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Abstract In Bayesian machine learning, conjugate priors are popular, mostly due to math-
ematical convenience. In this paper, we show that there are deeper reasons for choosing a
conjugate prior. Specifically, we formulate the conjugate prior in the form of Bregman diver-
gence and show that it is the inherent geometry of conjugate priors that makes them appro-
priate and intuitive. This geometric interpretation allows one to view the hyperparameters of
conjugate priors as the effective sample points, thus providing additional intuition. We use
this geometric understanding of conjugate priors to derive the hyperparameters and expres-
sion of the prior used to couple the generative and discriminative components of a hybrid
model for semi-supervised learning.

Keywords Bregman divergence · Conjugate prior · Exponential families · Generative
models

1 Introduction

In probabilistic modeling, a practitioner typically chooses a likelihood function (model)
based on her knowledge of the problem domain. With limited training data, a simple maxi-
mum likelihood (ML) estimation of the parameters of this model will lead to overfitting and
poor generalization. One can regularize the model by adding a prior, but the fundamental
question is: which prior? We give a turn-key answer to this problem by analyzing the under-
lying geometry of the likelihood model and suggest choosing the unique prior with the same
geometry as the likelihood. This unique prior turns out to be the conjugate prior, in the case
of the exponential family. This provides justification beyond “computational convenience”
for using the conjugate prior in machine learning and data mining applications.
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In this work, we give a geometric understanding of the maximum likelihood estimation
method and a geometric argument in the favor of using conjugate priors. Empirical evidence
showing the effectiveness of the conjugate priors can be found in our earlier work (Agarwal
and Daumé 2009). In Sect. 4.1, first we formulate the ML estimation problem into a com-
pletely geometric problem with no explicit mention of probability distributions. We then
show that this geometric problem carries a geometry that is inherent to the structure of the
likelihood model. For reasons given in Sects. 4.3 and 4.4, when considering the prior, it
is important that one uses the same geometry as likelihood. Using the same geometry also
gives the closed-form solution for the maximum-a-posteriori (MAP) problem. We then an-
alyze the prior using concepts borrowed from the information geometry. We show that this
geometry induces the Fisher information metric and 1-connection, which are respectively,
the natural metric and connection for the exponential family (Sect. 5). One important out-
come of this analysis is that it allows us to treat the hyperparameters of the conjugate prior
as the effective sample points drawn from the distribution under consideration. This analysis
also allows us to extend the results of MAP estimation in the exponential family to the α-
family (Sect. 5.1) because, similar to exponential families, α-families also carry an inherent
geometry (Zhang 2004). We finally extend this geometric interpretation of conjugate priors
to analyze the hybrid model given by Lasserre et al. (2006) in a purely geometric setting and
justify the argument presented in Agarwal and Daumé (2009) (i.e. a coupling prior should
be conjugate) using a much simpler analysis (Sect. 6). Our analysis couples the discrim-
inative and generative components of hybrid model using the Bregman divergence which
reduces to the coupling prior given in Agarwal and Daumé (2009). This analysis avoids the
explicit derivation of the hyperparameters, rather automatically gives the hyperparameters
of the conjugate prior along with the expression.

2 Motivation

Our analysis is driven by the desire to understand the geometry of the conjugate priors for
the exponential families. This understanding has many advantages that are described in the
remainder of the paper: an extension of notion of conjugacy beyond the exponential family
(to α-family), and geometric analysis of models that use the conjugate priors (Agarwal and
Daumé 2009).

We motivate our analysis by asking ourselves the following question: Given a paramet-
ric model p(x; θ) for the data likelihood, and a prior on its parameters θ , p(θ;α,β); what
should the hyperparameters α and β of the prior encode? We know that θ in the likelihood
model is the estimation of the parameter using the given data points. In other words, the esti-
mated parameter fits the model according to the given data while the prior on the parameter
provides the generalization. This generalization is enforced by some prior belief encoded
in the hyperparameters. Unfortunately, one does not know what is the likely value of the
parameters; rather one might have some belief in what data points are likely to be sampled
from the model. Now the question is: Do the hyperparameters encode this belief in the para-
meters in terms of the sampling points? Our analysis shows that the hyperparameters of the
conjugate prior is nothing but the effective sampling points. In case of non-conjugate priors,
the interpretation of hyperparameters is not clear.

A second motivation is the following geometric analysis. Before we go into the problem,
consider two points in the Euclidean space which one would like to interpolate using a
parameter γ ∈ [0,1]. A natural way to do so is to interpolate them linearly i.e., connect two
points using a straight line, and then find the interpolating point at the desired γ , as shown in
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Fig. 1 Interpolation of two points a and b using (a) Euclidean geometry, and (b) non-Euclidean geometry.
Here geometry is defined by the respective distance/divergence functions de and dg . It is important to notice
that the divergence is a generalized notion of the distance in the non-Euclidean spaces, in particular, in the
spaces of the exponential family statistical manifolds. In these spaces, it is the divergence function that define
the geometry

Fig. 1(a). This interpolation scheme does not change if we move to a non-Euclidean space.
In other words, if we were to interpolate two points in the non-Euclidean space, we would
find the interpolating point by connecting the two points by a geodesic (an equivalent to the
straight line in the non-Euclidean space) and then finding the point at the desired γ , shown
in Fig. 1(b).

This situation arises when one has two models and wants to build a better model by
interpolating them. This exact situation is encountered in Lasserre et al. (2006) where the
objective is to build a hybrid model by interpolating (or coupling) discriminative and gen-
erative models. Agarwal and Daumé (2009) couples these two models using the conjugate
prior, and empirically shows using a conjugate prior for the coupling outperforms the origi-
nal choice (Lasserre et al. 2006) of a Gaussian prior. In this work, we find the hybrid model
by interpolating the two models using the inherent geometry1 of the space (interpolate along
the geodesic in the space defined by the inherent geometry) which automatically results in
the conjugate prior along with its hyperparameters. Our analysis and the analysis of Agarwal
and Daumé lead to the same result, but ours is much simpler and naturally extends to the
cases where one wants to couple more than two models. One big advantage of our analysis
is that unlike prior approaches (Agarwal and Daumé 2009), we need not know the expres-
sion and the hyperparameters of the prior in advance. They are automatically derived by the
analysis. Our analysis based on the geometric interpretation can also be used to interpolate
the models using a polynomial of higher degree instead of just the straight line i.e., quadratic
interpolation etc., and to derive the corresponding prior. Our analysis only requires the in-
herent geometry which is given by the models under the consideration and the interpolation
parameters (parameters of the polynomial). No explicit expression of the coupling prior is
needed.

3 Background

In this section we give the required background, specially, we revisit the concepts related to
Legendre duality, exponential families and Bregman divergence.

1In exponential family statistical manifold, inherent geometry is defined by the divergence function because
it is the divergence function that induces the metric structure and connection of the manifold. Refer Amari
and Nagaoka (2001) for more details.
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Fig. 2 Duality between mean
parameters and natural
parameters. Notice the convex
functions defined over both
spaces. these functions are dual
of each other and so are the
spaces

3.1 Legendre duality

Let M ⊆ R
d and � ⊆ R

d be two spaces and let F : M → R
+ and G : � → R

+ be two
convex functions. F and G are said to be conjugate duals of each other if:

F(μ) := sup
θ∈�

{〈μ,θ〉 − G(θ)} (1)

here 〈a, b〉 denotes the dot product of vectors a and b. The spaces (� and M) associated
with these dual functions are called dual spaces. We sometime use the standard notation to
refer this duality i.e., G = F ∗ and F = G∗. A particularly important connection between
dual spaces is that: for each μ ∈ M,∇F(μ) = θ ∈ � (denoted as μ∗ = θ)) and similarly, for
each θ ∈ �,∇G(θ) = μ ∈ M (or θ∗ = μ)). For more details, refer to Rockafellar (1996).
Figure 2 gives a pictorial representation of this duality and the notations associated with it.

3.2 Bregman divergence

We now give a brief overview of Bregman divergence (for more details see Banerjee et
al. 2005). Let F : M → R be a continuously-differentiable real-valued and strictly convex
function defined on a closed convex set M. The Bregman divergence associated with F for
points p,q ∈ M is:

BF (p‖q) = F(p) − F(q) − 〈∇F(q), (p − q)〉 (2)

If G is the conjugate dual of F then:

BF (p‖q) = BG(q∗‖p∗) (3)

here p∗ and q∗ are the duals of p and q respectively. It is emphasized that Bregman diver-
gence is not symmetric i.e., in general, BF (p‖q) 
= BF (q‖p), therefore it is important what
directions these divergences are measured in.

3.3 Exponential family

In this section, we review the exponential family. The exponential family is a set of distrib-
utions, whose probability density function can be expressed in the following form:

p(x; θ) = po(x) exp(〈θ,φ(x)〉 − G(θ)) (4)
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here φ(x) : Xm → R
d is a vector potentials or sufficient statistics and G(θ) is a normal-

ization constant or log-partition function. With the potential functions φ(x) fixed, every θ

induces a particular member p(x; θ) of the family. In our framework, we deal with exponen-
tial families that are regular and have the minimal representation (Wainwright and Jordan
2003).

The exponential family has a number of convenient properties and subsumes many com-
mon distributions. It includes the Gaussian, Binomial, Beta, Multinomial and Dirichlet dis-
tributions, hidden Markov models, Bayes nets, etc. One important property of the exponen-
tial family is the existence of conjugate priors. Given any member of the exponential family
in (4), the conjugate prior is a distribution over its parameters with the following form:

p(θ |α,β) = m(α,β) exp(〈θ,α〉 − βG(θ)) (5)

here α and β are hyperparameters of the conjugate prior. Importantly, the function G(·) is
the same between the exponential family member and its conjugate prior.

A second important property of exponential family member is that log-partition function
G is convex and defined over the convex set � := {θ ∈ R

d : G(θ) < ∞}. Since the log-
partition function G is convex over this set, it induces a Bregman divergence on the space �.

Another important property of the exponential family is the one-to-one mapping between
the canonical parameters θ and the so-called “mean parameters” which we denote by μ.
For each canonical parameter θ ∈ �, there exists a mean parameter μ, which belongs to the
space M defined as:

M :=
{
μ ∈ R

d : μ =
∫

φ(x)p(x; θ) dx ∀θ ∈ �

}
(6)

Our notation has been deliberately suggestive. � and M are dual spaces, in the sense of
Legendre duality because of the following relationship between the log-partition function
G(θ) and the expected value of the sufficient statistics φ(x): ∇G(θ) = E(φ(x)) = μ.

In Legendre duality, we know that two spaces � and M are dual of each other if for
each θ ∈ �, ∇G(θ) = μ ∈ M. Here G (the log partition function of the exponential family
distribution) is the function defined on the space �. We call the function in the dual space M

to be F i.e., F = G∗. A pictorial representation of the duality between canonical parameter
space � and mean parameter space M is given in Fig. 2.

In our analysis, we will need the Bregman divergence over φ(x) which can be obtained
by showing that an augmented M contains all possible φ(x). In order to define the Breg-
man divergence over all φ(x), we define a new set of mean parameters w.r.t. all proba-
bility distributions (not only w.r.t. exponential family distributions): M+ := {μ ∈ R

d : μ =∫
φ(x)p(x) dx s.t.

∫
p(x)dx = 1}.

Note that M+ is the convex hull of φ(x) thus containts all φ(x). We know from (see
Theorem 3.3, Wainwright and Jordan 2008) that M is the interior of M+. Now we augment
M with the boundary of M+ and � with the canonical parameters (limiting distributions)
that will generate the mean parameters corresponding to this boundary. We know (see Theo-
rem 2, Wainwright and Jordan 2003) that such parameters exist. Call these new sets M+ and
�+ respectively. We also know (Wainwright and Jordan 2003) that �+ and M+ are con-
jugate dual of each other (for boundary, duality exists in the limiting sense) i.e., Bregman
divergence is defined over the entire M+.

In the following discussion, M and � will denote the closed sets i.e. M+ and �+ respec-
tively.
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4 Likelihood, prior and geometry

In this section, we first formulate the ML problem into a Bregman median problem
(Sect. 4.1) and then show that corresponding MAP problem can also be converted into a
Bregman median problem (Sect. 4.3). The MAP Bregman median problem consists of two
parts: a likelihood model and a prior. We argue (Sects. 4.3 and 4.4) that a Bregman median
problem makes sense only when both of these parts have the same geometry. Having the
same geometry amounts to having the same log-partition function leading to the property of
conjugate priors.

4.1 Likelihood in the form of Bregman divergence

Following Collins et al. (2001), we can write the distributions belonging to the exponential
family in terms of Bregman divergence. Let p(x; θ) be the exponential family distribution
as defined in (4), the log of which (likelihood) can be written as2:

logp(x; θ) = logpo(x) + F(x) − BF (x‖∇G(θ)) (7)

This relationship depends on two observations: F(∇G(θ)) + G(θ) = ∇G(θ)θ and
(∇F)−1(θ) = ∇G(θ) ⇒ (∇F)(∇G(θ)) = θ . These two observations can be used with (2)
to see that (7) is equivalent to the probability distribution defined in (4). This representation
of likelihood in the form of Bregman divergence gives insight in the geometry of the likeli-
hood function. Gaining the insight into the exponential family distributions and establishing
a meaningful relationship between likelihood and prior is the primary objective of this work.

In learning problems, one is interested in estimating the parameters θ of the model
which results in low generalization error. Perhaps the most standard estimation method is
maximum likelihood (ML). The ML estimate, θ̂ML, of a set of n i.i.d. training data points
X = {x1, . . . , xn} drawn from the exponential family is obtained by solving the following
problem: θ̂ML = maxθ∈� logp(X; θ).

Theorem 1 Let X = {x1, . . . , xn} be a set of n i.i.d. training data points drawn from the
exponential family distribution with the log partition function G, F be the dual function of
G, then dual of ML estimate (θ̂ML) of X under the assumed exponential family model solves
the following Bregman median problem:

μ̂ML = min
μ∈M

n∑
i=1

BF (xi‖μ)

Proof The log-likelihood of X under the assumed exponential family distribution is given
by logp(X; θ) = ∑n

i=1 logp(xi; θ) which along with (7) can be used to compute θ̂ML:

θ̂ML = max
θ∈�

n∑
i=1

(logpo(xi) + F(xi) − BF (xi‖∇G(θ)))

= min
θ∈�

n∑
i=1

BF (xi‖∇G(θ)) (8)

which using the expression ∇G(θ) = μ gives the desired result. �

2For the simplicity of the notations we will use x instead of φ(x) assuming that x ∈ R
d . This does not change

the analysis.
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The above theorem converts the problem of maximizing the log likelihood logp(X; θ)

into an equivalent problem of minimizing the corresponding Bregman divergences which
is nothing but a Bregman median problem, the solution to which is given by μ̂ML =∑n

i=1 xi . ML estimate θ̂ML can now be computed using the expression ∇G(θ) = μ, θ̂ML =
(∇G)−1(μ̂ML).

Lemma 1 If x is the sufficient statistics of the exponential family with the log partition
function G, and F is the dual function of G defined over the mean parameter space M then
(1) x ∈ M; (2) there exists a θ ∈ �, such that x∗ = θ .

Proof (1) By construction of M, we know x ∈ M. (2) From duality of M and �, for every
μ ∈ M, there exists a θ ∈ � such that θ = μ∗, and since x ∈ M, which implies x∗ = θ . �

Corollary 1 (ML as Bregman Median) Let G(θ) be the log partition function of the expo-
nential family defined over the convex set �, X = {x1, . . . , xn} be set of n i.i.d. data points
drawn from this exponential family, and θi be the dual of xi , then ML estimation, θ̂ML of
X = {x1, . . . , xn} solves the following optimization problem:

θ̂ML = min
θ∈�

n∑
i=1

BG(θ‖θi) (9)

Proof Proof directly follows from Lemma 1 and Theorem 1. From Lemma 1, we know that
x∗

i = θi . Now using Theorem 1 and (3), BF (xi‖μ) = BG(θ‖x∗
i ) = BG(θ‖θi). One can also

reduce the above result without using Lemma 1. It is known from Banerjee et al. (2005) that
(8) holds for all x which using the duality gives the desired result. �

The above expression requires us to find a θ so that divergence from θ to other θi is
minimized. Now note that G is what defines this divergence and hence the geometry of
the � space (as discussed earlier in Sect. 2). Since G is the log partition function of an
exponential family, it is the log-partition function that determines the geometry of the space.
We emphasize that divergence is measured from the parameter being estimated to other
parameters θi (s), as shown in Fig. 3.

Example 1 (1-D Gaussian) The exponential family representation of a 1-d Gaussian is

p(x; θ) = 1√
2πσ 2 exp(− (x−a)2

2σ 2 ) with θ = a

σ 2 and G(θ) = σ 2

2 θ2 whose ML estimation is just

(∇G)−1(μ) = μ

σ 2 which gives a = μ = 1
n

∑
i xi i.e. data mean.

Example 2 (1-D Bernoulli) The exponential family representation of a Bernoulli distribution
p = ax(1 − a)1−x is the distribution with θ = log a

1−a
with G(θ) = log(1 + eθ ) whose ML

estimation is (∇G)−1(μ) = log μ

1−μ
. Comparing it with θ gives a = μ = 1

n

∑
i xi which is

the estimated probability of the event in n trials.

4.2 Conjugate prior in the form of Bregman divergence

We now give an expression similar to the likelihood for the conjugate prior:

logp(θ |α,β) = logm(α,β) + β

(〈
θ,

α

β

〉
− G(θ)

)
(10)

 Author's personal copy 



106 Mach Learn (2010) 81: 99–113

Equation (10) can be written in the form of Bregman divergence by a direct comparison
to (4), replacing x with α/β .

logp(θ |α,β) = logm(α,β) + β

(
F

(
α

β

)
− BF

(
α

β
‖∇G(θ)

))
(11)

The expression for the joint probability of data and parameters is given by:

logp(x, θ |α,β) = logpo(x) + logm(α,β) + F(x) + βF

(
α

β

)

−
(

BF (x‖∇G(θ)) + βBF

(
α

β
‖∇G(θ)

))

Combining all terms that do not depend on θ :

logp(x, θ |α,β) = const − BF (x‖μ) − βBF

(
α

β
‖μ

)
(12)

4.3 Geometric interpretation of conjugate prior

In this section we give a geometric interpretation of the term BF (x‖μ) + βBF ( α
β
‖μ)

from (12).

Theorem 2 (MAP as Bregman median) Given a set X of n i.i.d. examples drawn from the
exponential family distribution with the log partition function G and a conjugate prior as
in (11), MAP estimation of parameters is θ̂MAP = μ̂∗

MAP where μ̂MAP solves the following
problem:

μ̂MAP = min
μ∈M

n∑
i=1

BF (xi‖μ) + βBF

(
α

β
‖μ

)
(13)

which admits the following solution:

μ̂MAP =
∑n

i=1 xi + α

n + β

Proof MAP estimation by definition maximizes (12) for all data points X which is equiva-
lent to minimizing BF (xi‖μ) + βBF ( α

β
‖μ). One can expand this expression using (2) and

use conditions F(∇G(θ))+G(θ) = ∇G(θ)θ and (∇F)−1(θ) = ∇G(θ) to obtain the desired
solution. �

The above solution gives a natural interpretation of MAP estimation. One can think of
prior as β number of extra points at position α/β . β works as the effective sample size of
the prior which is clear from the following expression of the dual of the θ̂MAP:

μ̂MAP =
∑n

i=1 xi + ∑β

i=1
α
β

n + β
(14)
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The expression (13) is analogous to (8) in the sense that both are defined in the dual space
M. One can convert (13) into an expression similar to (9) in the dual space which is again a
Bregman median problem in the parameter space.

θ̂MAP = min
θ∈�

n∑
i=1

BG(θ‖θi) +
β∑

i=1

BG

(
θ‖

(
α

β

)∗)
(15)

here ( α
β
)∗ ∈ � is dual of α

β
. The above problem is a Bregman median problem of n + β

points, {θ1, θ2 . . . θn, (α/β)∗, . . . , (α/β)∗︸ ︷︷ ︸
β times

}, as shown in Fig. 3 (left).

A geometric interpretation is also shown in Fig. 3. When the prior is conjugate to the like-
lihood, they both have the same log-partition function (Fig. 3, left). Therefore they induce
the same Bregman divergence. Having the same divergence means that distances from θ to
θi (in likelihood) and the distances from θ to (α/β)∗ are measured with the same divergence
function, yielding the same geometry for both spaces.

It is easier to see using the median formulation of the MAP estimation problem that one
must choose a prior that is conjugate. If one chooses a conjugate prior, then the distances
among all points are measured using the same function. It is also clear from (14) that in
the conjugate prior case, the point induced by the conjugate prior behaves as a sample point
(α/β)∗. A median problem over a space that have different geometries is an ill-formed
problem, as discussed further in the next section.

4.4 Geometric interpretation of non-conjugate prior

We derived expression (15) because we considered the prior conjugate to the likelihood
function. Had we chosen a non-conjugate prior with log-partition function Q, we would
have obtained:

θ̂ML = min
θ∈�

n∑
i=1

BG(θ‖θi) +
β∑

i=1

BQ

(
θ ‖

(
α

β

)∗)
. (16)

Here G and Q are different functions defined over �. Since these are the functions that
define the geometry of the space parameter, having G 
= Q is equivalent to consider them as
being defined over different (metric) spaces. Here, it should be noted that distance between
the sample point (θi ) and the parameter θ is measured using the Bregman divergence BG. On
the other hand, the distance between the point induced by the prior (α/β)∗ and θ is measured
using the divergence function BQ. This means that (α/β)∗ can not be treated as one of the
sample points. This tells us that, unlike the conjugate case, belief in the non-conjugate prior
can not be encoded in the form of the sample points.

Another problem with considering a non-conjugate prior is that the dual space of �

under different functions would be different. Thus, one will not be able to find the alternate
expression for (16) equivalent to (13), and therefore not be able to find the closed-form
expression similar to (14). This tells us why non-conjugate does not give us a closed form
solution for θ̂MAP.

A pictorial representation of this is also shown in Fig. 3. Note that, unlike the conjugate
case, in the non-conjugate case, the data likelihood and the prior both belong to different
spaces.

We emphasize that it is possible to find the solution of (16) i.e., in practice, there is
nothing that prohibits the use of non-conjugate prior, using the conjugate prior is intuitive,
and allows one to treat the hyper-parameters as pseudo data points.
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Fig. 3 Prior in the conjugate
case has the same geometry as
the likelihood while in the
non-conjugate case, they have
different geometries

5 Information geometric view

In this section, we show the appropriateness of the conjugate prior from the information
geometric angle. In information geometry, � is a statistical manifold such that each θ ∈ �

defines a probability distribution. This statistical manifold has an inherent geometry, given
by a metric and an affine connection. One natural metric is the Fisher information metric
because of its many attractive properties: it is Riemannian and is invariant under reparame-
terization (for more details refer Amari and Nagaoka 2001).

In exponential family distributions, the Fisher metric M(θ) is induced by the KL-
divergence KL(·‖θ), which is equivalent to the Bregman divergence defined by the log-
partition function. Thus, it is the log-partition function G that induces the Fisher metric, and
therefore determines the natural geometry of the space. It justifies our earlier argument of
choosing the log-partition function to define the geometry. Now if we were to treat the prior
as a point on the statistical manifold defined by the likelihood model, the Fisher information
metric on the point given by the prior must be same as the one defined on likelihood man-
ifold. This means that the prior must have the same log-partition function as the likelihood
i.e., it must be conjugate.

5.1 Generalization to α-affine manifold

Not all probability distributions belong to the exponential family (although many do).
A broader family of distributions is the “α-family” (Amari and Nagaoka 2001). Although a
full treatment of this family is beyond the scope of the work, we briefly discuss an extension
of our results to the α-family. An α-family distribution is defined as:

logpα(x; θ) =
{

2
1−α

p(x; θ)(1−α)/2 α 
= 1

logp(x; θ) α = 1

where p(x; θ) defined as in (4). Note that the exponential family is a special case of α-family
for α = 1.

MAP estimation of the parameters in the exponential family can be cast as a median
problem, where an appropriate Bregman divergence is used to define the geometry. In other
words, for exponential family, a Bregman-median problem naturally arose as an estimation
method.

By using an appropriately defined, “natural,” divergence for the α-family, one can ac-
tually obtain a similar result for this broader family of distributions. Using such a natural
divergence, one can also define a “conjugate prior” for the α-family. Zhang et al. (2004)
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shows that such a natural divergence exist for α-family and is given by:

Dα
G(θ1, θ2) = 4

1 − α2

(
1 − α

2
G(θ1) + 1 + α

2
G(θ2) − G

(
1 − α

2
θ1 + 1 + α

2
θ2

))

Like the exponential family, this divergence also induces the Fisher information metric.

6 Hybrid model

In this section, we show an application of our analysis to a common supervised and semi-
supervised learning framework. In particular, we consider a generative/discriminative hybrid
model (Agarwal and Daumé 2009; Druck et al. 2007; Lasserre et al. 2006) that has been
shown to be successful in many application.

The hybrid model is a mixture of discriminative and generative models, each of which
has its own separate set of parameters. These two sets of parameters (hence two models)
are combined using a prior called the coupling prior. Let p(y|x, θd) be the discriminative
component, p(x, y|θg) be the generative component and p(θd, θg) be the prior that couples
discriminative and generative components. The joint likelihood of the data and parameters
is:

p(x, y, θd, θg) = p(θg, θd)p(y|x, θd)p(x|θg)

= p(θg, θd)p(y|x, θd)
∑
y′

p(x, y ′|θg) (17)

Here θd is a set of discriminative parameters, θg a set of generative parameters, and p(θg, θd)

provides the natural coupling between these two sets of parameters.
The most important aspect of this model is the coupling prior p(θg, θd), which interpo-

lates the hybrid model between two extremes: fully generative when the prior forces θd = θg ,
and fully discriminative when the prior renders θd and θg independent. In non-extreme cases,
the goal of the coupling prior is to encourage the generative model and the discriminative
model to have similar parameters. It is easy to see that this effect can be induced by many
functions. One obvious way is to linearly interpolate them as done by Lasserre et al. (2006),
Druck et al. (2007) using a Gaussian prior (or the Euclidean distance) of the following form:

p(θg, θd) ∝ exp
(−λ‖θg − θd‖2

)
(18)

where, when λ = 0, model is purely discriminative while for λ = ∞, model is purely gener-
ative. Thus λ in the above expression is the interpolating parameter, and is same as the γ in
Sect. 2. Note that the log of the prior is nothing but the squared Euclidean distance between
two sets of parameters.

It has been noted multiple times (Bouchard 2007; Agarwal and Daumé 2009) that a
Gaussian prior is not always appropriate, and the prior should instead be chosen according
to models being considered. Agarwal and Daumé (2009) suggested using a prior that is
conjugate to the generative model. Their main argument for choosing the conjugate prior
came from the fact that this provides a closed form solution for the generative parameters
and therefore is mathematically convenient. We will show that it is more than convenience
that makes conjugate prior appropriate. We show that choosing a non-conjugate prior is
not only not convenient but also not appropriate. Moreover, our analysis does not assume
anything about the expression and the hyperparameters of the prior beforehand, rather derive
them automatically.
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6.1 Generalized hybrid model

In order to see the effect of the geometry, we first present the generalized hybrid model for
distributions that belong to the exponential family and present them in form of Bregman
divergences. Following the expression used in Agarwal and Daumé (2009), the generative
model can be written as:

p(x, y|θg) = h(x, y) exp(〈θg, T (x, y)〉 − G(θg)) (19)

where T (·) is the potential function similar to φ in (4), now only defined on (x, y).
Let G∗ be the dual function of G; the corresponding Bregman divergence (retaining only

the terms that depend on the parameter θ ) is given by:

BG∗
(
(x, y)‖∇G(θg)

)
. (20)

Solving the generative model independently reduces to choosing a θg from the space of all
generative parameters �g which has a geometry defined by the log-partition function G.
Similarly to the generative model, the exponential form of the discriminative model is given
as:

p(y|x, θd) = exp(〈θd, T (x, y)〉 − M(θd,x)) (21)

Importantly, the sufficient statistics T are the same in the generative and discriminative
models; such generative/discriminative pairs occur naturally: logistic regression/naive Bayes
and hidden Markov models/conditional random fields are examples. However, observe that
in the discriminative case, the log partition function M depends on both x and θd which
makes the analysis of the discriminative model harder. Unlike the generative model, one
does not have the explicit form of the log-partition function M that is independent of x. This
means that the discriminative component (21) can not be converted into an expression like
(20), and the MLE problem can not be reduced to the Bregman median problem like the one
given in (9).

6.2 Geometry of the hybrid model

We simplify the analysis of the hybrid model by writing the discriminative model in an alter-
nate form. This alternate form makes obvious the underlying geometry of the discriminative
model. Note that the only difference between the two models is that discriminative model
models the conditional distribution while the generative model models the joint distribution.
We can use this observation to write the discriminative model in the following alternate form
using the expression p(y|x, θ) = p(y,x|θ)∑

y′ p(y′x|θ)
and (19):

p(y|x, θd) = h(x, y) exp(〈θd, T (x, y)〉 − G(θd))∑
y′ h(x, y ′) exp(〈θd, T (x, y ′)〉 − G(θd))

(22)

Denote the space of parameters of the discriminative model by �d . It is easy to see that
geometry of �d is defined by G since function G is defined over θd . This is same as the
geometry of the parameter space of the generative model �g . Now let us define a new space
�H which is the affine combination of �d and �g . Now, �H will have the same geometry
as �d and �g i.e., geometry defined by G. Now the goal of the hybrid model is to find a
θ ∈ �H that maximizes the likelihood of the data under the hybrid model. These two spaces
are shown pictorially in Fig. 4.
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Fig. 4 Parameters θd and θg are
interpolated using the Bregman
divergence

6.3 Prior selection

As mentioned earlier, the coupling prior is the most important part of the hybrid model,
which controls the amount of coupling between the generative and discriminative models.
There are many ways to do this, one of which is given by Lasserre et al. (2006), Druck et
al. (2007). By their choice of Gaussian prior as coupling prior, they implicitly couple the
discriminative and generative parameters by the squared Euclidean distance. We suggest
coupling these two models by a general prior, of which the Gaussian prior is a special case.

6.3.1 Bregman divergence and coupling prior

Let a general coupling be given by BS(θg‖θd). Notice the direction of the divergence. We
have chosen this direction because the prior is induced on the generative parameters, and it
is clear from (15) that parameters on which prior is induced, are placed in the first argument
in the divergence function. The direction of the divergence is also shown in Fig. 4.

Now we recall the relation (11) between the Bregman divergence and the prior. Ignor-
ing the function m (this is consumed in the measure defined on the probability space) and
replacing ∇G(θ) by θ∗, we get the following expression:

logp(θg|α,β) = β

(
F

(
α

β

)
− BF

(
α

β
‖θ∗

g

))
(23)

Now taking the α = λθ∗
d and β = λ, we get:

logp(θg|λθ∗
d , λ) = λ(F (θ∗

d ) − BF (θ∗
d ‖θ∗

g )) (24)

p(θg|λθ∗
d , λ) = exp(λ(F (θ∗

d ))) exp(−λBF (θ∗
d ‖θ∗

g )) (25)

For the general coupling divergence function BS(θg‖θd), the corresponding coupling prior
is given by:

exp(−λBS∗(θ∗
d ‖θ∗

g )) = exp(−λ(F (θ∗
d )))p(θg|λθ∗

d , λ) (26)

The above relationship between the divergence function (left side of the expression) and
coupling prior (right side of the expression) allows one to define a Bregman divergence for
a given coupling prior and vise versa.

6.3.2 Coupling prior for the hybrid model

We know that the geometry of the space underlying the Gaussian prior is just Euclidean,
which does not necessarily match the geometry of the likelihood space. The relationship
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between prior and divergence (26) allows one to first define the appropriate geometry for
the model, and then define the prior that respects this geometry. In the above hybrid model,
this geometry is given by the log partition function G of the generative model. This argument
suggests to couple the hybrid model by the divergence of the form BG(θg‖θd). The coupling
prior corresponding to this divergence function can be written using (26) as:

exp(−λBG(θg‖θd)) = p(θg|λθ∗
d , λ) exp(−λF(θ∗

d )) (27)

where λ = [0,∞] is the interpolation parameter, interpolating between the discriminative
and generative extremes. In dual form, the above expression can be written as:

exp(−λBG(θg‖θd)) = p(θg|λθ∗
d , λ) exp(−λG(θd)). (28)

Here exp(−λG(θd)) can be thought of as a prior on the discriminative parameters p(θd).
In the above expression, exp(−λBG(θg‖θd)) = p(θg|θg)p(θd) behaves as a joint coupling
prior P (θd, θg) as originally expected in the model (17). Note that hyperparameters of the
prior α and β are naturally derived from the geometric view of the conjugate prior. Here
α = λθ∗

d and β = λ.

6.3.3 Relation with Agarwal and Daumé

The prior we derived in the previous section turns out to be the exactly same as that proposed
by Agarwal and Daumé (2009), even though theirs was not formally justified. In that work,
the authors break the coupled prior p(θg, θd) into two parts: p(θd) and p(θg|θd). They then
derive an expression for the p(θg|θd) based on the intuition that the mode of p(θg|θd) should
be θd . Our analysis takes a different approach by coupling two models with the Bregman
divergence rather than prior, and results in the expression and hyperparameters for the prior
same as in Agarwal and Daumé (2009).

The two analyses diverge here, however. Our analysis derives the hyperparameters as:
α = λ(∇G)−1(θd) and β = λ. However, the expression of the hyperparameters provided
by Agarwal and Daumé (2009) was: α = λ∇G(θd) and β = λ. Their derivation was the
assumption that the mode of the coupling prior p(θg|θd) should be θd . However, in the
conjugate prior p(θ |α,β), the mode is α

β
, and α

β
behaves as the sufficient statistics for the

prior. These terms have come from the data space, not from the parameter space. Therefore
the mode of the coupling prior p(θg|θd) should not be θd , but rather the dual of θd which is
(∇G)−1(θd) = θ∗

d . Therefore, α = λθ∗
d and β = λ and our model gives exactly this.

7 Related work and conclusion

To our knowledge, there have been no previous attempts to understand Bayesian priors from
a geometric perspective. One related piece of work (Snoussi and Mohammad-Djafari 2003)
uses the Bayesian framework to find the best prior for a given distribution. It is noted that, in
that work, the authors use the δ-geometry for the data space and the α-geometry for the prior
space, and then show the different cases for different values (δ,α). We emphasize that even
though it is possible to use different geometry for the both spaces, it always makes more
sense to use the same geometry. As mentioned in remark 1 in Snoussi and Mohammad-
Djafari (2003), useful cases are obtained only when we consider the same geometry.

We have shown that by considering the geometry induced by a likelihood function, the
natural prior that results is exactly the conjugate prior. We have used this geometric un-
derstanding of conjugate prior to derive the coupling prior for the discriminative/generative
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hybrid model. Our derivation naturally gives us the expression and the hyperparameters of
this coupling prior. Like the hybrid model, this analysis can be used to give the much simpler
geometric interpretations of many models, and to extend the existing results to other models,
i.e. we have used this analysis to extend the geometric formulation of MAP problem for the
exponential family to α-family.

References

Agarwal, A., & Daumé, H. III (2009). Exponential family hybrid semi-supervised learning. In IJCAI.
Pasadena, CA.

Amari, S. I., & Nagaoka, H. (2001). Methods of information geometry. Translations of mathematical mono-
graphs. Providence: American Mathematical Society.

Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences. Journal
of Machine Learning Research, 6, 1705–1749.

Bouchard, G. (2007). Bias-variance tradeoff in hybrid generative-discriminative models. In ICMLA ’07
(pp. 124–129). Washington: IEEE Computer Society.

Collins, M., Dasgupta, S., & Schapire, R. E. (2001). A generalization of principal component analysis to the
exponential family. NIPS (Vol. 14). Cambridge: MIT Press.

Druck, G., Pal, C., McCallum, A., & Zhu, X. (2007). Semi-supervised classification with hybrid generative/
discriminative methods. In KDD ’07 (pp. 280–289). New York: ACM.

Lasserre, J. A., Bishop, C. M., & Minka, T. P. (2006). Principled hybrids of generative and discriminative
models. In CVPR ’06 (pp. 87–94). Washington: IEEE Computer Society.

Rockafellar, R. T. (1996). Convex analysis. Princeton mathematical series. Princeton: Princeton University
Press.

Snoussi, H., & Mohammad-Djafari, A. (2003). Information geometry and prior selection. In Bayesian infer-
ence and maximum entropy methods in science and engineering. American institute of physics confer-
ence series (Vol. 659, pp. 307–327). doi:10.1063/1.1570549.

Wainwright, M., & Jordan, M. (2003). Graphical models, exponential families, and variational inference.
Tech. rep., University of California, Berkeley.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1–2), 1–305.

Zhang, J. (2004). Divergence function, duality, and convex analysis. Neural Computation, 16(1), 159–195.

 Author's personal copy 

http://dx.doi.org/10.1063/1.1570549

	A geometric view of conjugate priors
	Abstract
	Introduction
	Motivation
	Background
	Legendre duality
	Bregman divergence
	Exponential family

	Likelihood, prior and geometry
	Likelihood in the form of Bregman divergence
	Conjugate prior in the form of Bregman divergence
	Geometric interpretation of conjugate prior
	Geometric interpretation of non-conjugate prior

	Information geometric view
	Generalization to alpha-affine manifold

	Hybrid model
	Generalized hybrid model
	Geometry of the hybrid model
	Prior selection
	Bregman divergence and coupling prior
	Coupling prior for the hybrid model
	Relation with Agarwal and Daumé


	Related work and conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


