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Abstract

We present an approach to semi-supervised learn-
ing based on an exponential family characteriza-
tion. Our approach generalizes previous work on
coupled priors for hybrid generative/discriminative
models. Our model is more flexible and natural
than previous approaches. Experimental results on
several data sets show that our approach also per-
forms better in practice.

1 Introduction
Labeled data on which to train machine learning algorithms
is often scarce or expensive. This has led to significant in-
terest in semi-supervised learning methods that can take ad-
vantage of unlabeled data[Cozmanet al., 2003; Zhu, 2005].
While it is straightforward to integrate unlabeled data in a
generative learning framework[Nigam et al., 2000], it is
not so in a discriminative framework. Unfortunately, it is
well-known both empirically and theoretically[Ng and Jor-
dan, 2002] that discriminative approaches tend to outperform
generative approaches when there is enough labeled data.
This has led to many recent developments inhybrid genera-
tive/discriminative models that are able to leverage the power
of both frameworks (see Section 4). One particular such ex-
ample is the work of Lasserre et al.[2006], who describe a
hybrid framework (“PCP”) in which a generative model and
discriminative model are jointly estimated, using aprior that
encourages them to have similar parameters.

In this paper, we generalize theparameter coupling prior1

(PCP) method[Lasserreet al., 2006] to arbitrary distributions
belonging to theexponential family. Unlike the PCP method,
we do not restrict ourselves to theGaussian prior, but in-
stead choose a prior that is natural to the model. Other au-
thors[Bouchard, 2007] have also noted the inappropriateness
of the Gaussian prior to couple the generative and discrim-
inative models. Our resulting approach for hybridizing dis-
criminative and generative models is: (1) not restricted toa
particular class of the models; (2) more flexible in choosing

1Termsparameter coupling priorandcoupled priorwere intro-
duced in[Druck et al., 2007] and do not appear in[Lasserreet al.,
2006] though they refer to the framework introduced in[Lasserreet
al., 2006].

the way these two models can be combined; (3) enables us to
achieve a closed form solution for the generative parameters,
unlike PCP method, where one has to resort to the numeri-
cal optimization. We demonstrate our framework on using a
Beta/Binomial conjugate pair on the text categorization prob-
lems addressed by Druck et al.[2007].

2 Background
In general, machine learning approaches to classification can
be divided into two categories:generative approachesand
discriminative approaches. Generative approaches assume
that the data is generated though an underlying process. One
simple example is document categorization: for each exam-
ple (x, y), we first choose a categoryy, and then produce a
documentx conditioned on the categoryy. The goal in gener-
ative modeling is to approximate the joint distributionp(x, y)
that represents this process. On the other hand, discrimina-
tive approaches do not assume any underlying process and
directly model the probability of category given the document
p(y|x). Ng and Jordan[2002] compare these two approaches
and show that while discriminative models are asymptotically
better than generative models, generative models need less
data to train.

In semi-supervised settings, one has access to lots of un-
labeled data but only a small amount of labeled data. It is
easy to see that unlabeled data is not directly useful in a
discriminative setting but can be easily used in generative
setting. However, since discriminative methods asymptoti-
cally tend to outperform generative methods[Ng and Jordan,
2002], this naturally leads to combining these two approaches
and building a hybrid model that does better than the indi-
vidual models. Earlier work[Bouchard and Triggs, 2004;
Lasserreet al., 2006; Drucket al., 2007] has shown the ef-
ficacy of the hybrid approach.

2.1 Exponential Family and Conjugate Priors

For the sake of completeness, we briefly define the exponen-
tial family which we will use as the basis of our hybrid model.
The exponential family is a set of distributions whose prob-
ability density function2 can be expressed in the following

2“Density” can be replaced by “mass” in the case of discrete ran-
dom variable.



form:

f(x; θ) = h(x) exp(〈η(θ)T (x)〉 − A(θ)) (1)

HereT (x) is sufficient statistics,η(θ) is a function of natu-
ral parametersθ, andA(θ) is a normalization constant (also
known aslog-partition function).

One important property of the exponential family is the ex-
istence of conjugate priors. Given any member of the expo-
nential family in Eq (1), theconjugate prioris a distribution
over itsparameterswith the following form:

p(θ|α, β) = m(α, β) exp(〈η(θ), α〉 − βA(θ))

Here〈a, b〉 denotes the dot product of vectorsa andb. Both
α andβ are hyperparameters of the conjugate prior. Impor-
tantly, functionA(·) is the same between the exponential fam-
ily member and the conjugate prior.

A second important property of the exponential family is
the relationship between the log-partition functionA(θ) and
the sufficient statistics. In particular, we have:

∂A

∂θ
= Eθ [T (x)] (2)

2.2 Hybrid Model with Coupled Prior
We first define the problem and some of the notations that we
will use through-out the paper. Our task is to learn a model
that predicts a labely given an examplex. We are given
the dataD = DL ∪ DU whereDL represents the labeled
data andDU represents the unlabeled data. Each instance
of the labeled data consists of a pair(x, y) wherex is fea-
ture vector andy is the corresponding label. Each instance
of unlabeled data consists of only feature vectorx. Thexs
areM -dimensional feature vectors, andxd denotes thedth

feature.
We now give a brief overview of the hybrid model pre-

sented by Lasserre et al.[2006]. The hybrid model is a mix-
ture of discriminative and generative components, both of
which have separate sets of parameters. These two sets of
parameters (hence two models) are combined using a prior
calledcoupled prior. Considering only one data point (the
extension to multiple data points is straightforward and pre-
sented later), the model is defined as follows:

p(x, y, θ, θ̃) = p(θ̃, θ)p(y|x, θ)p(x|θ̃)

= p(θ̃, θ)p(y|x, θ)
∑

y′

p(x, y′|θ̃)

Hereθ is a set of discriminative parameters,θ̃ a set of gen-
erative parameters, andp(θ̃, θ) provides the natural coupling
between these two sets of parameters.p(y|x, θ) is the dis-
criminative component;p(x|θ̃) =

∑

y′ p(x, y′|θ̃) is the gen-
erative component.

The most important aspect of this model is thecoupled
prior p(θ̃, θ), which interpolates the hybrid model between
two extremes; generative model whenθ = θ̃ and discrimina-
tive whenθ is independent of̃θ. In other cases, the goal of the
coupled prior is to encourage the generative model and the
discriminative model to have similar parameters. In earlier

work [Lasserreet al., 2006; Drucket al., 2007], a Gaussian
prior was used as the coupled prior:

p(θ̃, θ) ∝ exp
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Unfortunately, the Gaussian prior is not always appropriate
[Bouchard, 2007].

3 Exponential Family Hybrid Model
In this section, we provide a more general prior for the hybrid
model that is not only mathematically convenient but also al-
lows choosing a problem specific prior.

3.1 Exponential Family Generalization
First, we generalize the hybrid model defined in Section 2.2
for the distributions that come from the exponential family.
In other words, all of the distributions (generative, discrim-
inative and coupled prior) of the generalized hybrid model
belong to the exponential family. We first provide the def-
initions of discriminative and generative models in terms of
exponential family.

Generative model:
p(x, y|θ̃) = h(x, y) exp(〈θ̃, T (x, y)〉 − A(θ̃)) (3)

Discriminative model:
p(y|x, θ) = g(y) exp(〈θ, T (x, y)〉 − B(θ,x)) (4)

Next, we break the coupled priorp(θ̃, θ) into two parts;
an independent prior on the discriminative parametersp(θ)
and a prior on the generative parameters given discriminative
parametersp(θ̃|θ). This formulation lets us model the depen-
dency of the generative component over the discriminative
component. Our new hybrid model is now defined as:

p(x, y, θ, θ̃) =
h

p(θ)p(y|x, θ)
i

p(θ̃|θ)
h

X

y′

p(x, y
′|θ̃)

i

(5)

For convenience and interpretability (later we will show that
it also improves the performance), we choose the coupled
prior p(θ̃|θ) to be conjugate with the generative model.

Conjugate prior:

p(θ̃|θ) = m(θ) exp(〈θ̃, α(θ)〉 − β(θ)A(θ̃)) (6)
Here,α(·) andβ(·) are user-defined functions that map the
discriminative parametersθ into hyperparameters for the con-
jugate prior. We discuss suitable choices of these functions in
Section 3.4.

Substituting the exponential definitions of generative
model Eq (3), discriminative model Eq (4), and coupled prior
Eq (6) in Eq (5), and taking a log, we obtain a log joint prob-
ability of data and parameters:

L = log p(x, y, θ, θ̃) = (7)

log p(θ) +

log m(θ) + 〈θ̃α(θ)〉 − β(θ)A(θ̃) +

log g(y) +
∑

(x,y)∈DL

[

〈θ, T (x, y)〉 − B(θ,x)
]

+

∑

x∈D

log
∑

y′

[

h(x, y′) exp(〈θ̃, T (x, y′)〉 − A(θ̃))
]



Note that here discriminative part is defined only for labeled
data while generative part is defined for both labeled and un-
labeled data.

3.2 Parameter Optimization
We perform parameter optimization by a coordinate descent
method, alternating between optimizing the discriminative
parametersθ and optimizing the generative parametersθ̃.

For the generative parameters, we take the partial deriva-
tive of the log probability in Eq (7) with respect tõθ:

∂L

∂θ̃
= α(θ) − β(θ)A′(θ̃) +

X

x∈D

X

y′

p(y′|x, θ̃)(T (x, y
′) − A

′(θ̃))

Here,p(y′|x, θ̃) is the probability based on the parameters
estimated in the last iterationp(y′|x, θ̃old). Substituting this
in the above equation and setting it equal to zero, we obtain:

A
′(θ̃) =

P

x∈D

P

y′ p(y′|x, θ̃old)T (x, y′) + α(θ)

N + β(θ)

=
Êx∼D Ey∼θ̃old

(T (x, y′)) + α(θ)

N + β(θ)
(8)

HereA′(θ̃) denotes the partial derivative ofA(θ̃) with re-
spect toθ̃. As discussed in Section 1, choosing a conjugate
prior gives us a closed form solution forA′(θ̃). From Eq (2),
we know thatA′(θ̃) is equivalent to the expected sufficient
statistics of the generative model.

Having solved for the generative parametersθ̃, we now
solve the hybrid model for discriminative parametersθ.

∂L

∂θ
=

∂ log p(θ)

∂θ
+

∂ log m(θ)

∂θ
+ θ̃α

′(θ) −

β
′(θ)A(θ̃) +

X

(x,y)∈DL

(T (y,x) − B
′(θ,x)) (9)

There is no closed form solution to the above expression
therefore we solve it using numerical methods. In our im-
plementation, we use stochastic gradient descent.

3.3 Hybrid Multiple Binomial Model
In this section, we see how this hybrid model can be applied
in practice. We first choose a generative model that is suitable
to our application. We next choose the coupled prior conju-
gate to the generative model. Since later on, we intend to use
the hybrid model for the document classification task, we use
anaive Bayes3 (NB) model for the generative part andlogistic
regressionfor the discriminative part, akin to the study of Ng
and Jordan[2002]. The generative part of our model (naive
Bayes) is given by:

p(y,x|π, v) = p(y|π)p(x|y, v)

=
∏

k

π
1{y=k}

k

∏

d

vxd

yd (1 − vyd)
1−xd (10)

3It should be noted that “naive Bayes” classifiers come into (at
least) two different versions: the “multivariate Bernoulli version”
and the “multinomial version”[McCallum and Nigam, 1998]. Be-
cause of its generality, in our implementation, we use multivariate
Bernoulli.

Here,
∑

y′ πy′ = 1 and0 ≤ vyd ≤ 1. 1{y=k} is an indicator
function that takes value1 if y = k and0 otherwise.

The discriminative part is:

p(y|x, w, b) =
1

Zx

exp
(

by +
∑

d

xdwyd

)

(11)

WhereZx =
∑

y′ exp
(

by′ +
∑

d xdwy′d

)

is a normaliza-
tion constant. Note here that since these models form genera-
tive/discriminative pair, number of parameters is same in both
models. It is easy to see that there is one-to-one relationship
between these two sets of parameters.by in the discriminative
model behaves similar toπy in the generative model, andwyd

behaves similar tovyd. Sincewyd andvyd are the parameters
that capture most of the information, we use coupled prior
to couple these sets of parameters and do not coupleby and
πy. It is important to note the difference between the canoni-
cal parameters of the exponential family representation ofthe
model and the mean parameters. In the generative(or discrim-
inative) model,̃θyd (or θyd) denote the canonical parameters
while vyd (or wyd) denote the mean parameters.

Having defined the appropriate discriminative and gener-
ative models, now we can get equivalent exponential family
forms of these models. First we show the exponential form
of the generative model. The generative model in Eq (10)
can be broken into two parts: one is class probabilityp(y|π)
and other class conditional probabilityp(x|y, v). Since the
parameters of these distributions are independent, we can get
their exponential representations separately. Considering the
class conditional probability for one feature, Eq (10) can be
written in the following form:

p(xd|y, vyd) = exp

„

xd log
vyd

1 − vyd

+ log(1 − vyd)

«

Comparing this with Eq (3) gives̃θyd = log
vyd

1−vyd
;

A(θ̃yd) = log(1+eθ̃yd) andT (y,x) = xd. Substituting these
along with the appropriate conjugate prior in Eq (8) gives us
a closed form solution forA′(θ̃yd), which, in the naive Bayes
model is equal tovyd.

A
′(θ̃yd) = vyd =

P

x∈D
p(y|x, θ̃old)xd + α(θ)

N + β(θ)
(12)

In other words,vyd is the normalized expected count of the
dth feature in classy, with smoothing parameters that are
controlled by the coupled prior hyperparametersα(θ) and
β(θ).

Next we solve forπy by directly optimizing the objective
function Eq (10) with respect toπy with the given constraints.

This gives usπy =
P

x∈D
p(y|x,θ̃old)

N
which is the normalized

expected number of examples in classy.
Having solved for generative parameters, we now solve for

the discriminative parameters. Ideally, we would like to first
get an equivalent exponential form of Eq (11) and then solve
it using Eq (9). Since Eq (9) is only defined for discriminative
parameters that are coupled (w), we can not use Eq (9) unless
we break Eq (11) into two exponential forms separate forw
andb and, it is not clear how to do so. Therefore, we solve for
discriminative parameters directly, without converting them
into exponential form. It is important to note here that mean



parametersw in Eq (11) is equal to the canonical parameters
θyd. We place Gaussian priorp(θ) = N(θ|0, σ2) on w = θ
and an improper uniform prior onb. Taking derivatives, we
obtain:

∂L

∂wyd

= −
w

σ2
+

∂ log m(wyd)

∂wyd

+ 〈θ̃ydα
′(wyd)〉 − β

′(wyd)A(θ̃yd)

+
X

(x,y′)∈DL

n

1{xd=1} −
1

Zx

exp(by′ +
X

d

xdwy′d)1{xd=1}

o

∂L

∂by

=
X

(x,y′)∈DL

n

1{y=y′} −
1

Zx

exp(by +
X

d

xdwyd)
o

3.4 Conjugate Beta Prior

Recall that our conjugate prior crucially depends on two func-
tions:α(θ) andβ(θ) that “convert” the discriminative param-
etersθ into a prior on the generative parametersp(θ̃|θ). In the
case of the binomial likelihood, the conjugate prior is Beta.
Exponential form of Beta prior is defined as:

p(θ̃yd|θyd) = m(θyd) exp(θ̃ydα(θyd) − β(θyd)A(θ̃yd))

Where m(θyd) =
Γ(β(θ̃yd)+2)

Γ(α(θ̃yd)+1)Γ(β(θyd)−α(θyd)+1)
and

A(θ̃yd = log(1 + eθ̃yd).
We select the functionα(θyd) andβ(θyd) to be such that:

(1) themodeof the conjugate prior isθyd and (2) thevari-
anceof the conjugate prior is controllable by the hyperpa-
rameterγ. As noted from Figure 1, asγ goes to∞, vari-
ance goes to0 and prior forces generative parameters to
be equal to the discriminative parameters (pure generative
model) and asγ goes to0, variance goes to∞ which im-
plies the independence between generative and discrimina-
tive parameters (pure discriminative model). Other valuesof
γ interpolate between these two extremes. Thus, we choose
α(θyd) = γ/(1 + e−θyd) andβ(θyd) = γ. This gives mode
of p(θ̃yd|θyd) at θyd with the variance that decreases inγ, as
desired.

It is important to note that our choice of hyperparam-
eters for the conjugate prior is not specific to this exam-
ple, but holds true in general. In the general case, letA
be the log-partition function associated with the generative
model, then, the conjugate prior hyperparameters should be
α(θ) = γA′(θ) andβ(θ) = γ. This gives us the mode of con-
jugate prior atθ with the variance that decreases inγ. In the
beta/binomial hybrid model,A′(θ) = A′(w) = 1/(1+ e−w).
Also note that in the beta/binomial example,A′(θ) is also the
functionT that converts the discriminative mean parameters
w to the generative mean parametersv.

In Figure 1, we also compare the Beta prior (solid blue
curves) to an “equivalent” logistic-Normal prior (dashed
black curves) for four settings ofγ. The logistic-Normal is
parameterized to have the same mode and variance as the
Beta prior. As we can see, for high values ofγ (wherein the
model is essentially generative), the two behave quite simi-
larly. However, for more moderate settings ofγ, the priors
are qualitatively quite different.
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Figure 1: Effect of gamma on the Beta prior (solid curve) and
logistic-Normal prior (dashed curve) for gamma=0.1, 1, 10,
100 (top-left, top-right, bottom-left, bottom-right) andfor the
transformed discriminative parameterT (w) = 0.2

4 Related Work

There have been a number of efforts to combine generative
and discriminative models to obtain a hybrid model that per-
forms better than either individually. Some of the earlier
works [Rainaet al., 2003; Bouchard and Triggs, 2004] use
completely different approaches to hybridize these models;
Raina et al.[2003] present a model for the document classifi-
cation task where a document is split into multiple regions
and complementary properties of generative/discriminative
models are exploited by training a large set of the parameters
generatively and only a small set of parameters discrimina-
tively. Bouchard and Triggs[2004] build a hybrid model by
taking a linear combination of generative and discriminative
model. This model is similar to the multi-conditional learn-
ing model presented by McCallum et al.[2006]. Jaakkola and
Haussler[1999] describe a scheme in which the kernel of a
discriminative classifier is extracted from a generative model.
Though these models have shown to perform better than just
the discriminative or generative model, none of them combine
the hybrid model in natural way.

Our work builds on the work of Lasserre et al.[2006]
and Druck et al.[2007], which are discussed in Section 2.2.
Along these lines, Fujino et al.[2007] present another hy-
brid approach where a generative model is trained using a
small number of labeled examples. Since the generative
model has high bias, a generative “bias-correction” model is
trained in a discriminative manner to discriminatively com-
bine the bias-correction model with the generative model.
Most of these work focus on the application and little on
the theory of the hybrid model. There has been a recent
work by Bouchard[2007] that presents a unified framework
for the “PCP” model and the “convex-combination” model
[Bouchard and Triggs, 2004], and proves performance prop-
erties.



No. of
Dataset Features Dataset description

movie 24, 841
classifies the sentiments of the review
of the movies from IMDB aspositive
or negative

webkb 22, 824
classifies webpages from university as
student, course, facultyor project

sraa 77, 494

classifies messages by the news-
group to which they were posted:
simulated-aviation, real-aviation,
simulated-autoracing, real-autoracing

Table 1: Description of the datasets used in the experiments

5 Experiments

5.1 Experimental Setup

In this section, we show empirical results of our approach
and compare them with the existing (and most related to our
method) state-of-the-art semi-supervised methods[Druck et
al., 2007]. In order to have a fair comparison, we use ex-
perimental setup of Druck et al.[2007] and perform experi-
ments only for the datasets where PCP model have shown to
perform best, There are three such datasets:movie, sraaand
webkb. Description of these datasets is given in Table 1.

Although all of the examples in these datasets are labeled,
we perform experiments by taking a subset of dataset as la-
beled and treating the rest of the examples as unlabeled. We
use either10 or 25 labeled examples from each class and vary
unlabeled examples from0 to a maximum of1000. Number
of unlabeled examples are same in each class. We show our
results for two sets of experiments: (1) we show how per-
formance varies as we vary the number of unlabeled exam-
ples; (2) we show how performance varies with respect toλ.
Hereλ normalizes theγ ∈ [∞, 0] in the range of[0, 1] using
γ = ((1−λ)/λ)2. Nowλ = 0 corresponds to the pure gener-
ative case whileλ = 1 corresponds to the pure discriminative
case. As in the work of Druck et al.[2007], the success of
the semi-supervised learning depends on the quality of the la-
beled examples, therefore we choose five random labeled sets
and report the average on them. In our results, we report the
percentage classification accuracy which is the ratio of num-
ber of examples correctly classified to the total number of test
examples.

5.2 Results and Discussion

Results on the above mentioned three datasets are presented
in Table 2. Table shows the results for the PCP model with the
Gaussian prior (PCP-Gauss) and with the Beta prior (PCP-
Beta). Since PCP-Beta uses the binomial version of NB,
we reimplemented the PCP-Gaussfor the binomial version of
NB and compare the results with it. Though we also show
the results for PCP-Gauss multinomial[Druck et al., 2007],
a fair comparison would be to compare only binomial mod-
els. %change is the change in PCP-Beta with respect to the
PCP-Gauss binomial version. As we see, PCP-Beta performs
better than PCP-Gauss binomial in all experiments and bet-
ter than PCP-Gauss multinomial in all experiments except

pcp-Gauss pcp-Gauss pcp-Beta %
Dataset Mult Bin Bin change

movie (10) 64.6 63.4 (3.2) 68.3 (5.5) +7.7%
movie (25) 68.6 69.0 (1.5) 76.7 (1.2) +11.1%
webkb (10) 72.5 73.7 (3.7) 75.3 (2.9) +2.2%
webkb (25) 76.7 83.8 (1.3) 83.9 (1.6) +1.1%
sraa (10) 81.6 67.7 (6.8) 79.1 (4.0) +16.8%
sraa (25) 84.1 76.6 (3.5) 86.1 (1.0) +12.4%

Table 2: Comparative results for pcp with Gaussian prior and
pcp with Beta prior. Parenthesized values denote the number
of labeled examples per class and the standard deviation

sraa(10). Compared to PCP-Gauss binomial, PCP-Beta per-
forms significantly better on sraa and movie datasets.

Comparing multinomial and binomial versions of PCP-
Gauss, we see that for movie and webkbb datasets, binomial
version perform better (or almost equal) than the multinomial
while for sraa dataset, multinomial performs better. We con-
jecture that reason for this behavior could be because sraa
has a large number of features and feature independence as-
sumption is less violated in multinomial NB than in binomial
NB. When datasets do not have too many features, binomial
version tend to perform better because binomial NB accounts
for both presence and absence of the features, in contrast to
multinomial NB which only accounts for the presence of the
features.

Figure 2 and Figure 3 show the results for accuracy vs.
λ for different number of unlabeled examples forsraa and
moviedatasets respectively. Remember thatλ = 0 is the
purely generative model andλ = 1 is the purely discrim-
inative model. In both of these figures, we see that as we
increase the number of unlabeled examples, performance im-
proves. Insraa, we observe that increasing the number of
unlabeled examples results in the shifting of optimalλ (λ∗)
towards rights. We get an optimalλ∗ = 0.2 for a fully su-
pervised model while for1000 unlabeled examples, we get
λ∗ = 0.5. All the curves in this experiment are uni-modal
which means that there is a unique value ofλ where hybrid
model performs best.

Unfortunately, these nearly-perfectly shaped curves are not
common to all settings. We do not observe it in the other
dataset (Figure 3). There are values ofλ where a fully su-
pervised model performs better than the best semi-supervised
model. This experiment emphasizes the need for choosing the
right value ofλ and also shows the importance of the hybrid
model. If we do not choose the right value ofλ, we might
end up hurting the model by using the unlabeled data. We
also observe thatmoviedataset gives us a bi-modal curve in
contrast to the uni-modal curve obtained in thesraa. We see
that curve is a uni-modal in the supervised setting but as we
introduce unlabeled examples, the curves not only become
bi-modal but also shift towards the left-hand side (best accu-
racy is achieved close to the generative end). This naturally
suggests that generative model is actually affecting the hybrid
model in a positive manner and exploiting the strength of the
unlabeled examples.
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Figure 2: Results for sraa dataset for different number of un-
labeled examples. Number of labeled examples=10.

6 Conclusion and Future Work
We have presented a generalized “PCP” hybrid model for
the exponential family distributions and have experimentally
shown that the prior conjugate to the generative model is more
appropriate than the Gaussian prior. In addition to the perfor-
mance advantage, the conjugate prior also gives us a closed
form solution for the generative parameters. In the future,
we aim at interpreting these results in a theoretical way and
answer questions like: (1) Under what conditions will the hy-
brid model perform better than both the generative and dis-
criminative models? (2) What is the optimal value ofγ? (3)
Is a PAC-style analysis of the hybrid model possible for the
finite sample case as opposed the asymptotic analysis mostly
found in the literature?
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