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Abstract the way these two models can be combined; (3) enables us to

) ) achieve a closed form solution for the generative pararseter
We present an approach to semi-supervised learn- | njike PCP method, where one has to resort to the numeri-

ing based on an exponential family characteriza- ¢4 optimization. We demonstrate our framework on using a
tion. Our approach generalizes previous work on  Beta/Binomial conjugate pair on the text categorizatiabpr
coupled priors for hybrid generative/discriminative lems addressed by Druck et E2007.

models. Our model is more flexible and natural
than previous approaches. Experimental results on
several data sets show that our approach also per- 2 Background

forms better in practice. In general, machine learning approaches to classification ¢
be divided into two categorieggenerative approachesnd
: discriminative approaches Generative approaches assume

1 Introduction that the data is generated though an underlying process. One
Labeled data on which to train machine learning algorithmssimple example is document categorization: for each exam-
is often scarce or expensive. This has led to significant inple (x, ), we first choose a categogy and then produce a
terest in semi-supervised learning methods that can take adocumenk conditioned on the categogy The goal in gener-
vantage of unlabeled dat&@ozmaret al, 2003; Zhu, 2005 ative modeling is to approximate the joint distributipix, /)
While it is straightforward to integrate unlabeled data in athat represents this process. On the other hand, discrimina
generative learning frameworfNigam et al, 2004, it is  tive approaches do not assume any underlying process and
not so in a discriminative framework. Unfortunately, it is directly model the probability of category given the docunine
well-known both empirically and theoreticalljNg and Jor- p(y|x). Ng and Jordaf2004 compare these two approaches
dan, 2002 that discriminative approaches tend to outperformand show that while discriminative models are asymptdtical
generative approaches when there is enough labeled datsetter than generative models, generative models need less
This has led to many recent developmentbybrid genera-  data to train.
tive/discriminative models that are able to leverage thegyo In semi-supervised settings, one has access to lots of un-
of both frameworks (see Section 4). One particular such eXtabeled data but only a small amount of labeled data. It is
ample is the work of Lasserre et $2006, who describe a easy to see that unlabeled data is not directly useful in a
hybrid framework (“PCP") in which a generative model and discriminative setting but can be easily used in generative
discriminative model are jointly estimated, usingréor that  setting. However, since discriminative methods asymptoti
encourages them to have similar parameters. cally tend to outperform generative methgbdlg and Jordan,

In this paper, we generalize tp@rameter coupling prior 2003, this naturally leads to combining these two approaches
(PCP) methodlLasserreet al, 2004 to arbitrary distributions  and building a hybrid model that does better than the indi-
belonging to thexponential familyUnlike the PCP method, vidual models. Earlier worfBouchard and Triggs, 2004;
we do not restrict ourselves to ti@aussian prioy but in- | asserreet al, 2006; Drucket al, 2007 has shown the ef-
stead choose a prior that is natural to the model. Other atficacy of the hybrid approach.
thors[Bouchard, 2007have also noted the inappropriateness

of the Gaussian prior to couple the generative and discrim2.1  Exponential Family and Conjugate Priors

inative models. Our resulting approach for hybridizing-dis . .
criminative and generative models is: (1) not restricted to For the_sake_of comp_leteness, we bm_—zfly define th? exponen-
tial family which we will use as the basis of our hybrid model.

particular class of the models; (2) more flexible in ChOOSingThe exponential family is a set of distributions whose prob-

Termsparameter coupling prioandcoupled priorwere intro-  ability density functiod can be expressed in the following
duced in[Druck et al,, 2007 and do not appear ifLasserreet al,, -
2004 though they refer to the framework introduced lirasserreet 2Density” can be replaced by “mass” in the case of discrete ra
al., 2004. dom variable.



form: work [Lasserreet al, 2006; Drucket al, 2007, a Gaussian
rior was used as the coupled prior:
F(x:0) = h(x) exp((nO)T(x)) — A®) (@) eep

- 1 11~ 2
HereT'(x) is sufficient statisticsy(6) is a function of natu- p(6,0) o exp {_ﬁ H@ B QH ]
ral parameterd, andA(f) is a normalization constant (also ynfortunately, the Gaussian prior is not always approgriat
known adog-partition functior). [Bouchard, 2007
One important property of the exponential family is the ex- ’ '

istence of conjugate priors. Given any member of the exposg Exponential Family Hybrid Model
nential family in Eq (1), theonjugate prioris a distribution

over itsparameterswith the following form: In this section, we provide a more general prior for the hybri
model that is not only mathematically convenient but also al
p(0la, B) = m(a, B) exp((n(0),a) — BA(0)) lows choosing a problem specific prior.

Here (a, b) denotes the dot product of vectarandb. Both 3.1 Exponential Family Generalization

o and3 are hyperparameters of the conjugate prior. Imporirst, we generalize the hybrid model defined in Section 2.2
tantly, functionA(-) is the same between the exponential fam-for the distributions that come from the exponential family
ily member and the conjugate prior. _ _In other words, all of the distributions (generative, diiser

A second important property of the exponential family is jnative and coupled prior) of the generalized hybrid model
the relationship between the log-partition functid(¥) and  pelong to the exponential family. We first provide the def-

the sufficient statistics. In particular, we have: initions of discriminative and generative models in terrfiis o
oA exponential family.
=y [T(x)] @) |
Generative model:
2.2 Hybrid Model with Coupled Prior p(x,yl0) = h(x,y) exp((6, T(x,y)) — A(B))  (3)
We first define the problem and some of the notations that w®iscriminative model:
will use through-out the paper. Our task is to learn a model plylx,0) = g(y) exp({6, T(x,y)) — B(6,x)) (4)

that predicts a labe) given an examplec. We are given TN
the dataD = Dy, U Dy where D, represents the labeled Next, we break the coupled prig(d, 0) into two parts;

: n independent prior on the discriminative paramepéfs
data andDy represents the unlabeled data. Each mstancgnd a prior on the generative parameters given discrimimati
of the labeled data consists of a péi, y) wherex is fea-

ture vector and; is the corresponding label. Each instanceParameters(d|0). This formulation lets us model the depen-
of unlabeled dc{a/ta consists ofponly fegature vestorThe xs dency of the generative component over the discriminative

are M-dimensional feature vectors, arg denotes thel™ component.~Our new hybrid m0d~el 1S now defm?d as:
feature. p(x,,0,0) = [pO)p(lx,0)] p(@10) [ > px'10)]  6)

We now give a brief overview of the hybrid model pre- v
sented by Lasserre et §004. The hybrid model is a mix-  For convenience and interpretability (later we will showtth
ture of discriminative and generative components, both oft also improves the performance), we choose the coupled
which have separate sets of parameters. These two sets Morp(§|9) to be conjugate with the generative model.
parameters (hence two models) are combined using a prior
called coupled prior Considering only one data point (the Conjugate prior:
extension to multiple data points is straightforward anet pr p(0]0) = m(0) exp((0,a(0)) — B(0)A(0)) (6)

sented later), the model is defined as follows: _ .
) Here,«(-) and 3(-) are user-defined functions that map the

p(x,5,0,0) = p(0,0)p(y|x,0)p(x|0) discriminative parametetsinto hyperparameters for the con-
~ ~ jugate prior. We discuss suitable choices of these funsiion
= p(0,0)p(ylx,0) ZP(X, y'10) Section 3.4.
,yl

Substituting the exponential definitions of generative
model Eq (3), discriminative model Eq (4), and coupled prior
Eq (6) in Eq (5), and taking a log, we obtain a log joint prob-
ability of data and parameters:

Hered is a set of discriminative parametefsa set of gen-

erative parameters, amjé, ) provides the natural coupling
between these two sets of parametergy|x, 0) is the dis-

criminative componeny(x|6) = =, p(x,'|6) is the gen- L = logp(x,y,0,0) = @
erative component. log p(¢) +
The most important aspect of this model is #wupled logm(0) + (0a(6)) — B(O)A(6) +
prior p(#,0), which interpolates the hybrid model between
two extremes; generative model whr- 6 and discrimina- logg(y) + Z [<9’ T(x,y)) - B(, X)} +
tive whend is independent of. In other cases, the goal of the (xv)€lr
coupled prior is to encourage the generative model and the Z 1ng [h(x, y) exp((0, T(x,y")) — A(é))}

discriminative model to have similar parameters. In earlie xeD "



Note that here discriminative part is defined only for labele Here,} , m,, = 1 and0 < vyq < 1. 1,y is an indicator
data while generative part is defined for both labeled and unfunction that takes valugif y = k& and0 otherwise.
labeled data. The discriminative part is:

3.2 Parameter Optimization 1
We perform parameter optimization by a coordinate descent plylx,w, ) Zx b (by * zd:deyd) 1)
method, alternating between optimizing the discrimirativ
parameters and optimizing the generative parameters Where Z, = 3, exp (b, + > X4wya) is @ normaliza-
For the generative parameters, we take the partial derivaion constant. Note here that since these models form genera
tive of the log probability in Eq (7) with respect to tive/discriminative pair, number of parameters is sameii b
oL L models. It is easy to see that there is one-to-one relatipnsh
25 = O -806A0)+ between these two sets of parametéysn the discriminative
L , L model behaves similar to, in the generative model, and,q
Z ZP(?J I, 0)(T (x,y") — A(0)) behaves similar to, 4. Sincew,q andv,q are the parameters
xeD o that capture most of the information, we use coupled prior

Here, p(y'|x, 6) is the probability based on the parametersto couple these sets of parameters and do not caypied

estimated in the last iteratigr{y’|x, 6,,¢). Substituting this - Itis important to note the difference between the canoni-
in the above equation and setting it equal to zero, we obtain<al parameters of the exponential family representatidhef
B , model and the mean parameters. In the generative(or discrim
. > oxen 2oy PY'1X,001a)T(x,y") + (0)

AG) = inative) model,éyd (or 644) denote the canonical parameters
N +5(9) while v,4 (or w,q) denote the mean parameters.
Exb E,.5,,,(T(xy") + a0) Having defined the appropriate discriminative and gener-

= N 130 (8)  ative models, now we can get equivalent exponential family
~ +500) ~ forms of these models. First we show the exponential form
Here A’(9) denotes the partial derivative of(9) with re-  of the generative model. The generative model in Eq (10)

7] ; ; ; ; ; an be broken into two parts: one is class probabjlity )
spect tof. As discussed in Section 1, choosing a conjugatéénd other class conditional probabilityx|y, v). Since the

prior gives us a closed form solution faf (¢). From Eq (2),  parameters of these distributions are independent, weetan g
we know thatA’(6) is equivalent to the expected sufficient their exponential representations separately. Consigéhie
statistics of the generative model. class conditional probability for one feature, Eq (10) can b

Having solved for the generative parametérswe now  Written in the following form:
solve the hybrid model for discriminative parametérs

Vyd
L dlogp(0)  dlogm(0) ;. pxaly, vya) = exp <Xd log 7, Tlos(1 = ”yd)>
o = oo ag 000 o " .
8 (0)A®0) + Z (T(y,x) — B'(6,x)) (9) Comparing this with Eq (3) gived,q = log ﬁ;
(xy)eDL A(Bya) = log(1+e%) andT (y, x) = x4. Substituting these

There is no closed form solution to the above expressiolong with the appropriate conjugate prior in Eq (8) gives us
therefore we solve it using numerical methods. In our im-a closed form solution fod’(6,4), which, in the naive Bayes
plementation, we use stochastic gradient descent. model is equal ta, .

3.3 Hybrid Multiple Binomial Model
In this section, we see how this hybrid model can be applied N+ 3(0)
in practice. We first choose a generative model that is deitab In other wordsy, , is the normalized expected count of the

to our application. We next choose the coupled prior conju-, , feature in class, with smoothing parameters that are

gate to the generative model. Since later on, we intend to us ;
the hybrid model for the document classification task, we us (()n)trolled by the coupled prior hyperparametars) and

anaive Baye$(NB) model for the generative part atugjistic
regressiorfor the discriminative part, akin to the study of Ng fu
and Jordari2004. The generative part of our model (naive
Bayes) is given by: This gives usr, = which is the normalized
_ expected number of examples in class

plyxImv) = plylmp(xly, v) Having solved for generative parameters, we now solve for

= H Wi{y:k} vag(l — vyd)1*Xd(1o) the discriminative parameters. Ideally, we would like tstfir
k d

> wen PYIX, Oora)xa + (0)

(12)

A/(éyd) = Uyd =

Next we solve forr, by directly optimizing the objective
nction Eq (10) with respect to, with the given constraints.
Zx€D p(y|x7éold)

get an equivalent exponential form of Eq (11) and then solve
- itusing Eq (9). Since Eq (9) is only defined for discriminativ
%It should be noted that “naive Bayes” classifiers come into (a parameters that are coupled)(we can not use Eq (9) unless
least) two different versions: the “multivariate Bernowlersion”  we break Eq (11) into two exponential forms separateufor
and the “multinomial versionfMcCallum and Nigam, 1998 Be-  andb and, it is not clear how to do so. Therefore, we solve for
cause of its generality, in our implementation, we use waiitate  discriminative parameters directly, without convertihgm
Bernoulli. into exponential form. It is important to note here that mean



parameters in Eq (11) is equal to the canonical parameters
0,q4. We place Gaussian prigd) = N(0]0,0%) onw = 6 B
and an improper uniform prior oh Taking derivatives, we oo1sl - T RN

obtain: ’ .. / .

oL w  O0logm(wyq - . - \
By = o # 4 (Bya0 (wya)) — B (wya) A(Bya) ool L
+ Z {1{"«1:1} - ZL exp(bys + Zxdwy’d)l{xdzl}} % o0z 04 o5 08 % o0z 04 06 08 1
(x,y")eDL x 7
oL 1 0.04 02
3_[311 = Z {1{y:y’} - Z—x eXP(by + Z deyd)} oos N .
(x,y")eDy, 2

0.01

0.01
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3.4 Conjugate Beta Prior ) L

Recall that our conjugate prior crucially depends on twafun
tions: «(#) and3(6) that “convert” the discriminative param-
etersd into a prior on the generative paramete(&|6). In the
case of the binomial likelihood, the conjugate prior is Beta
Exponential form of Beta prior is defined as:

P(0yal0ya) = m(0,a) exp(Byac(0ya) — B(0ya)A(Oya))

_ F(ﬁ(éyd)+2)
T(a(Oya)+ 1) (B(0ya)—c(0ya)+1)

Figure 1: Effect of gamma on the Beta prior (solid curve) and
logistic-Normal prior (dashed curve) for gamma=0.1, 1, 10,
100 (top-left, top-right, bottom-left, bottom-right) afar the
transformed discriminative paramef&fw) = 0.2

Where m(0,q) and

A(Byq = log(1 + eéyd).

4 Related Work

i There have been a number of efforts to combine generative

We select the function(6,) and/3(,4) to be such that:  5nq giscriminative models to obtain a hybrid model that per-
(1) themodeof the conjugate prior i9,q and (2) thevari-  qrmg better than either individually. Some of the earlier
anceof the conjugate prior is controllable by the hyperpa-\,qrks[Rainaet al, 2003: Bouchard and Triggs, 2000dse
rametery. As noted from Figure 1, as goes tooco, vari-  completely different approaches to hybridize these models
ance goes td) and prior forces generative parameters tORaing et al[2003 present a model for the document classifi-
be equal to the discriminative parameters (pure generativgytion task where a document is split into multiple regions
model) and asy goes to0, variance goes too which im- - 554 complementary properties of generative/discrimieati
plies the independence between generative and discriming;ogels are exploited by training a large set of the pararseter
tive parameters (pure discriminative model). Other vabfes generatively and only a small set of parameters discrimina-
~ interpolate betwggn these two extremes. Th.us, we chooqﬁlmy. Bouchard and Triggk2004 build a hybrid model by
a(0ya) = 7/(1 + %) andB(0ya) = 7. This gives mode  (zking a linear combination of generative and discrimirei
of p(fyal6ya) atbyq with the variance that decreasesyinas  model. This model is similar to the multi-conditional learn
desired. ing model presented by McCallum et 2004. Jaakkola and

It is important to note that our choice of hyperparam-Hausslef{1999 describe a scheme in which the kernel of a
eters for the conjugate prior is not specific to this exam-discriminative classifier is extracted from a generativeleio
ple, but holds true in general. In the general case,Aet Though these models have shown to perform better than just
be the log-partition function associated with the geneeati the discriminative or generative model, none of them combin
model, then, the conjugate prior hyperparameters should bie hybrid model in natural way.
a(f) = yA'(#) andf(0) = ~. This gives us the mode of con-  Our work builds on the work of Lasserre et 2004
jugate prior a¥) with the variance that decreasesyinin the  and Druck et al[2007, which are discussed in Section 2.2.
beta/binomial hybrid model’(§) = A’'(w) =1/(1+e~"*).  Along these lines, Fujino et al2007 present another hy-
Also note that in the beta/binomial exampl€(6) is also the  brid approach where a generative model is trained using a
functionT” that converts the discriminative mean parametergmall number of labeled examples. Since the generative
w to the generative mean parameters model has high bias, a generative “bias-correction” maslel i

In Figure 1, we also compare the Beta prior (solid bluetrained in a discriminative manner to discriminatively com
curves) to an “equivalent” logistic-Normal prior (dashed bine the bias-correction model with the generative model.
black curves) for four settings of. The logistic-Normal is Most of these work focus on the application and little on
parameterized to have the same mode and variance as tttee theory of the hybrid model. There has been a recent
Beta prior. As we can see, for high valuesyofwherein the  work by Bouchard2007 that presents a unified framework
model is essentially generative), the two behave quite-simifor the “PCP” model and the “convex-combination” model
larly. However, for more moderate settingsafthe priors  [Bouchard and Triggs, 2004and proves performance prop-
are qualitatively quite different. erties.



No. of pcp-Gauss| pcp-Gauss| pcp-Beta %

Dataset | Features Dataset description Dataset Mult Bin Bin change
classifies the sentiments of the review movie (10) 64.6 63.4 (32) | 68.3 (.5 | +7.7%

movie 24, 841 of the movies from IMDB agositive movie (25) 68.6 69.0 1.5) | 76.7 (1.2) | +11.1%
or negative webkb (10) 72.5 73.7 37 | 75.3 29 | +2.2%

webkb 29824 classifies webpages from u_niversity S webkb (25) 76.7 83.8 (1.3) | 83.9 (1.6) +1.1%
’ student, course, facultyr project sraa (10) 81.6 67.7 6.8) | 79.1 (4.0) | +16.8%

classifies messages by the news- | sraa(25) 84.1 76.6 (3.5) | 86.1 (1.0) | +12.4%

group to which they were posted:
simulated-aviation real-aviation
simulated-autoracingreal-autoracing

sraa 77,494
Table 2: Comparative results for pcp with Gaussian prior and
pcp with Beta prior. Parenthesized values denote the number

o ] ) of labeled examples per class and the standard deviation
Table 1: Description of the datasets used in the experiments

5 Experiments sraa(10). Compared to PCP-Gauss binomial, PCP-Beta per-
forms significantly better on sraa and movie datasets.

5.1 Experimental Setup Comparing multinomial and binomial versions of PCP-

In this section, we show empirical results of our approachGauss, we see that for movie and webkbb datasets, binomial
and compare them with the existing (and most related to ouversion perform better (or almost equal) than the multiredmi
method) state-of-the-art semi-supervised metH@asck et while for sraa dataset, multinomial performs better. We-con
al., 2007. In order to have a fair comparison, we use ex-jecture that reason for this behavior could be because sraa
perimental setup of Druck et d2007 and perform experi- has a large number of features and feature independence as-
ments only for the datasets where PCP model have shown gumption is less violated in multinomial NB than in binomial
perform best, There are three such datasetsvie, srasand  NB. When datasets do not have too many features, binomial
webkb Description of these datasets is given in Table 1. version tend to perform better because binomial NB accounts

Although all of the examples in these datasets are labeledor both presence and absence of the features, in contrast to
we perform experiments by taking a subset of dataset as Idnultinomial NB which only accounts for the presence of the
beled and treating the rest of the examples as unlabeled. features.

use either 0 or 25 labeled example; from each class and vary Figure 2 and Figure 3 show the results for accuracy vs.
unlabeled examples fromto a maximum ofl000. Number ) for different number of unlabeled examples fyaa and

of unlabeled examples are same in each class. We show o{pvie datasets respectively. Remember that 0 is the
results for two sets of experiments: (1) we show how Perpurely generative model andl = 1 is the purely discrim-
formance varies as we vary the number of unlabeled exampative model. In both of these figures, we see that as we
ples; (2) we show how performance varies with respedtto jncrease the number of unlabeled examples, performance im-
Here\ normahzges they € [oo, 0] in the range of0, 1] using  proves. Insraa we observe that increasing the number of
7 = ((1=X)/A)?. Now A = 0 corresponds to the pure gener- ypjapeled examples results in the shifting of optimah*)
ative case_whlle\ = 1 corresponds to the pure discriminative tgwards rights. We get an optimat = 0.2 for a fully su-
case. As in the work of Druck et 2007, the success of paryised model while fot000 unlabeled examples, we get
the semi-supervised learning depends on the quality obthe | \« _ 5. All the curves in this experiment are uni-modal

beled examples, therefore we choose five random labeled sgf#ich means that there is a unique value\oihere hybrid
and report the average on them. In our results, we report th@,qdel performs best.

percentage classification accuracy which is the ratio ofnum
ber of examples correctly classified to the total numbersif te
examples.

Unfortunately, these nearly-perfectly shaped curvesate n
common to all settings. We do not observe it in the other
dataset (Figure 3). There are values)ofvhere a fully su-
pervised model performs better than the best semi-sugetvis
model. This experiment emphasizes the need for choosing the
Results on the above mentioned three datasets are presentaght value of\ and also shows the importance of the hybrid
in Table 2. Table shows the results for the PCP model with thenodel. If we do not choose the right value xf we might
Gaussian prior (PCP-Gauss) and with the Beta prior (PCPend up hurting the model by using the unlabeled data. We
Beta). Since PCP-Beta uses the binomial version of NBalso observe thahoviedataset gives us a bi-modal curve in
we reimplemented the PCP-Gaussfor the binomial version afontrast to the uni-modal curve obtained in #iaa We see
NB and compare the results with it. Though we also showthat curve is a uni-modal in the supervised setting but as we
the results for PCP-Gauss multinomfiBlruck et al., 2007, introduce unlabeled examples, the curves not only become
a fair comparison would be to compare only binomial mod-bi-modal but also shift towards the left-hand side (bestiacc
els. %change is the change in PCP-Beta with respect to thracy is achieved close to the generative end). This nayurall
PCP-Gauss binomial version. As we see, PCP-Beta perfornsiggests that generative model is actually affecting tioeitly
better than PCP-Gauss binomial in all experiments and betodel in a positive manner and exploiting the strength of the
ter than PCP-Gauss multinomial in all experiments exceptinlabeled examples.

5.2 Results and Discussion
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Figure 2: Results for sraa dataset for different number of unFigure 3: Results for movie dataset for different number of
labeled examples. Number of labeled examples=10. unlabeled examples, Number of labeled examples=25.
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