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Abstract

In this paper, we propose an online multi-
task learning framework where the weight
vectors are updated in an adaptive fashion
based on inter-task relatedness. Our work
is in contrast with the earlier work on on-
line multitask learning (Cavallanti et al.,
2008) where the authors use a fixed inter-
action matrix of tasks to derive (fixed) up-
date rules for all the tasks. In this work,
we propose to update this interaction ma-
trix itself in an adaptive fashion so that
the weight vector updates are no longer
fixed but are instead adaptive. Our frame-
work can be extended to an active learn-
ing setting where the informativeness of an
incoming instance across all the tasks can
be evaluated using this adaptive interac-
tion matrix. Empirical results on standard-
ized datasets show improved performance
in terms of accuracy, label complexity and
number of mistakes made.

1. Introduction

Multitask learning (Evgeniou et al., 2005) refers to
the setting where a set of related tasks are learned
together with the goal of improved generalization
across all tasks. It becomes especially important if
there is a scarcity of labeled examples per task. An
interesting case of multitask learning is when exam-
ples for various tasks arrive one-at-a-time, and the
sequence of examples and the corresponding task in-
dex (the task which an incoming example belongs
to) is chosen adversarially. Furthermore, this set-
ting poses another challenge if one wants to do ac-
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tive learning (Settles, 2009) in this setting due to the
presence of multiple related tasks. In this paper, we
propose a framework to address these issues.

2. Background

We assume the online multitask learning setting of
(Cavallanti et al., 2008) in which, at each time step,
the multitask learner receives an example that be-
longs to one of the K tasks. More specifically, the
learner receives {(xt, yt), it} where xt ∈ Rd is the
example, yt ∈ {−1,+1} the label, and it is the
task index for the round t. In this paper, we build
on the algorithm proposed in (Cavallanti et al.,
2008) (henceforth referred to as Cmtl). In Cmtl’s
proposed multitask Perceptron, multitask instance

φt(x) ∈ RKd is:

φt(x) = ( 0, . . . , 0
︸ ︷︷ ︸

d(it−1)times

xt 0, . . . , 0
︸ ︷︷ ︸

d(K−it)times

)

and the different tasks are updated using rules which
are derived from a pre-defined (fixed) task inter-

action matrix. This interaction matrix defines the
different learning rates (η) to be used in the up-
dates rules for different tasks. The weights of K
Pereptrons are stored in a compound weight vec-
tor wT

s = (wT
1,s, . . . , w

T
K,s) ∈ R

Kd, where wj,s ∈ R
d

∀j ∈ {1, . . . ,K}, and s denotes the number of mis-
takes made by the learner so far. The update rules
are as follows:

ws = ws−1 + yt(A ⊗ Id)
−1φt

wj,s = wj,s−1 + ytA
−1
j,it

xt (2.1)

where, ⊗ denotes the Kronecker product and

A−1 =
1

K + 1







2 1 . . . 1
1 2 . . . 1

. . . . . . . . . . . .
1 1 . . . 2









From the above K × K interaction matrix (A−1),
it follows that for j = it, η = 2

K+1 whereas for

tasks j 6= it, η = 1
K+1 . This updates scheme

makes sense since it basically does a fixed, con-
stant update for the current task it but at the
same time also does “half-updates” for the remain-
ing K − 1 tasks, since they are expected to be re-
lated to the current task. The matrix A can be
seen as enforcing co-regularization in the presence
of multiple related learning tasks, an idea also pi-
oneered in the literature on multitask learning for
both batch (Evgeniou et al., 2005) as well as online
setting (Agarwal et al., 2008).

3. Our Approach

Our first contribution is to learn this interaction ma-
trix in an adaptive manner. At each round, our
adaptive interaction matrix is derived by weighing
each entry of the fixed interaction matrix A−1 by
the corresponding entry of the following matrix:

U =








1 1

e||w1−w2||2
. . . 1

e||w1−wK ||2

1

e||w2−w1||2
1 . . . 1

e||w2−wK ||2

. . . . . . . . . . . .
1

e||wK−w1||2
1

e||wK−w2||2
. . . 1








and our modified update rule becomes,

wj,s = wj,s−1 + yt(A
−1
j,it

× Uj,it
)xt (3.1)

Since the interaction matrix is adaptive in our set-
ting, it can also be seen as doing a kind of adaptive

co-regularization, based on the current similarities of
the tasks being learned.

3.1. An Active Learning Extension

Our framework can be easily extended to an ac-
tive learning setting that takes into account the
task relatedness. A näıve active learning strat-
egy could be to use the margin based sampling
for active learning using the randomized technique
of (Cesa-Bianchi et al., 2006). More specifically, the
approach proposed in (Cesa-Bianchi et al., 2006)
uses a sampling probability term p = b/(b + |rit

|)
to decide whether to query the label of an incoming
example it, where rit

is the signed margin of this
example on the hypothesis being learned. The pa-
rameter b is set to a fixed value and dictates how
aggressive the sampling is done. However, this ap-
proach does not exploit the inter-task relatedness in
the presence of multiple tasks. We therefore propose
to use matrix U of task similarity coefficients to set
the sampling parameter b. One way of doing this

would be to set b =
∑

j e−||wit
−wj ||

2

which is nothing

but the sum of the itth row (or column) of the matrix
U . It is easy to see that the expression for b would
take a large value (meaning more aggressive sam-
pling) if the tasks are highly similar, whereas b will
have a small value (moderately aggressive sampling)
if the tasks are not that highly related. Our experi-
ments with this setting are shown in Figure 1(b).

4. Theoretical Results

In this section, we analyze the mistake bound of our
approach and show how the task interaction ma-
trix leads to a mistake bound that is better than
the case of independently trained Perceptrons. The
statement of the theorem below is similar to Theo-
rem 1 of (Cavallanti et al., 2008) with the difference
being the fact that the task interaction matrix now
depends on the weights w = [wT

1 wT
2 . . . wT

K ].

Theorem 4.1. The number of mistakes m made

by our algorithm, run with the interaction matrix B
on any finite sequence (φ1, y1), (φ2, y2), . . . ∈ R

Kd ×
{−1, 1}, satisfies

m ≤ inf
w∈RKd

(
∑

t∈M

lt(w) +
2(wT B⊗w)

K + 1

+

√

2(wT B⊗w)

K + 1

∑

t∈M

lt(w)

)

,

where M is the set of mistaken trial indices, and

B⊗ = B⊗I is such that B−1 is an elementwise mul-

tiplication of the fixed matrix A−1 and the weighing

matrix U . .

Proof. Follows along the same lines as
in (Cavallanti et al., 2008)

To show that the above mistake bound is provably
better than independentaly trained Perceptron, we
show the case of K = 2 and d = 2. This is just
for the clarity of exposition. The analysis of cases
of K > 2 are significantly more involved but the
idea remains the same. For K = 2 and d = 2, the

following result holds for wT B⊗w

K+1 :

wT B⊗w

3
=

2

4 − p2

[

||w1||
2 + ||w2||

2 − pwT
1 w2

]

(4.1)

where p = e−||w2−w1||
2

.

Please see the appendix for the proof of the above
result. It is easy to see that, when all tasks are
equal (which for K = 2 means w1 = w2 and
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p = 1), 2/(4 − p2)

[

||w1||
2 + ||w2||

2 − pwT
1 w2

]

<
[

||w1||
2 + ||w2||

2

]

which implies that our mistake

bound for K = 2 is better than the sum of squares
(||w1||

2 + ||w2||
2) based mistake bound for 2 inde-

pendent Perceptrons.

5. Experiments

We compare the following approaches: (a) multitask
Perceptron (Cmtl) (Cavallanti et al., 2008), (b)
multitask Perceptron with active learning (Cmtl-

al), (c) proposed adaptive multitask Perceptron
(Amtl) with an adaptive interaction matrix, (d) our
adaptive multitask Perceptron with active learning
(Amtl-al), (e) single task Perceptron for K inde-
pendent tasks (Stl), based on, (a) classification ac-
curacy, (b) number of labels queried, and (c) total
number of mistakes.

Our preliminary experiments have been conducted
on 20-newsgroups dataset constructed akin to the
way in (Daumé III, 2009) and (Raina et al., 2006)).
We report experimental results on varying propor-
tion of the training data (Fig. 1(a)), with each ex-
periment averaged over 20 runs for random permuta-
tions of the training data order, and standard devi-
ations also reported. Results with full training data
are reported in Table 1.

As we see in Fig. 1(a), Amtl-al achieves the best
classification accuracy followed by Amtl, both of
which are better classification accuracies reported
by Cmtl or Cmtl-al. The results on the number
of mistakes made also depict a similar behavior.

For both Cmtl and Amtl, the active learning based
strategies have similar classification accuracies but
smaller label complexity as compared to their pas-
sive counterparts. Nonetheless, in between the ac-
tive strategies Cmtl-al and Amtl-al, Amtl-al

makes a smaller number of mistakes.

Method Acc (Std) Labels (Std) Mistakes (Std)
Stl 56.65 (±3.70) 10142 (±0) 4817 (±58)

Cmtl 73.42 (±4.42) 10142 (±0) 3233 (±29)
Cmtl-al 73.59 (±3.28) 9157 (±35) 3050 (±27)
Amtl 75.47 (±2.31) 10142 (±0) 3051 (±28)

Amtl-al 74.77 (±2.17) 9125 (±38) 2893 (±35)
Acc: Accuracy | Std: Standard Deviation

Table 1. Accuracy, label complexity and mistakes of 20-

newsgroups with full training data. Results are averaged
over 20 runs with random data order permutations.

6. Discussion and Future Work

In this paper, we have proposed an adaptive strat-
egy for online multitask learning. Our approach con-
structs an adaptive interaction matrix which quan-
tifies the relatedness among the multiple tasks and
uses this matrix to derive update rules for the vari-
ous tasks. Subsequently, we augment the proposed
adaptive online multitask learning with an active
learning strategy which reduces the label complexity
with marginal loss in accuracy.

Despite their simplicity and empirical success it is
not theoretically apparent why the proposed algo-
rithms perform well. For instance, we note that that
the mistake bounds obtained in our case are weaker
as compared to those of (Cavallanti et al., 2008).
However, empirically we observe smaller number of
mistakes. Theoretically analyzing the superior per-
formance of the proposed adaptive and active online
multitask learning strategies and providing mistake
and regret bounds should be an interesting line of
future work. Moreover, it would be interesting to
investigate alternate forms of the interaction ma-

trix that are more amenable to analyze and lead
to tighter mistake bounds. One point to be noted
here is that we have used the notion of similarity be-
tween tasks as the Euclidean distance between their
weight vectors. This may not always be a correct
notion of task relatedness: for example, two weight
vectors pointing in exact opposite directions would
have a large Euclidean distance whereas they clearly
are very related. Perhaps, a more natural measure
of relatedness would be the complexity of transfor-

mation between the two weight vectors. We are
currently exploring ways of learning such transfor-
mations along with learning the weights, and using
them as the notion of relatedness in the interaction
matrix. The hope is that it would result in improved
performance and easier analysis.

In addition, it can be seen that the current active
learning strategy uses only margin information for
selective sampling. However, the interaction matrix

which relates the different tasks provides useful in-
sights into which instances are more useful than the
others. It would be interesting to design active learn-
ing strategies that extract useful information from
the interaction matrix in order to query the labels
of the most informative samples.
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Figure 1. (a) Accuracy, (b) Label-complexity, (c) Number of mistakes for 20-newsgroups with varying training data.
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Appendix

Proof. [Result 4.1] We derive the expression of wT B⊗w
for the simple case of K = 2 and d = 2.

Our proposed matrices are,

B−1 = A−1 ⊙ U =

"

2 1

e
||w1−w2||2

1

e
||w2−w1||2

2

#

which when inverted would give

B =
3

4 − e−2||w2−w1||2

"

2 − 1

e
||w1−w2||2

− 1

e
||w2−w1||2

2

#

Susbtituting, e−||w2−w1||
2

= p, we have:

B =
3

4 − p2

»

2 −p
−p 2

–

where, w1 = [w11w12]
T , w2 = [w21w22]

T and wT =
[wT

1 wT

2 ] (for K = d = 2). Now, using:

B⊗ =

2

6

4

2 0 −p 0
0 2 0 −p
−p 0 2 0
0 p 0 2

3

7

5

Now, we compute,

wT B⊗w

=
3

4 − p2

ˆ

w11 w12 w21 w22

˜

2

6

4

2w11 − pw21

2w12 − pw22

−pw11 + 2w21

−pw12 + 2w22

3

7

5

=
3

4 − p2

»

w11(2w11 − pw21) + w12(−pw12 + 2w22)

+ w21(2w11 − pw21) + w22(−pw12 + 2w22)

–

=
3

4 − p2

»

||w1||
2 + ||w2||

2

+ w11(w11 − pw21) + w12(−pw12 + w22)

+ w21(w11 − pw21) + w22(−pw12 + w22)

–

=
3

4 − p2

» 2
X

1

||wi||
2 + (w2

11 − 2pw11w21 + w2

21)

+ (w2

12 − 2pw12w22 + w2

22)

–

=
3

4 − p2

»

2||w1||
2 + 2||w2||

2 − 2pwT

1 w2

–

We have,

wT B⊗w =
3

4 − p2

»

2||w1||
2 + 2||w2||

2 − 2pwT

1 w2

–

=⇒
wT B⊗w

3
=

2

4 − p2

»

||w1||
2 + ||w2||

2 − pwT

1 w2

–

(6.1)

The result follows.

For K = 2, the value of wT A⊗w/(K + 1)
from (Cavallanti et al., 2008) can also be expressed as,

wT A⊗w

3
=

2

3

»

||w1||
2 + ||w2||

2 − w1w2

–

(6.2)

Comparing Eq. 6.1 with Eq. 6.2, we notice that both are
essentially the same for p = 1.

Similar analysis hold for higher values of K and d but
much more involved. We skip the details for simplicity.
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