both these steps requi?@og(3)) time. In The process is also illustrated in Fig. 2CU.
our experiments (see Section 4.2), we found that &hen an item “w” with a frequency df arrives
small number of hash functions are sufficient andn the stream, it gets mapped into three positions
we use d3. Hence, the update and query oper-in the sketch data structure. Their counts before
ations take only a constant time. The space usedpdate were4,2,1) and the frequency of the item
by the algorithm is the size of the array i.ee.d  is 1 (the minimum of all the three values). In this
counters, where is the width of each row. particular case, the update rule says that increase
the counter value only if its updated value is less
thané 4+ 2 = 3. As a result, the values in these
Apart from the advantages of being space efficientgounters after the update becomes(3).

and having constant update and constant querying However, if the value in any of the counters
time, the Count-Min sketch has also other advanis already greater thad e.g. 4, we cannot at-
tages that makes it an attractive choice for NLPiempt to correct it by decreasing, as it could con-
applications. tain the count for other items hashed at that posi-
tion. Therefore, in this case, for the first counter

_ we leave the valud unchanged. The query pro-
puted (usmg the same parametersand ) cedure remains the same as in the previous case.
over d|ﬁerent input streams, the sket_ch OfIn our experiments, we found that employing the
the combined data stream can be easily Ob(':onservative update reduces the Average Relative
Error (ARE) of these counts approximately by a
factor of2. (see Section 4.2). But unfortunately,
this update prevents deletions and items with neg-

e The linearity is especially attractive because 2tive updates cannot be processed
it allows the individual sketches to be com- o ]
puted independent of each other. Which# Intrinsic Evaluations
means that '_t is easy to implement _'t in dis- To show the effectiveness of the Count-Min sketch
tributed setting, where each machine c0Msn the context of NLP, we perform intrinsic evalu-
putes the sketch over a sub set of corpus. ations. The intrinsic evaluations are designed to
e This technique also extends to allow the deleM€asure the error in the approximate counts re-
tion of items. In this case, to answer a poimturne_d by CMS compared to their true counts_. By
query, we should return the median of all thekeeping the total size of the data structure fixed,

values instead of the minimum value. we study the error by varying the width and the
depth of the data structure to find the best setting

3.3 Conservative Update of the parameters for textual data sets. We show

Estan and Varghese introduce the idea of consef?at using conservative update (CU) further im-
vative update (Estan and Varghese, 2002) in th8roves the quality of counts over CM sketch.
context of networking. This can easily be used .
with CM Sketch to further improve the estimateA"1 Corpus Statistics
of a point query. To update an item, word pair, wGigaword corpus (Graff, 2003) and a copy of web
with frequency c, we first compute the frequencycrawled by (Ravichandran et al., 2005) are used
¢ of this item from the existing data structure andto compute counts of words and word pairs. For
the counts are updated accordingte:< k < d both the corpora, we split the text into sentences,
tokenize and convert into lower-case. We generate
sketch[khy(w)] < max{sketch[kh;(w)],¢+ ¢}  words and word pairs (items) over a sliding win-

o _ _ dow of sizel4. Unlike previous work (Van Durme
The intuition is that, since the point query returns

the minimum of all thed values, we will update Here, we are only interested in the insertion case.

3.2 Properties

e Linearity: given two sketches, ands, com-

tained by adding the individual sketches in
O(% log 1) time which is independent of the
stream size.



Corpus S;‘é? V‘aci)%g \5/8(;’@ 1\,‘\)/2? counter (thus it only require800 MB of main
Size memory). Keeping the total number of counters
GB 15 6.2 15 st fixed, we try different values of dept,(3, 5 and

#cgvI siﬁir;tr(]e)nces 203 | 6030 | 34268 | 686.63 7) of the sketch array and in each case the width
is set to2™  The ARE curves in each case are
#ofwords | 19 o5 | g58.02 | 2122.47| 4325.03 o4 :
(Million) ' ' ' ' shown in Fig. 3(a). There are three main observa-
fg‘?gmifrge 025 | 1925 | 1863 | 39.05 tions: First it shows that most of the errors occur
- on low frequency items. For frequent items, in al-
Stream Size | 53 | 5594 | 1879 | 40.00 - :
14 (Billion) : : ' ' most all the different runs the ARE is close to zero.

Secondly, it shows that ARE is significantly lower
(by a factor of two) for the runs which use conser-
vative update (CUx run) compared to the runs that
and Lall, 2009b) which assumes exact frequenuse direct CM sketch (CMx run). The encouraging
cies for words, we store frequencies of both theobservation is that, this holds true for almost all
words and word pairs in the CM skefthHence,  different (width,depth) settings. Thirdly, in our ex-
the stream size in our case is the total number operiments, it shows that using depth3ajets com-
words and word pairs in a corpus. Table 1 givegaratively less ARE compared to other settings.
the characteristics of the corpora. To be more certain about this behavior with re-
Since, it is not possible to compute exact fre-spect to different settings of width and depth, we
quencies of all word pairs using conventional maintried another setting by increasing the number of
memory of8 GB from a large corpus, we use a counters ta 00 million. The curves in 3(b) follow
subset o2 million sentences (Subset) from Giga- a pattern which is similar to the previous setting.
word corpus for our intrinsic evaluation. We store Low frequency items are more prone to error com-
the counts of all words and word pairs (occurringpared to the frequent ones and employing conser-
in a sliding window of lengthi4) from Subset us- vative update reduces the ARE by a factor of two.
ing the sketch and also the exact counts. In this setting, dept3 and5 do almost the same
and get lowest ARE. In both the experiments, set-
ting the depth to three did well and thus in the rest
of the paper we fix this parameter to three.
To evaluate the amount of over-estimation in CM  Fig. 4 studies the effect of the number of coun-
and CU counts compared to the true counts, Weers in the sketch (the size of the two-dimensional
first group all items (words and word pairs) with sketch array) on the ARE. Using more number of
same true frequency into a single bucket. We the@ounters decreases the ARE in the counts. This is
compute the average relative error in each of thesgyuitive because, as the length of each row in the
buckets. Since low-frequent items are more prongketch increases, the probability of collision de-
to errors, making this distinction based on fre-creases and hence the array iS more ||ke|y to con-
quency lets us understand the regions in which theain true counts. By using00 million counters,
algorithm is over-estimating. Average Relative er-which is comparable to the length of the stream
ror (ARE) is defined as the average of absolute dif930 million (Table. 1), we are able to achieve al-
ference between the predicted and the exact valugost zero ARE over all the counts including the
divided by the exact value over all the items inrare oned Note that the actual space required
each bucket. to represent the exact counts is almost two times
more than the memory that we use here because
there are230 million word pairs and on an aver-
age each word is eight characters long and requires
ggght bytes (double the size of an integer). The
summary of this Figure is that, if we want to pre-
serve the counts of low-frequent items accurately,
then we need counters linear in size of stream.

Table 1: Corpus Description

4.2 Comparing CM and CU counts and
tradeoff between width and depth

N .
1 |Exact — Predicted|
ARE = —
N ; Exact

Where Exact and Predicted denotes values of exa
and CM/CU counts respectivelyy denotes the
number of items with same counts in a bucket.

In Fig. 3(a), we fixed the number of counters

to 50 million with four bytes of memory per each  °Even with other datasets we found that using counters
linear in the size of the stream leads to ARE close to xero

“Though a minor point, it allows to process more text.  counts.
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Figure 3:Comparing50 and100 million counter models with different (width,depth) settings. The notation Gafxesents
the Count-Min Sketch with a depth of 'x’ and CUx represents the CM skdtrigavith conservative update and depth 'x’.

4.3.2 Description of the metrics

o Accuracy is defined as fraction of word pairs that
PRy are found in both rankings to the size of top ranked
word pairs.

|CP-WPs1 EP-WP$
|EP-WP$
Where CP-WPs represent the set of top ranked
word pairs under the counts stored using the CU
6 8 10 12 sketch and EP-WPs represent the set of top ranked
Log2 of true frequency counts of words/word-pairs . .
word pairs with the exact counts.

Spearman’s rank correlation coefficienp) (
computes the correlation between the ranks of
each observation (i.e. word pairs) on two variables
4.3 Evaluating the CU PMI ranking (that are topN CU-PMI and exact-PMI values).

This measure captures how different the CU-PMI
In this experiment, we compare the word pairs asranking is from the Exact-PMI ranking.

sociation rankings obtained using PMI with CU 63 2

and exact counts. We use two kinds of measures, p=1-— 271

namely accuracy and Spearman’s correlation, to F(F?-1)

measure the overlap in the rankings obtained by Whered; is the difference between the ranks of

Accuracy=

Average Relative Error

Figure 4:Comparing different size models with defith

both these approaches. a word pair in both rankings anél is the number
of items found in both sets.
4.3.1 PointWise Mutual Information Intuitively, accuracy captures the number of

word pairs that are found in both the sets and then
Spearman’s correlation captures if the relative or-
der of these common items is preserved in both the
rankings. In our experimental setup, both these
measures are complimentary to each other and
measure different aspects. If the rankings match
exactly, then we get an accuracy 0i0% and a
correlation ofl.

The Pointwise Mutual Information (PMI) (Church
and Hanks, 1989) between two words andws
is defined as:

P(wi,ws
PMI(’U)LU]Q) :logQM

Here, P(w1, w2) is the likelihood thatv; andws

occur together, an?(w; ) andP(w») are theirin- 4.3.3  Comparing CU PMI ranking

dependent likelihoods respectively. The ratio be-The results with respect to different sized counter
tween these probabilities measures the degree @0, 100 and200 million) models are shown in Ta-
statistical dependence betweenandws. ble 2. Table 2 shows that having counters linear



Counters >0M 100M 200M wrong, and inferior) used in (Turney and Littman,
TopK Acc 2 Acc p | Acc p . .

50 >0 013 68 95 92 1.00 2002) work. The SO of a given word is calculated
100 18 31| .77 80| .96 .95 based on the strength of its association with the
588 3411 -g? ;i -g? -gg -gg seven positive words, and the strength of its asso-
1000 33 17 | 74 87| 95 98 ciation with the seven negative words. We com-
5000 49 38 | 82 .82| .96 .97 pute the SO of a word "w” as follows:

Table 2: Evaluating the PMI rankings obtained using CM SO-PMIW) = PMI(+,w) — PMI(—,w)
Sketch with conservative update (CU) and Exact counts ’ hits ( 7)
b, w

PMI(+w) = > log sl - Fits(a)
in size of stream230M\) results in better rank- pE€Pwords _
ing (i.e. close to the exact ranking). For example, PMI(-,w) = Z og M
with 200M counters, among the tGi9 word pairs e 4o hits(n) - hits(w)

produced using the CU counts, we foufttlpairs
in the set returned by using exact counts. Fhe Where, Pwords and Nwords denote the seven pos-

score on those word pairsisneans that the rank- [tV€ and negative prototype words respectively.

ing of thesed6 items is exactly the same on both e compute SO score from different sized cor-
CU and exact counts. We see the same phenorf®ra (Section 4.1). We use the General Inquirer
ena for200M counters with other Tog values. lexicon’ (Stone et al., 1966) as a benchmark to
While both accuracy and the ranking are decengValuate the semantic orientation scores similar to
with 100 counters, if we reduce the number of (Turney and Littman, 2002) work. Words with
counters to sa§0M, the performance degrades. multiple senses have multiple entries in the lexi-
Since, we are not throwing away any infrequentcOn: We merge these entries for our experiment.
items, PMI will rank pairs with low frequency Our test set consists df619 positive and1989

counts higher (Church and Hanks, 1989). Hencer)egative words. Accuracy is used as an evaluation
we are evaluating the PMI values for rare wordmetric and is defined as the fraction of number of

pairs and we need counters linear in size of strearfiCTeCtly identified SO words.

to get almost perfect ranking. Also, using coun- Correctly Identified SO Words 100
ters equal to half the length of the stream is decenficcuracy= Total SO words
However, in some NLP problems, we are not inter-
ested in low-frequency items. In such cases, even-2 Results
using space less than linear in number of counWe evaluate SO of words on three different sized
ters would suffice. In our extrinsic evaluations, wecorpora: Gigaword (GW).2GB, GigaWord +
show that using space less than the length of th80% of web data (GW+WB1p1.2GB and Gi-
stream does not degrades the performance. gaWord +100% of web data (GW+WB231GB.
Note that computing the exact counts of all word
5 Extrinsic Evaluations pairs on these corpora is not possible using main
memory, so we consider only those pairs in which
one word appears in the prototype list and the
To evaluate the effectiveness of CU-PMI wordother word appears in the test set.
association scores, we infer semantic orientation We compute the exact PMI (denoted using Ex-
(S0) of a word from CU-PMI and Exact-PMI act) scores for pairs of test-set wordsand proto-
scores. Given a word, the task of finding the SOype wordsw, using the above data-sets. To com-
(Turney and Littman, 2002) of the word is to iden- pute PMI, we count the number of hits of individ-
tify if the word is more likely to be used in positive yal wordsw; andw, and the pair{;,w,) within a
or negative sense. We use a similar framework agliding window of sized0 and14 over these data-
used by the authd?do infer the SO. We take the sets. After computing the PMI scores, we compute
seven positive words (good, nice, excellent, posiSO score for a word using SO-PMI equation from
tive, fortunate, correct, and superior) and the negasection 5.1. If this score is positive, we predict
tive words (bad, nasty, poor, negative, unfortunatethe word as positive. Otherwise, we predict it as

5.1 Experimental Setup

5We compute this score slightly differently. However, our ~ "The General Inquirer lexicon is freely available at
main focus is to show that CU-PMI scores are useful. http://www.wjh.harvard.edu/ inquirer/



Model Accuracy window 10 Accuracy window 14
#of counters Mem. Usage GW  GW+WB1 GW+WBZ GW GW+WB1 GW+WBZ

[ Exact nfa__ | 64.77 7567 7711 | 64.86  74.25 75.30 |
500M 2GB__ | 6298 71.09 7231 | 6321 69.21 70.35
1B 4GB 6295  73.93 7503 | 63.95  72.42 72.73
2B 8GB 64.69  75.86 76.96 | 6528 73.94 74.96

Table 3:Evaluating Semantic Orientation of words with different # of counters ofsRétch with increasing amount of data
on window size of 10 and 14. Scores are evaluated using Accuracicmetr

negative. The results on inferring correct SO for The advantage of using Sketch is that it con-
a word w with exact PMI (Exact) are summarizedtains counts for all words and word pairs. Suppose
in Table 3. It (the second row) shows that increaswe are given a new word to label it as positive or
ing the amount of data improves the accuracy ohegative. We can find its exact PMI in two ways:
identifying the SO of a word with both the win- First, we can go over the whole corpus and com-
dow sizes. The gain is more prominent when wepute counts of this word with positive and nega-
add50% of web data in addition to Gigaword as tive prototype words. This procedure will return
we get an increase of more th&ad%o in accuracy. PMI in time needed to traverse the whole corpus.
However, when we add the remainibgf of web  If the corpus is huge, this could be too slow. Sec-
data, we only see an slight increasel® in accu- ond option is to consider storing counts of all word
racy’. Using words within a window of0 gives  pairs but this is not feasible as their number in-
better accuracy than window o4. creases rapidly with increase in data (see Fig. 1).
Now, we use our CU Sketches 660 million  Therefore, using a CM sketch is a very good al-
(500M), 1 billion (1B) and?2 billion (2B) coun- ternative which returns the PMI in constant time
ters to compute CU-PMI. These sketches contaitby using only8GB of memory. Additionally, this
the number of hits of all words/word pairs (not just Sketch can easily be used for other NLP applica-
the pairs of test-set and prototype words) within aions where we need word-association scores.
window size of10 and 14 over the whole data-
set. The results in Table 3 show that even wit
CU-PMI scores, the accuracy improves by addingie have explored the idea of the CM Sketch,
more data. Again we see a significant increase ivhich approximates the frequency of a word pair
accuracy by adding0% of web data to Gigaword in the corpus without explicitly storing the word
over both window sizes. The increase in accuracyairs themselves. We used the idea of a conserva-
by adding the rest of the web data is ombp. tive update with the CM Sketch to reduce the av-
By using 500M counters, accuracy with CU- erage relative error of its approximate counts by
PMI are aroundi% worse than the Exact. How- a factor of2. It is an efficient, small-footprint
ever, increasing the size B results in only2  method that scales to at leat GB of web data
% worse accuracy compared to the Exact. Goin just2 billion counters § GB main memory). In
ing to 23 counters § GB of RAM), results in ac-  our extrinsic evaluations, we found that CU Sketch
curacy almost identical to the Exact. These reis as effective as exact PMI scores.
sults hold almost the same for all the data-sets \Word-association scores from CU Sketch can be
and for both the window sizes. The increase irused for other NLP tasks like word sense disam-
accuracy comes at expense of more memory Ussiguation, speech and character recognition. The
age. However8GB main memory is not large as counts stored in CU Sketch can be used to con-
most of the conventional desktop machines havetruct small-space randomized language models.
this much RAM. The number o B counters is |n general, this sketch can be used for any applica-

less than the length of stream for all the data-setsion where we want to query a count of an item.

For GW, GW+WB1 and GW+WB2B counters

are 10, 20 and 30 times smaller than the stream Acknowledgments
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