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Abstract

Canonical Correlation Analysis (CCA) is a useful techniquefor modeling de-
pendencies between two (or more) sets of variables. Building upon the re-
cently suggested probabilistic interpretation of CCA, we propose a nonparametric,
fully Bayesian framework that can automatically select thenumber of correla-
tion components, and effectively capture the sparsity underlying the projections.
In addition, given (partially) labeled data, our algorithmcan also be used as a
(semi)supervised dimensionality reduction technique, and can be applied to learn
useful predictive features in the context of learning a set of related tasks. Experi-
mental results demonstrate the efficacy of the proposed approach for both CCA as
a stand-alone problem, and when applied to multi-label prediction.

1 Introduction

Learning with examples having multiple labels is an important problem in machine learning and
data mining. Such problems are encountered in a variety of application domains. For example, in
text classification, a document (e.g., a newswire story) canbe associated with multiple categories.
Likewise, in bio-informatics, a gene or protein usually performs several functions. All these settings
suggest a common underlying problem: predicting multivariate responses. When the responses
come from a discrete set, the problem is termed as multi-label classification. The aforementioned
setting is a special case of multitask learning [7] when predicting each label is a task and all the tasks
share a common source of input. An important characteristics of these problems is that the labels
are not independent of each other but actually often have significant correlations with each other.
A näıve approach to learn in such settings is to train a separate classifier for each label. However,
such an approach ignores the label correlations and past evidence suggests that this can often lead
to sub-optimal performance [20].

In this paper, we show how Canonical Correlation Analysis (CCA) [12] can be used to exploit label
relatedness, learning multiple prediction problems simultaneously. CCA is a useful technique for
modeling dependencies between two (or more) sets of variables. One important application of CCA
is in superviseddimensionality reduction, albeit in the more general setting where each example has
several labels. In this setting, CCA on input-output pair(X, Y) can be used to project inputsX to
a low-dimensional space directed by label informationY. This makes CCA an ideal candidate for
extracting useful predictive features from data in the context of multi-label prediction problems.

The classical CCA formulation, however, has certain inherent limitations. It is non-probabilistic
which means that it cannot deal with missing data, and precludes a Bayesian treatment which can
be important if the dataset size is small. An even more crucial issue is choosing the number of cor-
relation components, which is traditionally dealt with by using cross-validation, or model-selection
[21]. Another issue is the potential sparsity [18] of the underlying projections that is ignored by the
standard CCA formulation.

Building upon the recently suggested probabilistic interpretation of CCA [4], we propose a nonpara-
metric, fully Bayesian framework that can deal with each of these issues. In particular, the proposed
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model can automatically select the number of correlation components, and effectively capture the
sparsity underlying the projections. Our framework is based on the Indian Buffet Process [10], a
nonparametric Bayesian model to discover latent feature representation of a set of observations. In
addition, our probabilistic model allows dealing with missing data and, in the supervised dimension-
ality reduction case, can incorporateadditionalunlabeled data one may have access to, making our
CCA algorithm work in a semi-supervised setting. Thus, apart from being a general, nonparamet-
ric, fully Bayesian solution to the CCA problem, our framework can be readily applied for learning
useful predictive features from labeled (orpartially labeled) data in the context of learning a set of
related tasks.

This paper is organized as follows. Section 2 introduces theCCA problem and its recently proposed
probabilistic interpretation. In section 3, we describe our general framework forinfinite CCA. Sec-
tion 4 gives a concrete example of an application (multi-label learning) where the proposed approach
can be applied. In particular, we describe a fully supervised setting (when the test data is not avail-
able at the time of training), and a semi-supervised settingwith partial labels (when we have access
to test data at the time of training). We describe our experiments in section 5, and discuss related
work in section 6 drawing connections of the proposed methodwith previously proposed ones for
this problem. .

2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a useful techniquefor modeling the relationships among a
set of variables. CCA computes a low-dimensionalsharedembedding of a set of variables such that
the correlations among the variables is maximized in the embedded space.

More formally, given a pair of variablesx ∈ R
D1 andy ∈ R

D2 , CCA seeks to find linear projections
ux anduy such that the variables are maximally correlated in the projected space. The correlation
coefficient between the two variables in the embedded space is given by

ρ =
uT

x xyT uy
√

(uT
x xxT ux)(uT

y yyT uy)

Since the correlation is not affected by rescaling of the projectionsux anduy, CCA is posed as a
constrained optimization problem.

max
ux,uy

uT
x xyT uy, subject to : uT

x xxT ux = 1,uT
y yyT uy = 1

It can be shown that the above formulation is equivalent to solving the following generalized eigen-
value problem:
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whereΣ denotes the covariance matrix of sizeD × D (whereD = D1 + D2) obtained from the
data samplesX = [x1, . . . ,xn] andY = [y1, . . . ,yn].

2.1 Probabilistic CCA

Bach and Jordan [4] gave a probabilistic interpretation of CCA by posing it as a latent variable
model. To see this, letx andy be two random vectors of sizeD1 andD2. Let us now consider the
following latent variable model

z ∼ Nor(0, IK), min{D1,D2} ≥ K

x ∼ Nor(µx + Wxz,Ψx), Wx ∈ R
D1×K ,Ψx � 0

y ∼ Nor(µy + Wyz,Ψy), Wy ∈ R
D2×K ,Ψy � 0

Equivalently, we can also write the above as

[x;y] ∼ Nor(µ + Wz,Ψ) (1)
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whereµ = [µx;µy], W = [Wx; Wy], andΨ is a block-diagonal matrix consisting ofΨx andΨx

on its diagonals.[.; .] denotes row-wise concatenation. The latent variablez is shared betweenx and
y.

Bach and Jordan [4] showed that, given the maximum likelihood solution for the model parameters,
the expectationsE(z|x) andE(z|y) of the latent variablez lie in the same subspace that classical
CCA finds, thereby establishing the equivalence between theabove probabilistic model and CCA.

The probabilistic interpretation opens doors to several extension of the basic setup proposed in [4]
which suggested a maximum likelihood approach for parameter estimation. However, it still as-
sumes anapriori fixed number of canonical correlation components. In addition, another important
issue is the sparsity of the underlying projection matrix which is usually ignored.

3 The Infinite Canonical Correlation Analysis Model

Recall that the CCA problem can be defined as[x;y] ∼ Nor(Wz,Ψ) (assuming centered data). A
crucial issue in the CCA model is choosing the number of canonical correlation components which
is set to a fixed value in classical CCA (and even in the probabilistic extensions of CCA). In the
Bayesian formulation of CCA, one can use the Automatic Relevance Determination (ARD) prior
[6] on the projection matrixW that gives a way to select this number. However, it would be more
appropriate to have a principled way to automatically figureout this number based on the data.

We propose a nonparametric Bayesian model that selects the number of canonical correlation com-
ponents automatically. More specifically, we use the IndianBuffet Process [10] (IBP) as a nonpara-
metric prior on the projection matrixW. The IBP prior allowsW to have an unbounded number
of columns which gives a way to automatically determine the dimensionalityK of the latent space
associated withZ.

3.1 The Indian Buffet Process

The Indian Buffet Process [10] defines a distribution over infinite binary matrices, originally mo-
tivated by the need to model the latent feature structure of agiven set of observations. The IBP
has been a model of choice in variety of non-parametric Bayesian approaches, such as for factorial
structure learning, learning causal structures, modelingdyadic data, modeling overlapping clusters,
and several others [10].

In the latent feature model, each observation can be thoughtof as being explained by a set of latent
features. Given anN × D matrix X of N observations havingD features each, we can consider a
decomposition of the formX = ZA + E whereZ is anN × K binary feature-assignment matrix
describing which features are present in each observation.Zn,k is 1 if featurek is present in obser-
vationn, and is otherwise 0.A is aK × D matrix of feature scores, and the matrixE consists of
observation specific noise. A crucial issue in such models isthe choosing the numberK of latent
features. The standard formulation of IBP lets us define a prior over the binary matrixZ such that
it can have an unbounded number of columns and thus can be a suitable prior in problems dealing
with such structures.

The IBP derivation starts by defining a finite model forK many columns of aN ×K binary matrix.

P (Z) =

K
∏

k=1

α
K

Γ(mk + α
K

)Γ(P − mk − 1)

Γ(P + 1 + α
K

)
(2)

Heremk =
∑

i Zik. In the limiting case, asK → ∞, it as was shown in [10] that the binary matrix
Z generated by IBP is equivalent to one produced by a sequential generative process. This equiv-
alence can be best understood by a culinary analogy of customers coming to an Indian restaurant
and selecting dishes from an infinite array of dishes. In thisanalogy, customers represent obser-
vations and dishes represent latent features. Customer 1 selectsPoisson(α) dishes to begin with.
Thereafter, each incoming customern selects an existing dishk with a probabilitymk/N , where
mk denotes how many previous customers chose that particular dish. The customern then goes on
further to additionally selectPoisson(α/N) new dishes. This process generates a binary matrixZ
with rows representing customer and columns representing dishes. Many real world datasets have
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Figure 1:The graphical model depicts the fully supervised case when all variables X and Y are observed. The
semisupervised case can have X and/or Y consisting of missing values aswell. The graphical model structure
remains the same.

a sparseness property which means that each observation depends only on a subset of all theK
latent features. This means that the binary matrixZ is expected to be reasonably sparse for many
datasets. This makes IBP a suitable choice for also capturing the underlying sparsity in addition to
automatically discovering the number of latent features.

3.2 The Infinite CCA Model

In our proposed framework, the matrixW consisting of canonical correlation vectors is modeled
using an IBP prior. However sinceW can be real-valued and the IBP prior is defined only for
binary matrices, we represent the(D1 + D2) × K matrix W as (B ⊙ V), whereB = [Bx; By]
is a (D1 + D2) × K binary matrix,V = [Vx; Vy] is a (D1 + D2) × K real-valued matrix, and
⊙ denotes their element-wise (Hadamard) product. We place anIBP prior onB that automatically
determinesK, and a Gaussian prior onV. Note thatB andV have the same number of columns.
Under this model, two random vectorsx and y can be modeled asx = (Bx ⊙ Vx)z + Ex and
y = (By ⊙ Vy)z + Ey. Herez is shared betweenx andy, andEx andEy are observation specific
noise.

In the full model,X = [x1, . . . , xN ] is D1 × N matrix consisting ofN samples ofD1 dimensions
each, andY = [y1, . . . , yN ] is another matrix consisting ofN samples ofD2 dimensions each. Here
is the generative story for our basic model:

B ∼ IBP(α)

V ∼ Nor(0, σ2
v I), σv ∼ IG(a, b)

Z ∼ Nor(0, I)

[X;Y] ∼ Nor(B ⊙ V)Z,Ψ),

whereΨ is a diagonal matrix of sizeD × D whereD = (D1 + D2), with each diagonal entry
having an inverse-Gamma prior..

Since our model is probabilistic, it can also deal the problem whenX or Y have missing entries.
This is particularly important in the case of supervised dimensionality reduction (i.e.,X consisting
of inputs andY associated responses) when the labels for some of the inputsare unknown, making
it a model forsemi-superviseddimensionality reduction with partially labeled data. In addition,
placing the IBP prior on the projection matrixW (via the binary matrixB) also helps in capturing
the sparsity inW (see results section for evidence).

3.3 Inference

We take a fully Bayesian approach by treating everything at latent variables and computing the
posterior distributions over them. We use Gibbs sampling with a few Metropolis-Hastings steps to
do inference in this model.
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In what follows,D denotes the data[X; Y], B = [Bx; By], andV = [Vx; Vy]

Sampling B: Sampling the binary IBP matrixB consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptance ratio in the associated M-H step. For
sampling existing dishes, an entry inB is set as 1 according top(Bik = 1|D, B−ik, V, Z,Ψ) ∝
m−i,k

D
p(D|B, V, F,Ψ) whereas it is set as 0 according top(Bik = 0|D, B−ik, V, Z,Ψ) ∝

D−m−i,k

D
p(D|B, V, Z,Ψ). m−i,k =

∑

j 6=i Bjk is how many other customers chose dishk.

For sampling new dishes, we use an M-H step where we simultaneously proposeη =
(Knew, V new, Znew) whereKnew ∼ Poisson(α/D). We accept the proposal with an accep-
tance probability given bya = min{1, p(rest|η∗)

p(rest|η) }. Here,p(rest|η) is the probability of the data
given parametersη. We proposeV new from its prior (Gaussian) but, for faster mixing, we propose
Znew from its posterior.

Sampling V: We sample the real-valued matrixV from its posteriorp(Vi,k|D, B, Z,Ψ) ∝

Nor(Vi,k|µi,k,Σi,k), whereΣi,k = (
∑N

n=1

Z2

k,n

Ψi
+ 1

σ2
v
)−1 andµi,k = Σi,k(

∑N

n=1 Ak,nD∗
i,k)Ψ−1

i .

We defineD∗
i,k = Di,n −

∑K

l=1,l 6=k(Bi,lVi,l)Zl,n. The hyperparameterσv on V has an inverse-
gamma prior and posterior also has the same form.

Sampling Z: We sample forZ from its posteriorp(Z|D, B, V,Ψ) ∝ Nor(Z|µ,Σ) whereµ =
WT(WWT + Ψ)−1D andΣ = I − WT(WWT + Ψ)−1W, whereW = B ⊙ V.

Note that, in our sampling scheme, we considered the matricesBx andBy as simply parts of the big
IBP matrixB, and sampled them together using a single IBP draw. However,one could also sample
them separately as two separate IBP matrices forBx andBy. This would require different IBP draws
for samplingBx andBy with some modification of the existing Gibbs sampler. Different IBP draws
could result in different number of nonzero columns inBx andBy. To deal with this issue, one
could sampleBx (say havingKx nonzero columns) andBy (say havingKy nonzero columns) first,
introduce extra dummy columns (|Kx−Ky| in number) in the matrix having smaller number of non-
zero columns, and then set all such columns to zero. The effective K for each iteration of the Gibbs
sampler would bemax{Kx,Ky}. A similar scheme could also be followed for the corresponding
real-valued matricesVx andVy, sampling them in conjunction withBx andBy respectively.

4 Multitask Learning using Infinite CCA

Having set up the framework for infinite CCA, we now describe its applicability for the problem of
multitask learning. In particular, we consider the settingwhen each example is associated with mul-
tiple labels. Here predicting each individual label becomes a task to be learned. Although one can
individually learn a separate model for each task, doing this would ignore the label correlations. This
makes borrowing the information across tasks crucial, making it imperative to share the statistical
strength among the various task parameters. With this motivation, we apply our infinite CCA model
to capture the label correlations and to learn better predictive features from the data by projective it
to a subspace directed by label information.

More concretely, letX = [x1, . . . ,xN ] be anD × N matrix of predictor variables, andY =
[y1, . . . ,yN ] be anM × N matrix of the responses variables (i.e., the labels) with each yi being an
M × 1 vector of responses for inputxi. The labels can take real (for regression) or categorical (for
classification) values. The infinite CCA model is applied on the pairX andY which is akin to doing
supervised dimensionality reduction for the inputsX. However, since the label matrixY consists
of multiple related labels, the subspace extracted by infinite CCA basedsupervised dimensionality
reduction is expected toalso capture thecorrelationsamong labels. Such a subspace therefore is
expected to consist of much better predictive features thanone obtained by a naı̈ve feature extraction
approach such as simple PCA that completely ignores the label information, or approaches like
Linear Discriminant Analysis (LDA) that do take into account label information but ignore label
correlations.

Multitask learning using the infinite CCA model can be done intwo settings: supervised and semi-
supervised depending on whether or not the inputs of test data are involved in learning the shared
subspaceZ.
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4.1 Fully supervised setting

In the supervised setting, CCA is done on labeled data(X, Y) to give a single shared subspace
Z ∈ R

K×N that is good across all tasks. A model is then learned in theZ subspace to learn
M task parameters{θm} ∈ R

K×1 wherem ∈ {1, . . . ,M}. Each of the parametersθm is then
used to predict the labels for the test data of taskm. However that since the test data is stillD
dimensional, we need to either separately project it down onto theK dimensional subspace and do
predictions in this subspace, or “inflate” each task parameter back toD dimensions by applying
the projection matrixWx and do predictions in the originalD dimensional space. The first option
requires using the fact thatP (Z|Xte) ∝ P (Xte|Z)P (Z) which is a GaussianNor(µZ|X ,ΣZ|X) with
µZ|X = (WT

x ΨxWx + I)−1WT
x Xte andΣZ|X = (WT

x ΨxWx + I)−1. With the second option, we
can inflate each learned task parameter back toD dimensions by applying the projection matrixWx.
We choose the second option for the experiments. We call thisfully supervised setting as model-1.

4.2 A Semi-supervised setting

In the semi-supervised setting, we combine training data and test data (with unknown labels) as
X = [Xtr, Xte] andY = [Ytr, Yte] where the labelsYte are unknown. The infinite CCA model is
then applied on the pair(X, Y) and the parts ofY consisting ofYte are treated as a latent variables
to be imputed. With this model, we get the embeddings also forthe test data and thus training and
testing both take place in theK dimensional subspace, unlike model-1 in which training is done in
K dimensional subspace and prediction are made in the original D dimensional subspace. We call
this semi-supervised setting as model-2.

5 Experiments

Here we report our experimental results on several synthetic and real world datasets. We first show
our results with the infinite CCA as a stand alone algorithm for CCA by using it on a synthetic
dataset demonstrating its effectiveness in capturing the canonical correlations. We then also report
our experiments on applying the infinite CCA model to the problem of multitask learning on two
real world datasets.

5.1 Infinite CCA results on synthetic data

In the first experiment, we demonstrate the effectiveness ofour proposed infinite CCA model in
discovering the correct number of canonical correlation components, and in capturing the sparsity
pattern underlying the projection matrix. For this, we generated two datasets of dimensions 25 and
10 respectively, with each having 100 samples. For this synthetic dataset, we knew the ground truth
(i.e., the number of components, and the underlying sparsity of projection matrix). In particular, the
dataset had 4 correlation components with a 63% sparsity in the true projection matrix. We then
ran both classical CCA and infinite CCA algorithm on this dataset. Looking atall the correlations
discovered by classical CCA, we found that it discovered 8 components having significant correla-
tions, whereas our model correctly discovered exactly 4 components in the first place (we extract
the MAP samples forW andZ output by our Gibbs sampler). Thus on this small dataset, standard
CCA indeed seems to be finding spurious correlations, indicating a case of overfitting (the overfit-
ting problem of classical CCA was also observed in [15] when comparing Bayesian versus classical
CCA). Furthermore, as expected, the projection matrix inferred by the classical CCA had no exact
zero entries and even after thresholding significantly small absolute values to zero, the uncovered
sparsity was only about 25%. On the other hand, the projection matrix inferred by the infinite CCA
model had 57% exact zero entries and 62% zero entries after thresholding very small values, thereby
demonstrating its effectiveness in also capturing the sparsity patterns.

5.2 Infinite CCA applied to multi-label prediction

In the second experiment, we use infinite CCA model to learn a set of related task in the context of
multi-label prediction. For our experiments, we use two real-world multi-label datasets (Yeast and
Scene) from the UCI repository. The Yeast dataset consists of 1500 training and 917 test examples,
each having 103 features. The number of labels (or tasks) perexample is 14. The Scene dataset
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Model Yeast Scene
Acc F1-macro F1-micro AUC Acc F1-macro F1-micro AUC

Full 0.5583 0.3132 0.3929 0.5054 0.7565 0.3445 0.3527 0.6339
PCA 0.5612 0.3144 0.4648 0.5026 0.7233 0.2857 0.2734 0.6103
CCA 0.5441 0.2888 0.3923 0.5135 0.7496 0.3342 0.3406 0.6346

Model-1 0.5842 0.3327 0.4402 0.5232 0.7533 0.3630 0.3732 0.6517
Model-2 0.6156 0.3463 0.4954 0.5386 0.7664 0.3742 0.3825 0.6686

Table 1: Results on the multi-label classification task. Bold face indicates the best performance.
Model-1 and Model-2 scores are averaged over 10 runs with different initializations.

consists of 1211 training and 1196 test examples, each having 294 features. The number of labels
per example for this dataset is 6. We compare the following models for our experiments.

• Full: Train separate classifiers (SVM) on the full feature set for each task.

• PCA: Apply PCA on training and test data and then train separate classifiers for each task
in the low dimensional subspace. This baseline ignores the label information while learning
the low dimensional subspace.

• CCA: Apply classical CCA on training data to extract the shared subspace, learn separate
model (i.e., task parameters) for each task in this subspace, project the task parameters
back to the originalD dimensional feature space by applying the projectionWx, and do
predictions on the test data in this feature pace.

• Model-1: Use our supervised infinite CCA model to learn the shared subspace using only
the training data (see section 4.1).

• Model-2: Use our semi-supervised infinite CCA model tosimultaneouslylearn the shared
subspace for both training and test data (see section 4.2).

The performance metrics used are overall accuracy, F1-Macro, F1-Micro, and AUC (Area Under
ROC Curve). For PCA and CCA, we choseK that gives the best performance, whereas this param-
eter was learned automatically for both of our proposed models. The results are shown in Table-1.
As we can see, both the proposed models do better than the other baselines. Of the two proposed
model, we see that model-2 does better in most cases suggesting that it is useful to incorporate
the test data while learning the projections. This is possible in our probabilistic model since we
could treat the unknownY’s of the test data as latent variables to be imputed while doing the Gibbs
sampling.

We note here that our results are with cases where we only had access to small number of related task
(yeast has 14, scene has 6). We expect the performance improvements to be even more significant
when the number of (related) tasks is high.

6 Related Work

A number of approaches have been proposed in the recent past for the problem of supervised dimen-
sionality reduction ofmulti-labeldata. The few approaches that exist include Partial Least Squares
[2], multi-label informed latent semantic indexing [24], and multi-label dimensionality reduction us-
ing dependence maximization (MDDM) [26]. None of these, however, deal with the case when the
data is only partially labeled. Somewhat similar in spirit to our approach is the work on supervised
probabilistic PCA [25] that extends probabilistic PCA to the setting when we also have access to
labels. However, it assumes a fixed number of components and does not take into account sparsity
of the projections.

The CCA based approach to supervised dimensionality reduction is more closely related to the
notion of dimension reduction for regression (DRR) which isformally defined as finding a low
dimensional representationz ∈ R

K of inputsx ∈ R
D (K ≪ D) for predicting multivariate outputs

y ∈ R
M . An important notion in DRR is that of sufficient dimensionality reduction (SDR) [11, 9]

which states that givenz, x andy are conditionally independent, i.e.,x ⊥⊥ y|z. As we can see in the
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graphical model shown in figure-1, the probabilistic interpretation of CCA yields the same condition
with X andY being conditionally independent givenZ.

Among the DRR based approaches to dimensionality reductionfor real-valued multilabel data, Co-
variance Operator Inverse Regression (COIR) exploits the covariance structures of both the inputs
and outputs [14]. Please see [14] for more details on the connection between COIR and CCA. Be-
sides the DRR based approaches, the problem of extracting useful features from data, particularly
with the goal of making predictions, has also been considered in other settings. The information
bottleneck (IB) method [19] is one such example. Given input-output pairs(X, Y), the information
bottleneck method aims to obtain a compressed representation T of X that can account forY. IB
achieves this using a single tradeoff parameter to represent the tradeoff between thecomplexityof
the representation ofX, measured byI(X; T), and theaccuracyof this representation, measured by
I(T; Y), whereI(.; .) denotes the mutual information between two variables. In another recent work
[3], a joint learning framework is proposed which performs dimensionality reduction and multi-label
classification simultaneously.

In the context of CCA as a stand-alone problem, sparsity is another important issue. In particular,
sparsity improves model interpretation and has been gaining lots of attention recently. Existing
works on sparsity in CCA include the double barrelled lasso which is based on a convex least squares
approach [17], and CCA as a sparse solution to the generalized eigenvalue problem [18] which is
based on constraining the cardinality of the solution to thegeneralized eigenvalue problem to obtain
a sparse solution. Another recent solution is based on a direct greedy approach which bounds the
correlation at each stage [22].

The probabilistic approaches to CCA include the works of [15] and [1], both of which use an au-
tomatic relevance determination (ARD) prior [6] to determine the number of relevant components,
which is a rather ad-hoc way of doing this. In contrast, a nonparametric Bayesian alternative pro-
posed here is a more principled to determine the number of components.

We note that the sparse factor analysis model proposed in [16] actually falls out as a special case
of our proposed infinite CCA model if one of the datasets (X or Y) is absent. Besides, the sparse
factor analysis model is limited to factor analysis whereasthe proposed model can be seen as an in-
finite generalization of both an unsupervised problem (sparse CCA), and (semi)supervised problem
(dimensionality reduction using CCA with full or partial label information), with the latter being
especially relevant for multitask learning in the presenceof multiple labels.

Finally, multitask learning has been tackled using a variety of different approaches, primarily de-
pending on what notion of task relatedness is assumed. Some of the examples include tasks gener-
ated from an IID space [5], and learning multiple tasks usinga hierarchical prior over the task space
[23, 8], among others. In this work, we consider multi-labelprediction in particular, based on the
premise that that a set of such related tasks share an underlying low-dimensional feature space [13]
that captures the task relatedness.

7 Conclusion
We have presented a nonparametric Bayesian model for the Canonical Correlation Analysis problem
to discover the dependencies between a set of variables. In particular, our model does not assume
a fixed number of correlation components and this number is determined automatically based only
on the data. In addition, our model enjoys sparsity making the model more interpretable. The
probabilistic nature of our model also allows dealing with missing data. Finally, we also demonstrate
the model’s applicability to the problem of multi-label learning where our model, directed by label
information, can be used to automatically extract useful predictive features from the data.
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