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Abstract

Canonical Correlation Analysis (CCA) is a useful technidae modeling de-
pendencies between two (or more) sets of variables. Bugjldipon the re-
cently suggested probabilistic interpretation of CCA, wepmse a nhonparametric,
fully Bayesian framework that can automatically select tlwnber of correla-
tion components, and effectively capture the sparsity tyithg the projections.
In addition, given (partially) labeled data, our algoritlzan also be used as a
(semi)supervised dimensionality reduction techniqud,@n be applied to learn
useful predictive features in the context of learning a $etlated tasks. Experi-
mental results demonstrate the efficacy of the proposeaappifor both CCA as
a stand-alone problem, and when applied to multi-labeliptied.

1 Introduction

Learning with examples having multiple labels is an impairaroblem in machine learning and
data mining. Such problems are encountered in a variety @fcgbion domains. For example, in
text classification, a document (e.g., a newswire story)bmassociated with multiple categories.
Likewise, in bio-informatics, a gene or protein usuallyfpems several functions. All these settings
suggest a common underlying problem: predicting multatariresponses. When the responses
come from a discrete set, the problem is termed as multi-Ebssification. The aforementioned
setting is a special case of multitask learning [7] when joted) each label is a task and all the tasks
share a common source of input. An important charactesistichese problems is that the labels
are not independent of each other but actually often havefigignt correlations with each other.
A naive approach to learn in such settings is to train a sepalassifier for each label. However,
such an approach ignores the label correlations and patdrese suggests that this can often lead
to sub-optimal performance [20].

In this paper, we show how Canonical Correlation AnalysiSAF[12] can be used to exploit label

relatedness, learning multiple prediction problems siandously. CCA is a useful technique for
modeling dependencies between two (or more) sets of vagaliine important application of CCA

is in supervisedlimensionality reduction, albeit in the more general sgttithere each example has
several labels. In this setting, CCA on input-output girY) can be used to project inpusto

a low-dimensional space directed by label informatinThis makes CCA an ideal candidate for
extracting useful predictive features from data in the erndf multi-label prediction problems.

The classical CCA formulation, however, has certain inheligitations. It is non-probabilistic
which means that it cannot deal with missing data, and pdesia Bayesian treatment which can
be important if the dataset size is small. An even more crigsae is choosing the number of cor-
relation components, which is traditionally dealt with kging cross-validation, or model-selection
[21]. Another issue is the potential sparsity [18] of the eriging projections that is ignored by the
standard CCA formulation.

Building upon the recently suggested probabilistic intetation of CCA [4], we propose a honpara-
metric, fully Bayesian framework that can deal with eachhefse issues. In particular, the proposed



model can automatically select the number of correlationmanents, and effectively capture the
sparsity underlying the projections. Our framework is ldage the Indian Buffet Process [10], a
nonparametric Bayesian model to discover latent featyreesentation of a set of observations. In
addition, our probabilistic model allows dealing with nmirggdata and, in the supervised dimension-
ality reduction case, can incorporatdditionalunlabeled data one may have access to, making our
CCA algorithm work in a semi-supervised setting. Thus, afsam being a general, nonparamet-
ric, fully Bayesian solution to the CCA problem, our framekaan be readily applied for learning
useful predictive features from labeled fmartially labeled) data in the context of learning a set of
related tasks.

This paper is organized as follows. Section 2 introduce€Ba problem and its recently proposed
probabilistic interpretation. In section 3, we describe general framework foinfinite CCA. Sec-
tion 4 gives a concrete example of an application (multeldéarning) where the proposed approach
can be applied. In particular, we describe a fully supedsisetting (when the test data is not avail-
able at the time of training), and a semi-supervised settitiy partial labels (when we have access
to test data at the time of training). We describe our expemtsin section 5, and discuss related
work in section 6 drawing connections of the proposed methitld previously proposed ones for
this problem. .

2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a useful techniffjuenodeling the relationships among a
set of variables. CCA computes a low-dimensiasteredembedding of a set of variables such that
the correlations among the variables is maximized in theesidéd space.

More formally, given a pair of variables € R”* andy € R”2, CCA seeks to find linear projections
u, andu, such that the variables are maximally correlated in thegotef space. The correlation
coefficient between the two variables in the embedded sgagiegn by

Ty T
u, Xy uy

p =
Vo u,) (ulyyu,)

Since the correlation is not affected by rescaling of thggutionsu,, andu,, CCA is posed as a
constrained optimization problem.

max uz;xyTuy7 subject to : ufxxTugc = 1,uZnyuy =1
Ug,Uy © ‘ :

It can be shown that the above formulation is equivalent bairsg the following generalized eigen-

value problem:
0 Exy Ux _ Exx 0 Ux
Yyx 0 u, | P 0 Yyy uy

whereX denotes the covariance matrix of sizex D (whereD = D; + D) obtained from the
data sampleX = [x1,...,x,] andY = [y1,...,y.].

2.1 Probabilistic CCA

Bach and Jordan [4] gave a probabilistic interpretation 6ACby posing it as a latent variable
model. To see this, let andy be two random vectors of siz8; andD,. Let us now consider the
following latent variable model

z ~ Nor(0,Ig), min{D;, Dy} > K
X ~ Nor(pe +W,z, ¥,), W, c RP*E ¥ >0
y ~ Nor(u, +W,z,¥,), W, cRP>*K ¥, 0
Equivalently, we can also write the above as
[x:y] ~ Nor(p + Wz, ®) @



wherep = [z py], W = [W,; W, ], and ¥ is a block-diagonal matrix consisting &, and ¥,
on its diagonals[.; .] denotes row-wise concatenation. The latent varialBeshared betweex and
y.

Bach and Jordan [4] showed that, given the maximum likeliheaution for the model parameters,
the expectation&(z|x) andE(z|y) of the latent variable lie in the same subspace that classical
CCA finds, thereby establishing the equivalence betweealtbege probabilistic model and CCA.

The probabilistic interpretation opens doors to severtgresion of the basic setup proposed in [4]
which suggested a maximum likelihood approach for paramesttmation. However, it still as-
sumes arapriori fixed number of canonical correlation components. In addjtanother important
issue is the sparsity of the underlying projection matrichhs usually ignored.

3 The Infinite Canonical Correlation Analysis Model

Recall that the CCA problem can be definedsas/| ~ Nor(Wz, ¥) (assuming centered data). A
crucial issue in the CCA model is choosing the number of ceraborrelation components which
is set to a fixed value in classical CCA (and even in the prdistibiextensions of CCA). In the
Bayesian formulation of CCA, one can use the Automatic Relee Determination (ARD) prior
[6] on the projection matrixV that gives a way to select this number. However, it would beemo
appropriate to have a principled way to automatically figauethis number based on the data.

We propose a honparametric Bayesian model that selectsithber of canonical correlation com-
ponents automatically. More specifically, we use the Indaffet Process [10] (IBP) as a nonpara-
metric prior on the projection matriw/. The IBP prior allowsW to have an unbounded number
of columns which gives a way to automatically determine tineeshsionality X’ of the latent space
associated witfZ.

3.1 The Indian Buffet Process

The Indian Buffet Process [10] defines a distribution ovdinite binary matrices, originally mo-
tivated by the need to model the latent feature structure gifen set of observations. The IBP
has been a model of choice in variety of nhon-parametric Bagiespproaches, such as for factorial
structure learning, learning causal structures, modeliraglic data, modeling overlapping clusters,
and several others [10].

In the latent feature model, each observation can be thafgigt being explained by a set of latent
features. Given aiv x D matrix X of N observations having features each, we can consider a
decomposition of the forrX = ZA + E whereZ is an N x K binary feature-assignment matrix
describing which features are present in each observafipn.is 1 if featurek is present in obser-
vationn, and is otherwise 0A is a K x D matrix of feature scores, and the matkxconsists of
observation specific noise. A crucial issue in such modeiseéschoosing the numbét of latent
features. The standard formulation of IBP lets us define @r jprrer the binary matriZ such that

it can have an unbounded number of columns and thus can b&hblsyirior in problems dealing
with such structures.

The IBP derivation starts by defining a finite model formany columns of & x K binary matrix.

K (o7 «
P =] Kr(mkr? gl e 1 )
k=1

P+1+ %)

Herem;, = ), Z;;. In the limiting case, a®& — oo, it as was shown in [10] that the binary matrix
Z generated by IBP is equivalent to one produced by a sequgeti@rative process. This equiv-
alence can be best understood by a culinary analogy of cestocoming to an Indian restaurant
and selecting dishes from an infinite array of dishes. In déimalogy, customers represent obser-
vations and dishes represent latent features. CustoméedtsBoisson(«) dishes to begin with.
Thereafter, each incoming customeselects an existing dish with a probabilitym, /N, where
my, denotes how many previous customers chose that partiastar the customen then goes on
further to additionally selecPoisson(a/N) new dishes. This process generates a binary matrix
with rows representing customer and columns representsigesl. Many real world datasets have



[ 1BP@) | [No,o D) [ 1BP@) | [No,o D)

Figure 1:The graphical model depicts the fully supervised case when all vasixtdad Y are observed. The
semisupervised case can have X and/or Y consisting of missing valuwesdla3he graphical model structure
remains the same.

a sparseness property which means that each observatiendtepnly on a subset of all th€
latent features. This means that the binary mafris expected to be reasonably sparse for many
datasets. This makes IBP a suitable choice for also capttliaunderlying sparsity in addition to
automatically discovering the number of latent features.

3.2 The Infinite CCA Model

In our proposed framework, the mat% consisting of canonical correlation vectors is modeled
using an IBP prior. However sind&/ can be real-valued and the IBP prior is defined only for
binary matrices, we represent th®1 + D2) x K matrix W as(B © V), whereB = [B,;B,]

is a(Dy + D2) x K binary matrix,V = [V,;V,]| is a(D; + D) x K real-valued matrix, and
© denotes their element-wise (Hadamard) product. We pladBRuprior onB that automatically
determinesk, and a Gaussian prior ovi. Note thatB andV have the same number of columns.
Under this model, two random vectoxsandy can be modeled as = (B, ® V.)z + E, and

y = (B, ®V,)z+ E,. Herezis shared betweexandy, andE, andE, are observation specific
noise.

In the full model, X = [xi,...,Xy] is D1 x N matrix consisting ofV samples ofD; dimensions
each, and = [y,,...,Yy] is another matrix consisting éf samples oD, dimensions each. Here
is the generative story for our basic model:

B ~ ZIBP(«a)

V ~ Nor(0,021), o, ~ IG(a,b)
Z ~ Nor(0,1)
[X;Y] ~ Nor(BoV)Z,P),

where ¥ is a diagonal matrix of siz& x D whereD = (D; + D), with each diagonal entry
having an inverse-Gamma prior..

Since our model is probabilistic, it can also deal the pnobighenX or Y have missing entries.
This is particularly important in the case of supervisedetisionality reduction (i.eX consisting
of inputs andY associated responses) when the labels for some of the iaputsiknown, making
it a model forsemi-supervisedimensionality reduction with partially labeled data. ledéion,
placing the IBP prior on the projection mati¥ (via the binary matrixB) also helps in capturing
the sparsity ilWV (see results section for evidence).

3.3 Inference

We take a fully Bayesian approach by treating everythingatdnt variables and computing the
posterior distributions over them. We use Gibbs samplirth @ifew Metropolis-Hastings steps to
do inference in this model.



In what follows,D denotes the datX; Y], B = [B;; B,], andV = [V,;V,]

Sampling B: Sampling the binary IBP matri® consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptatio in the associated M-H step. For
sampling existing dishes, an entryBiis set as 1 according to(B;; = 1|D, B_;,V,Z,¥) x

“5%p(D|B,V,F,¥) whereas it is set as 0 according #§B;; = 0|D,B_j,V,Z,¥)

%p(D\B, V,Z,®). m_;, = >, ,; Bjiis how many other customers chose dish

For sampling new dishes, we use an M-H step where we simuolteshe proposen =
(Kmew ynew znew) where K™ ~ Poisson(a/D). We accept the proposal with an accep-

tance probability given by = min{1, %}. Here,p(rest|n) is the probability of the data

given parameters. We proposd/ ™" from its prior (Gaussian) but, for faster mixing, we propose
Z"e% from its posterior.

Sampling V: We sample the real-valued matriX from its posteriorp(V; x|D,B,Z,¥)
2
NO(V; il ti i S ), whereS; i = (S0, 252+ )~ andpui g = ix (0. A D) 05

We defineD;‘,,~C =D, — Z{iLl#k(Bi,zVLz)Zz,n- The hyperparameter, onV has an inverse-
gamma prior and posterior also has the same form.

Sampling Z: We sample forZ from its posteriorp(Z|D,B,V, ¥) « Nor(Z|u,X) wherepy =
WT(WWT + ¥)-1DandE =1 - WI(WWT 4 ¥)-1'W, whereW =B © V.

Note that, in our sampling scheme, we considered the maBic@andB,, as simply parts of the big
IBP matrixB, and sampled them together using a single IBP draw. Howexercould also sample
them separately as two separate IBP matriceBfaandB,,. This would require different IBP draws
for samplingB, andB,, with some modification of the existing Gibbs sampler. DiferIBP draws
could result in different number of nonzero columnsBip andB,. To deal with this issue, one
could sampléB, (say havingk, nonzero columns) ané, (say havingk’, nonzero columns) first,
introduce extra dummy columnfg(, — K, | in number) in the matrix having smaller number of non-
zero columns, and then set all such columns to zero. Thetiw#dg for each iteration of the Gibbs
sampler would benax{K,, K,}. A similar scheme could also be followed for the correspogdi
real-valued matrice¥, andV,, sampling them in conjunction witB, andB,, respectively.

4 Multitask Learning using Infinite CCA

Having set up the framework for infinite CCA, we now descritseaipplicability for the problem of
multitask learning. In particular, we consider the settirigen each example is associated with mul-
tiple labels. Here predicting each individual label beceradgask to be learned. Although one can
individually learn a separate model for each task, doirgwltuld ignore the label correlations. This
makes borrowing the information across tasks crucial, ngakiimperative to share the statistical
strength among the various task parameters. With this atadiv, we apply our infinite CCA model
to capture the label correlations and to learn better ptigditeatures from the data by projective it
to a subspace directed by label information.

More concretely, leX = [x;,...,xy] be anD x N matrix of predictor variables, an¥ =
[y1,.-.,yn] be anM x N matrix of the responses variables (i.e., the labels) withgabeing an
M x 1 vector of responses for inpyt. The labels can take real (for regression) or categorical (f
classification) values. The infinite CCA model is appliedlo& pairX andY which is akin to doing
supervised dimensionality reduction for the inpdts However, since the label matrik consists
of multiplerelated labels, the subspace extracted by infinite CCA bsigpervised dimensionality
reduction is expected talso capture thecorrelationsamong labels. Such a subspace therefore is
expected to consist of much better predictive featuresaharobtained by a iiae feature extraction
approach such as simple PCA that completely ignores thé latoemation, or approaches like
Linear Discriminant Analysis (LDA) that do take into accouabel information but ignore label
correlations.

Multitask learning using the infinite CCA model can be donéan settings: supervised and semi-
supervised depending on whether or not the inputs of teatatatinvolved in learning the shared
subspacée.



4.1 Fully supervised setting

In the supervised setting, CCA is done on labeled dXtaY) to give a single shared subspace
Z € REXN that is good across all tasks. A model is then learned inZtrgibspace to learn
M task parameter§d,,} € RX*! wherem € {1,...,M}. Each of the parametets, is then
used to predict the labels for the test data of task However that since the test data is sfill
dimensional, we need to either separately project it down tre X' dimensional subspace and do
predictions in this subspace, or “inflate” each task paramgack toD dimensions by applying
the projection matrixV,, and do predictions in the origind) dimensional space. The first option
requires using the fact th&(Z|X,.) oc P(X;.|Z)P(Z) whichis a GaussiaNor(pz|x , £z x ) with
tzix = (WI®,W, +1)7'WIX, andS, x = (WL ¥, W, + 1)L, With the second option, we
can inflate each learned task parameter badk thmensions by applying the projection matvix, .
We choose the second option for the experiments. We calfutyssupervised setting as model-1.

4.2 A Semi-supervised setting

In the semi-supervised setting, we combine training dathtast data (with unknown labels) as
X = [X¢r, Xte] @nd¥Y = [Yy,, Y;.] where the labely ;. are unknown. The infinite CCA model is

then applied on the paiiX, Y) and the parts oY consisting ofY,. are treated as a latent variables
to be imputed. With this model, we get the embeddings alsthi®test data and thus training and
testing both take place in th€ dimensional subspace, unlike model-1 in which trainingaselin

K dimensional subspace and prediction are made in the origirdimensional subspace. We call
this semi-supervised setting as model-2.

5 Experiments

Here we report our experimental results on several symtheti real world datasets. We first show
our results with the infinite CCA as a stand alone algorithmG&A by using it on a synthetic
dataset demonstrating its effectiveness in capturing dnemical correlations. We then also report
our experiments on applying the infinite CCA model to the pFobof multitask learning on two
real world datasets.

5.1 Infinite CCA results on synthetic data

In the first experiment, we demonstrate the effectivenessuofproposed infinite CCA model in
discovering the correct number of canonical correlatiomgonents, and in capturing the sparsity
pattern underlying the projection matrix. For this, we geted two datasets of dimensions 25 and
10 respectively, with each having 100 samples. For thishafitt dataset, we knew the ground truth
(i.e., the number of components, and the underlying syavéjprojection matrix). In particular, the
dataset had 4 correlation components with a 63% sparsitiyeirirtie projection matrix. We then
ran both classical CCA and infinite CCA algorithm on this data Looking agll the correlations
discovered by classical CCA, we found that it discovered@manents having significant correla-
tions, whereas our model correctly discovered exactly 4pmments in the first place (we extract
the MAP samples fow andZ output by our Gibbs sampler). Thus on this small datasetdsta
CCA indeed seems to be finding spurious correlations, itidiga case of overfitting (the overfit-
ting problem of classical CCA was also observed in [15] whemmgaring Bayesian versus classical
CCA). Furthermore, as expected, the projection matrixriefeby the classical CCA had no exact
zero entries and even after thresholding significantly bataolute values to zero, the uncovered
sparsity was only about 25%. On the other hand, the projeatiatrix inferred by the infinite CCA
model had 57% exact zero entries and 62% zero entries aféshiblding very small values, thereby
demonstrating its effectiveness in also capturing thessfygratterns.

5.2 Infinite CCA applied to multi-label prediction

In the second experiment, we use infinite CCA model to leart afsrelated task in the context of
multi-label prediction. For our experiments, we use twd-mwarld multi-label datasets (Yeast and
Scene) from the UCI repository. The Yeast dataset condigtS@® training and 917 test examples,
each having 103 features. The number of labels (or tasks@xsmple is 14. The Scene dataset



Model Yeast Scene

Acc Fl-macro| F1-micro| AUC Acc F1-macro| F1-micro| AUC
Full 0.5583| 0.3132 0.3929 | 0.5054| 0.7565| 0.3445 0.3527 | 0.6339
PCA 0.5612| 0.3144 0.4648 | 0.5026| 0.7233| 0.2857 0.2734 | 0.6103
CCA 0.5441| 0.2888 0.3923 | 0.5135] 0.7496| 0.3342 0.3406 | 0.6346

Model-1 | 0.5842| 0.3327 0.4402 | 0.5232| 0.7533| 0.3630 0.3732 | 0.6517

Model-2 | 0.6156| 0.3463 0.4954 | 0.5386| 0.7664| 0.3742 0.3825 | 0.6686

Table 1: Results on the multi-label classification task. dBfalce indicates the best performance.
Model-1 and Model-2 scores are averaged over 10 runs wifirdiit initializations.

consists of 1211 training and 1196 test examples, each (&4 features. The number of labels
per example for this dataset is 6. We compare the followingetofor our experiments.

e Full: Train separate classifiers (SVM) on the full featurefeeeach task.

o PCA: Apply PCA on training and test data and then train separassifiers for each task
in the low dimensional subspace. This baseline ignoresthed Information while learning
the low dimensional subspace.

e CCA: Apply classical CCA on training data to extract the gldbsubspace, learn separate
model (i.e., task parameters) for each task in this subsgmogect the task parameters
back to the originalD dimensional feature space by applying the projectidp, and do
predictions on the test data in this feature pace.

e Model-1: Use our supervised infinite CCA model to learn tharetl subspace using only
the training data (see section 4.1).

e Model-2: Use our semi-supervised infinite CCA modesitmultaneousljyearn the shared
subspace for both training and test data (see section 4.2).

The performance metrics used are overall accuracy, F1-dj&dr-Micro, and AUC (Area Under
ROC Curve). For PCA and CCA, we choBethat gives the best performance, whereas this param-
eter was learned automatically for both of our proposed nsodehe results are shown in Table-1.
As we can see, both the proposed models do better than thebatbelines. Of the two proposed
model, we see that model-2 does better in most cases suggését it is useful to incorporate
the test data while learning the projections. This is pdssiib our probabilistic model since we
could treat the unknowN’s of the test data as latent variables to be imputed whilagitie Gibbs
sampling.

We note here that our results are with cases where we onlydtadsto small number of related task
(yeast has 14, scene has 6). We expect the performance iempeons to be even more significant
when the number of (related) tasks is high.

6 Related Work

A number of approaches have been proposed in the recenbp#st foroblem of supervised dimen-
sionality reduction ofnulti-labeldata. The few approaches that exist include Partial Leastrieg
[2], multi-label informed latent semantic indexing [24hdamulti-label dimensionality reduction us-
ing dependence maximization (MDDM) [26]. None of these, begr, deal with the case when the
data is only partially labeled. Somewhat similar in spwibur approach is the work on supervised
probabilistic PCA [25] that extends probabilistic PCA te thetting when we also have access to
labels. However, it assumes a fixed number of components @eslrbt take into account sparsity
of the projections.

The CCA based approach to supervised dimensionality reafuct more closely related to the
notion of dimension reduction for regression (DRR) whicHHdamally defined as finding a low
dimensional representatianc RX of inputsx € R? (K < D) for predicting multivariate outputs
y € RM . An important notion in DRR is that of sufficient dimensiahaleduction (SDR) [11, 9]

which states that given x andy are conditionally independent, i.e.,lL y|z. As we can see in the



graphical model shown in figure-1, the probabilistic intetption of CCA yields the same condition
with X andY being conditionally independent given

Among the DRR based approaches to dimensionality redufdioreal-valued multilabel data, Co-
variance Operator Inverse Regression (COIR) exploits tivartance structures of both the inputs
and outputs [14]. Please see [14] for more details on theemiiom between COIR and CCA. Be-
sides the DRR based approaches, the problem of extractefgl deatures from data, particularly
with the goal of making predictions, has also been consitlarether settings. The information
bottleneck (1B) method [19] is one such example. Given ifgutput pairg X, Y), the information
bottleneck method aims to obtain a compressed represanfatf X that can account foy. 1B
achieves this using a single tradeoff parameter to repreiseriradeoff between theomplexityof
the representation of, measured by (X; T), and theaccuracyof this representation, measured by
I(T;Y), wherel(.;.) denotes the mutual information between two variables. titear recent work
[3], ajoint learning framework is proposed which perfornmaénsionality reduction and multi-label
classification simultaneously.

In the context of CCA as a stand-alone problem, sparsity ashem important issue. In particular,
sparsity improves model interpretation and has been gailoits of attention recently. Existing
works on sparsity in CCA include the double barrelled lashiztvis based on a convex least squares
approach [17], and CCA as a sparse solution to the genatadipenvalue problem [18] which is
based on constraining the cardinality of the solution togiieeralized eigenvalue problem to obtain
a sparse solution. Another recent solution is based on atdjreedy approach which bounds the
correlation at each stage [22].

The probabilistic approaches to CCA include the works of @rid [1], both of which use an au-
tomatic relevance determination (ARD) prior [6] to detemmihe number of relevant components,
which is a rather ad-hoc way of doing this. In contrast, a moametric Bayesian alternative pro-
posed here is a more principled to determine the number opoasnts.

We note that the sparse factor analysis model proposed Jraft6ally falls out as a special case
of our proposed infinite CCA model if one of the datase{sof Y) is absent. Besides, the sparse
factor analysis model is limited to factor analysis wherthasproposed model can be seen as an in-
finite generalization of both an unsupervised problem &p&CA), and (semi)supervised problem
(dimensionality reduction using CCA with full or partialdal information), with the latter being
especially relevant for multitask learning in the presesfomultiple labels.

Finally, multitask learning has been tackled using a varadtdifferent approaches, primarily de-

pending on what notion of task relatedness is assumed. Sbthe examples include tasks gener-
ated from an 11D space [5], and learning multiple tasks usitgerarchical prior over the task space
[23, 8], among others. In this work, we consider multi-lapegdiction in particular, based on the
premise that that a set of such related tasks share an uimgdgidy-dimensional feature space [13]

that captures the task relatedness.

7 Conclusion

We have presented a nonparametric Bayesian model for theni@ah Correlation Analysis problem
to discover the dependencies between a set of variablesarficydar, our model does not assume
a fixed number of correlation components and this numberteridned automatically based only
on the data. In addition, our model enjoys sparsity makirggrttodel more interpretable. The
probabilistic nature of our model also allows dealing witlssing data. Finally, we also demonstrate
the model’s applicability to the problem of multi-label taing where our model, directed by label
information, can be used to automatically extract usefetifmtive features from the data.

Acknowledgements

We thank the anonymous reviewers for helpful comments. Woik was partially supported by
NSF grant [1S-0712764.

References

[1] C. Archambeau and F. Bach. Sparse probabilistic projectiondelmral Information Processing Systems
21, 2008.



(2]
(3]
(4]
(5]
(6]

(7]
(8]

El
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]

[24]

[25]

[26]

J. Arenas-Gaiia, K. B. Petersen, and L. K. Hansen. Sparse kernel orthonormaligdor feature extrac-
tion in large data sets. INeural Information Processing Systems 2006.

J. Arenas-Gairi@, K. B. Petersen, and L. K. Hansen. Linear dimensionality reductiomnidti-label
classification. Infwenty-first International Joint Conference on Atrtificial Intelligen2@09.

F.R. Bach and M. I. Jordan. A Probabilistic Interpretation of CacalrCorrelation Analysis. Ifechnical
Report 688, Dept. of Statisticgniversity of California, 2005.

J. Baxter. A Model of Inductive Bias Learningournal of Artificial Intelligence Researcth2:149-198,
2000.

C. M. Bishop. Bayesian PCA. INeural Information Processing Systems Chmbridge, MA, USA,
1999. MIT Press.

R. Caruana. Multitask Learnindvachine Learning28(1):41-75, 1997.

H. Daun® Ill. Bayesian Multitask Learning with Latent Hierarchies. Gonference on Uncertainty in
Artificial Intelligence Montreal, Canada, 2009.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reducfar supervised learning with repro-
ducing kernel hilbert spaced. Mach. Learn. Res5:73-99, 2004.

Z. Ghahramani, T. L. Griffiths, and P. Sollich. Bayesian Nonpeetic Latent Feature Models. In
Bayesian Statistics 8. Oxford University Pre2807.

Amir Globerson and Naftali Tishby. Sufficient dimensionality retitue. J. Mach. Learn. Res3:1307—
1331, 2003.

H. Hotelling. Relations Between Two Sets of VariablBsgometrikg pages 321-377, 1936.
S.Ji, L. Tang, S. Yu, and J. Ye. Extracting Shared Subspadddtii-label Classification. 2008.

M. Kim and V. Pavlovic. Covariance operator based dimensionaditiuction with extension to semi-
supervised settings. [fwelfth International Conference on Artificial Intelligence and Statisfidsrida
USA, 2009.

A. Klami and S. Kaski. Local dependent componentdQNIL '07: Proceedings of the 24th international
conference on Machine learning007.

P. Rai and H. Dauénlll. The infinite hierarchical factor regression model.Naural Information Pro-
cessing Systems 22008.

D. Hardoon J. Shawe-Taylor. The Double-Barrelled LASSCa¢Se Canonical Correlation Analysis). In
Workshop on Learning from Multiple Sources (NIP&)08.

B. Sriperumbudur, D. Torres, and G. Lanckriet. The Spaigerivalue Problem. larXiv:0901.1504v1
2009.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottlenaekhod. InProc. of the 37-th Annual
Allerton Conference on Communication, Control and Computiages 368-377.

N. Ueda and K. Saito. Parametric Mixture Models for Multi-labeledtTAdvances in Neural Information
Processing Systemgages 737744, 2003.

C. Wang. Variational Bayesian approach to Canonical Correl&imaysis. InlEEE Transactions on
Neural Networks2007.

A. Wiesel, M. Kliger, and A. Hero. A Greedy Approach to Sparsm@nical Correlation Analysis. In
arXiv:0801.27482008.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task Legug for Classification with Dirichlet
Process PriorsThe Journal of Machine Learning Resear&i35-63, 2007.

K. Yu, S. Yu, and V. Tresp. Multi-label Informed Latent Semartidexing. InProceedings of the 28th
annual international ACM SIGIR conference on Research and dewelopin information retrievapages
258-265. ACM New York, NY, USA, 2005.

S. Yu, K. Yu, V. Tresp, H. Kriegel, and M. Wu. Supervised Pabliistic Principal Component Analysis.
In KDD '06: Proceedings of the 12th ACM SIGKDD international confereaneKnowledge discovery
and data mining2006.

Y. Zhang Z. H. Zhou. Multi-Label Dimensionality Reduction via Dedence Maximization. IrPro-
ceedings of the Twenty-Third AAAI Conference on Artificial IntelligeAeé)\l 2008 pages 1503-1505,
2008.



