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Abstract

We propose a nonparametric Bayesian factor regression model that accounts for
uncertainty in the number of factors, and the relationship between factors. To
accomplish this, we propose a sparse variant of the Indian Buffet Process and
couple this with a hierarchical model over factors, based onKingman’s coalescent.
We apply this model to two problems (factor analysis and factor regression) in
gene-expression data analysis.

1 Introduction

Factor analysis is the task of explaining data by means of a set of latent factors. Factorregression
couples this analysis with a prediction task, where the predictions are made solely on the basis of the
factor representation. The latent factor representation achieves two-fold benefits: (1) discovering the
latentprocessunderlying the data; (2) simpler predictive modeling through a compact data represen-
tation. In particular, (2) is motivated by the problem of prediction in the“large P small N” paradigm
[1], where the number of featuresP greatly exceeds the number of examplesN , potentially resulting
in overfitting.

We address three fundamental shortcomings of standard factor analysis approaches [2, 3, 4, 1]: (1)
we do not assume a known number of factors; (2) we do not assumefactors are independent; (3)
we do not assume all features are relevant to the factor analysis. Our motivation for this work stems
from the task of reconstructing regulatory structure from gene-expression data. In this context, fac-
tors correspond to regulatory pathways. Our contributionsthus parallel the needs of gene pathway
modeling. In addition, we couple predictive modeling (for factor regression) within the factor anal-
ysis framework itself, instead of having to model it separately.

Our factor regression model is fundamentally nonparametric. In particular, we treat the gene-to-
factor relationship nonparametrically by proposing a sparse variant of the Indian Buffet Process
(IBP) [5], designed to account for the sparsity of relevant genes (features). Wecouplethis IBP with
a hierarchical prior over the factors. This prior explains the fact that pathways are fundamentally
related: some are involved in transcription, some in signaling, some in synthesis. The nonparametric
nature of our sparse IBP requires that the hierarchical prior alsobe nonparametric. A natural choice
is Kingman’s coalescent [6], a popular distribution over infinite binary trees.

Since our motivation is an application in bioinformatics, our notation and terminology will be drawn
from that area. In particular,genesare features, samplesareexamples, andpathwaysare factors.
However, our model is more general. An alternative application might be to a collaborative filtering
problem, in which case our genes might correspond to movies,our samples might correspond to
users and our pathways might correspond to genres. In this context, all three contributions of our
model still make sense: we do not know how many movie genres there are; some genres are closely
related (romance to comedy versus to action); many movies may be spurious.
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2 Background

Our model uses a variant of the Indian Buffet Process to modelthe feature-factor (i.e., gene-pathway)
relationships. We further use Kingman’s coalescent to model latent pathway hierarchies.

2.1 Indian Buffet Process

The Indian Buffet Process [7] defines a distribution over infinite binary matrices, originally moti-
vated by the need to model the latent factor structure of a given set of observations. In the standard
form it is parameterized by a scale value,α. The distribution can be explained by means of a simple
culinary analogy. Customers (in our context,genes) enter an Indian restaurant and select dishes
(in our context,pathways) from an infinite array of dishes. The first customer selectsPoisson(α)
dishes. Thereafter, each incoming customeri selects a previously-selected dishk with a probability
mk/(i − 1), wheremk is the number of previous customers who have selected dishk. Customeri
then selects anadditionalPoisson(α/i) new dishes. We can easily define a binary matrixZ with
valueZik = 1 precisely when customeri selects dishk. This stochastic process thus defines a
distribution over infinite binary matrices.

It turn out [7] that the stochastic process defined above corresponds to an infinite limit of an
exchangeable process over finite matrices withK columns. This distribution takes the form
p(Z | α) =

∏K
k=1

α
K

Γ(mk+ α
K

)Γ(P−mk−1)

Γ(P+1+ α
K

) , wheremk =
∑

i Zik andP is the total number of cus-
tomers. TakingK → ∞ yields the IBP. The IBP has several nice properties, the mostimportant
of which is exchangeablility. It is the exchangeablility (over samples) that makes efficient sam-
pling algorithms possible. There also exists a two-parameter generalization to IBP where the second
parameterβ controls the sharability of dishes.

2.2 Kingman’s Coalescent

Our model makes use of a latent hierarchical structure over factors; we use Kingman’s coalescent [6]
as a convenient prior distribution over hierarchies. Kingman’s coalescent originated in the study of
population genetics for a set of single-parent organisms. The coalescent is a nonparametric model
over a countable set of organisms. It is most easily understood in terms of its finite dimensional
marginal distributions overn individuals, in which case it is called ann-coalescent. We then take
the limit n → ∞. In our case, the individuals arefactors.

Then-coalescent considers a population ofn organisms at timet = 0. We follow the ancestry of
these individuals backward in time, where each organism hasexactly one parent at timet < 0. The
n-coalescent is a continuous-time, partition-valued Markov process which starts withn singleton
clusters at timet = 0 and evolvesbackward, coalescing lineages until there is only one left. We
denote byti the time at which theith coalescent event occurs (noteti ≤ 0), andδi = ti−1 −
ti the time between events (noteδi > 0). Under then-coalescent, each pair of lineages merges
indepentently with exponential rate1; soδi ∼ Exp

((

n−i+1
2

))

. With probability one, a random draw
from then-coalescent is a binary tree with a single root att = −∞ andn individuals at timet = 0.
We denote the tree structure byπ. The marginal distribution over tree topologies is uniformand
independent of coalescent times; and the model is infinitelyexchangeable. We therefore consider
the limit asn → ∞, calledthe coalescent.

Once the tree structure is obtained, one can define an additional Markov process to evolve over the
tree. One common choice is a Brownian diffusion process. In Brownian diffusion inD dimensions,
we assume an underlying diffusion covariance ofΛ ∈ R

D×D p.s.d. The root is aD-dimensional
vector drawnz. Each non-root node in the tree is drawn Gaussian with mean equal to the value of
the parent, and varianceδiΛ, whereδi is the time that has passed.

Recently, Teh et al. [8] proposed efficient bottom-up agglomerative inference algorithms for the
coalescent. These (approximately) maximize the probability of π andδs, marginalizing out internal
nodes by Belief Propagation. If we associate with each node in the tree ameany andvariancev
message, we update messages as Eq (1), wherei is the current node andli andri are its children.

vi =
[

(vli + (tli − ti)Λ)−1 + (vri + (tri − ti)Λ)−1
]−1

(1)

yi =
[

yli(vli + (tli − ti)Λ)−1 + yri(vri + (tri − ti)Λ)−1
]−1

vi
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3 Nonparametric Bayesian Factor Regression

Recall the standard factor analysis problem:X = AF + E, for standardized dataX. X is aP × N
matrix consisting ofN samples [x1, ...,xN ] of P features each.A is the factor loading matrix of
sizeP × K andF = [f1, ...,fN ] is the factor matrix of sizeK × N . E = [e1, ...,eN ] is the matrix
of idiosyncratic variations.K, the number of factors, is known.

Recall that our goal is to treat the factor analysis problem nonparametrically, to model feature rele-
vance, and to model hierarchical factors. For expository purposes, it is simplest to deal with each of
these issues in turn. In our context, we begin by modeling thegene-factor relationship nonparamet-
rically (using the IBP). Next, we propose a variant of IBP to model gene relevance. We then present
the hierarchical model for inferring factor hierarchies. We conclude with a presentation of the full
model and our mechanism for modifying the factoranalysisproblem to factorregression.

3.1 Nonparametric Gene-Factor Model

We begin by directly using the IBP to infer the number of factors. Although IBP has been applied
to nonparametric factor analysis in the past [5], the standard IBP formulation places IBP prior on
the factor matrix (F) associatingsamples(i.e. a set of features) with factors. Such a model assumes
that the sample-fctor relationship is sparse. However, this assumption is inappropriate in the gene-
expression context where it is not the factors themselves but the associationsamong genes and
factors (i.e., the factor loading matrixA) that are sparse. In such a context, each sample depends on
all the factors but each gene within a sample usually dependsonly on a small number of factors.

Thus, it is more appropriate to model the factor loading matrix (A) with the IBP prior. Note that
sinceA andF are related with each other via the number of factorsK, modelingA nonparametrically
allows our model to also have an unbounded number of factors.

For most gene-expression problems [1], a binary factor loadings matrix (A) is inappropriate. There-
fore, we instead use the Hadamard (element-wise) product ofa binary matrixZ and a matrixV
of reals. Z andV are of the same size asA. The factor analysis model, for each samplei, thus
becomes:xi = (Z ⊙ V )f i + ei. We haveZ ∼ IBP(α, β). α andβ are IBP hyperparameters
and have vague gamma priors on them. Our initial model assumes no factor hierarchies and hence
the prior overV would simply be a Gaussian:V ∼ Nor(0, σ2

vI) with an inverse-gamma prior on
σv. F has a zero mean, unit variance Gaussian prior, as used in standard factor analysis. Finally,
ei = Nor(0,Ψ) models the idiosyncratic variations of genes whereΨ is aP × P diagonal matrix
(diag(Ψ1, ...,ΨP )). Each entryΨP has an inverse-gamma prior on it.

3.2 Feature Selection Prior

Typical gene-expression datasets are of the order of several thousands of genes, most of which
are not associated with any pathway (factor). In the above, these are accounted for only by the
idiosyncratic noise term. A more realistic model is that certain genes simply do not participate in
the factor analysis: for a culinary analogy, the genes enterthe restaurant and leave before selecting
any dishes. Those genes that “leave”, we term “spurious.” Weadd an additional prior term to account
for such spurious genes; effectively leading to a sparse solution (over the rows of the IBP matrix).
It is important to note that this notion of sparsity is fundamentallydifferent from the conventional
notion of sparsity in the IBP. The sparsity in IBP is overcolumns, not rows. To see the difference,
recall that the IBP contains a “rich get richer” phenomenon:frequently selected factors are more
likely to get reselected. Consider a truly spurious gene andask whether it is likely to select any
factors. If some factork is already frequently used, thena priori this gene is more likely to select it.
The only downside to selecting it is the data likelihood. By setting the corresponding value inV to
zero, there is no penalty.

Our sparse-IBP prior is identical to the standard IBP prior with one exception. Each customer (gene)
p is associated with Bernoulli random variableTp that indicates whether it samplesanydishes. The
T vector is given a parameterρ, which, in turn, is given a Beta prior with parametersa, b.

3.3 Hierarchical Factor Model

In our basic model, each column of the matrixZ (and the corresponding column inV ) is associated
with a factor. These factors are considered unrelated. To model the fact that factors are, in fact, re-
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lated, we introduce a factor hierarchy. Kingman’s coalescent [6] is an attractive prior for integration
with IBP for several reasons. It is nonparametric and describes exchangeable distributions. This
means that it can model a varying number of factors. Moreover, efficient inference algorithms exist
[8].

Figure 1: The graphical model for nonparametric
Bayesian Factor Regression.X consists of response
variables as well.

Figure 2: Training and test data are combined to-
gether and test responses are treated as missing values
to be imputed

3.4 Full Model and Extension to Factor Regression

Our proposed graphical model is depicted in Figure 1. The keyaspects of this model are: the IBP
prior overZ, the sparse binary vectorT, and the Coalescent prior overV.

In standard Bayesian factor regression [1], factor analysis is followed by the regression task. The
regression is performed only on the basis ofF, rather than the full dataX. For example, a simple
linear regression problem would involve estimating aK-dimensional parameter vectorθ with re-
gression valueθ⊤

F. Our model, on the other hand, integrates factor regressioncomponent in the
nonparametric factor analysis framework itself. We do so byprepending the responsesyi to the
expression vectorxi and joining the training and test data (see figure 2). The unknown responses
in the test data are treated as missing variables to be iteratively imputed in our MCMC inference
procedure. It is straightforward to see that it is equivalent to fitting another sparse model relating
factors to responses. Our model thus allows the factor analysis to take into account the regression
task as well. In case of binary responses, we add an extra probit regression step to predict binary
outcomes from real-valued responses.

4 Inference

We use Gibbs sampling with a few M-H steps. The Gibbs distributions are summarized here.

Sampling the IBP matrix Z: SamplingZ consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptance ratio in the associated M-H step. For
sampling existing dishes, an entry inZ is set as 1 according top(Zik = 1|X, Z−ik, V, F,Ψ) ∝

m−i,k

(P+β−1)p(X|Z, V, F,Ψ) whereas it is set as 0 according top(Zik = 0|X, Z−ik, V, F,Ψ) ∝
P+β−1−m−i,k

(P+β−1) p(X|Z, V, F,Ψ). m−i,k =
∑

j 6=i Zjk is how many other customers chose dishk.

For sampling new dishes, we use an M-H step where we simultaneously proposeη =
(Knew, V new, Fnew) whereKnew ∼ Poisson(αβ/(β + P − 1)). We accept the proposal with
an acceptance probability (following [9]) given bya = min{1, p(rest|η∗)

p(rest|η) }. Here,p(rest|η) is the
likelihood of the data given parametersη. We proposeV new from its prior (either Gaussian or
Coalescent) but, for faster mixing, we proposeFnew from its posterior.

SamplingV new from the coalescent is slightly involved. As shown pictorially in figure 3, proposing
a new column ofV corresponds to adding a new leaf node to the existing coalescent tree. In
particular, we need to find a sibling (s) to the new nodey′ and need to find an insertion point on the
branch joining the siblings to its parentp (the grandparent ofy′). Since the marginal distribution
over trees under the coalescent is uniform, the siblings is chosen uniformly over nodes in the tree.
We then use importance sampling to select an insertion time for the new nodey′ betweents and
tp, according to the exponential distribution given by the coalescent prior (our proposal distribution
is uniform). This gives an insertion point in the tree, whichcorresponds to the new parent ofy′.
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We denote this new parent byp′ and the time of insertion ast. The predictive density of the newly
inserted nodey′ can be obtained by marginalizing the parentp′. This yieldsNor(y0,v0), given by:

v0 = [(vs + (ts − t)Λ)−1 + (vp + (t − tp)Λ)−1]−1

y0 = [ys/(vs + (ts − t)Λ) + yp/(vp + (tp − t)Λ)]v0

Here,ys andvs are the messages passedup through the tree, whileyp andvp are the messages
passeddownthrough the tree (compare to Eq (1)).

Figure 3: Adding a
new node to the tree

Sampling the sparse IBP vector T:In thesparse IBP prior, recall that we
have an additionalP -many variablesTp, indicating whether genep “eats”
any dishes.Tp is drawn from Bernoulli with parameterρ, which, in turn, is
given aBet(a, b) prior. For inference, we collapseρ andΨ and get Gibbs
posterior overTp of the formp(Tp = 1|.) ∝ (a +

∑

q 6=p Tp)Stu(xp|(Zp ⊙

Vp)F , g/h, g)) andp(Tp = 0|.) ∝ (b + P −
∑

q 6=p Tq)Stu(xp|0, g/h, g),
whereStu is the non-standard Student’s t-distribution.g, h are hyperparam-
eters of the inverse-gamma prior on the entries ofΨ.

Sampling the real valued matrix V: For the case whenV has a Gaus-
sian prior on it, we sampleV from its posteriorp(Vg,j |X, Z, F,Ψ) ∝

Nor(Vg,j |µg,j ,Σg,j), where Σg,j = (
∑N

i=1

F 2

j,i

Ψg
+ 1

σ2
v
)−1 and

µg,j = Σg,j(
∑N

i=1 Fj,iX
∗
g,j)Ψ

−1
g . We define X∗

g,j = Xg,i −
∑K

l=1,l 6=j(Ag,lVg,l)Fl,i, andA = Z ⊙ V. The hyperparameterσv on V has an inverse-gamma
prior and posterior also has the same form. For the case with coalescent prior onV, we have

Σg,j = (
∑N

i=1

F 2

j,i

Ψg
+ 1

v0j
)−1 and µg,j = Σg,j(

∑N
i=1 Fj,iX

∗
g,j)(Ψg +

y0g,j

v0j
)−1, wherey0 and

v0 are the Gaussian posteriors of the leaf node added in the coalescent tree (see Eq (1)), which
corresponds to the column ofV being sampled.

Sampling the factor matrix F: We sample forF from its posteriorp(F|X, Z, V,Ψ) ∝ Nor(F|µ,Σ)
whereµ = A

T(AA
T + Ψ)−1

X andΣ = I − (AA
T + Ψ)−1

A, whereA = Z ⊙ V

Sampling the idiosyncratic noise term:We place an inverse-gamma prior on the diagonal entries
of Ψ and the posterior too is inverse-gamma:p(Ψp|.) ∝ IG(g + N

2 , h

1+ h
2

tr(ET E)
), whereE =

X − (Z ⊙ V)F.

Sampling IBP parameters: We sample the IBP parameterα from its posterior: p(α|.) ∼
Gam(K+ + a, b

1+bHP (β) ), whereK+ is the number of active features at any moment andHP (β) =
∑P

i=1 1/(β + i − 1). β is sampled from a prior proposal using an M-H step.

Sampling the Factor Tree: Use theGreedy-Rate1 algorithm [8].

5 Related Work

A number of probabilistic approaches have been proposed in the past for the problem of gene-
regulatory network reconstruction [2, 3, 4, 1]. Some take into account the information on the prior
network topology [2], which is not always available. Most assume the number of factors is known.
To get around this, one can perform model selection via Reversible Jump MCMC [10] or evolu-
tionary stochastic model search [11]. Unfortunately, these methods are often difficult to design and
may take quite long to converge. Moreover, they are difficultto integrate with other forms of prior
knowledge (eg., factor hierarchies). A somewhat similar approach to ours is the infinite indepen-
dent component analysis (iICA) model of [12] which treats factor analysis as a special case of ICA.
However, their model is limited to factor analysis and does not take into account feature selection,
factor hierarchy and factor regression. As a generalization to the standard ICA model, [13] proposed
a model in which the components can be related via a tree-structured graphical model. It, however,
assumes a fixed number of components.

Structurally, our model with Gaussian-V (i.e. no hierarchy over factors) is most similar to the
Bayesian Factor Regression Model (BFRM) of [1]. BFRM assumes a sparsity inducing mixture
prior on the factor loading matrixA. Specifically,Apk ∼ (1 − πpk)δ0(Apk) + πpkNor(Apk|0, τk)
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whereδ0() is a point mass centered at zero. To complete the model specification, they defineπpk ∼
(1−ρk)δ0(πpk)+ρkBet(πpk|sr, s(1−r)) andρk ∼ Bet(ρk|av, a(1−v)). Now, integrating outπpk

gives:Apk ∼ (1−vρk)δ0(Apk)+vρkNor(Apk|0, τk). It is interesting to note that the nonparametric
prior of our model (factor loading matrix defined asA = Z ⊙ V) is actually equivalent to the
(parametric) sparse mixture prior of the BFRM asK →∞. To see this, note that our prior on the
factor loading matrixA (composed ofZ having an IBP prior, andV having a Gaussian prior), can be
written asApk ∼ (1−ρk)δ0(Apk)+ρkNor(Apk|0, σ2

v), if we defineρk ∼ Bet(1, αβ/K). It is easy
to see that, for BFRM whereρk ∼ Bet(av, a(1− v)), settinga = 1+αβ/K andv = 1−αβ/(aK)
recovers our model in the limiting case whenK→∞.

6 Experiments

In this section, we report our results on synthetic and real datasets. We compare our nonparametric
approach with the evolutionary search based approach proposed in [11], which is the nonparametric
extension to BFRM.

We used the gene-factor connectivity matrix of E-coli network (described in [14]) to generate a
synthetic dataset having 100 samples of 50 genes and 8 underlying factors. Since we knew the
ground truth for factor loadings in this case, this dataset was ideal to test for efficacy in recovering
the factor loadings (binding sites and number of factors). We also experimented with a real gene-
expression data which is a breast cancer dataset having 251 samples of 226 genes and 5 prominent
underlying factors (we know this from domain knowledge).

6.1 Nonparametric Gene-Factor Modeling and Variable Selection

For the synthetic dataset generated by the E-coli network, the results are shown in figure 4 comparing
the actual network used to generate the data and the inferredfactor loading matrix. As shown in
figure 4, we recovered exactly the same number (8) of factors,and almost exactly the same factor
loadings (binding sites and number of factors) as the groundtruth. In comparison, the evolutionary
search based approach overestimated the number of factors and the inferred loadings clearly seem
to be off from the actual loadings (even modulo column permutations).
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Figure 4: (Left and middle) True and inferred factor loadings (with our approach) for the synthetic data
with P=50, K=8 generated using connectivity matrix of E-coli data. (Right)Inferred factor loadings with the
evolutionary search based approach. White rectangles represent active sites. The data also has added noise with
signal-to-noise-ratio of 10

Our results on real data are shown in figure 5. To see the effectof variable selection for this data,
we also introduced spurious genes by adding 50 random features in each sample. We observe the
following: (1) Without variable selection being on, spurious genes result in an overestimated number
of factors and falsely discovered factor loadings for spurious genes (see figure 5(a)), (2) Variable
selection, when on, effectively filters out spurious genes,without overestimating the number of
factors (see figure 5(b)). We also investigated the effect ofnoise on the evolutionary search based
approach and it resulted in an overestimated number of factor, plus false discovered factor loadings
for spurious genes (see figure 5(c)). To conserve space, we donot show here the cases when there
are no spurious genes in the data but it turns out that variable selection does not filter out any of 226
relevant genes in such a case.

6.2 Hierarchical Factor Modeling

Our results with hierarchical factor modeling are shown in figure 6 for synthetic and real data. As
shown, the model correctly infers the gene-factor associations, the number of factors, and the factor
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Figure 5:Effect of spurious genes (heat-plots of factor loading matrix shown):(a) Standard IBP (b) Our model
with variable selection (c) The evolutionary search based approach

hierarchy. There are several ways to interpret the hierarchy. From the factor hierarchy for E-coli data
(figure 6), we see that column-2 (corresponding to factor-2)of theV matrix is the most prominent
one (it regulates the highest number of genes), and is closest to the tree-root, followed by column-
2, which it looks most similar to. Columns corresponding to lesser prominent factors are located
further down in the hierarchy (with appropriate relatedness). Figure 6 (d) can be interpreted in a
similar manner for breast-cancer data. The hierarchy can beused to find factors in order of their
prominence. The higher we chop off the tree along the hierarchy, the more prominent the factors,
we discover, are. For instance, if we are only interested in top 2 factors in E-coli data, we can
chop off the tree above the sixth coalescent point. This is akin to the agglomerative clustering sense
which is usually donepost-hoc. In contrast, our model discovers the factor hierarchies aspart of the
inference procedure itself. At the same time, there is no degradation of data reconstruction (in mean
squared error sense) and the log-likelihood, when comparedto the case with Gaussian prior onV
(see figure 7 - they actuallyimprove). We also show in section 6.3 that hierarchical modeling results
in better predictive performance for the factor regressiontask. Empirical evidences also suggest that
the factor hierarchy leads to faster convergence since mostof the unlikely configurations will never
be visited as they are constrained by the hierarchy.
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Figure 6:Hierarchical factor modeling results. (a) Factor loadings for E-coli data. (b) Inferred hierarchy for
E-coli data. (c) Factor loadings for breast-cancer data. (d) Inferred hierarchy for breast-cancer data..

6.3 Factor Regression

We report factor regression results for binary and real-valued responses and compare both variants
of our model (GaussianV and CoalescentV) against 3 different approaches: logistic regression,
BFRM, and fitting a separate predictive model on the discovered factors (see figure 7 (c)). The
breast-cancer dataset had two binary response variables (phenotypes) associated with each sample.
For this binary prediction task, we split the data into training-set of 151 samples and test-set of 100
samples. This is essentially a transduction setting as described in section 3.4 and shown in figure 2.
For real-valued prediction task, we treated a 30x20 block ofthe data matrix as our held-out data and
predicted it based on the rest of the entries in the matrix. This method of evaluation is akin to the
task of image reconstruction [15]. The results are averagedover 20 random initializations and the
low error variances suggest that our method is fairly robustw.r.t. initializations.
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Figure 7: (a) MSE on the breast-cancer data for BFRM (horizontal line), our model with Gaussian (top red
curved line) and Coalescent (bottom blue curved line) priors. This MSE isthe reconstruction error for the data
- different from the MSE for the held-out real valued responses (fig7 c) (b) Log-likelihoods for our model with
Gaussian (bottom red curved line) and Coalescent (top blue curved line)priors. (c) Factor regression results

7 Conclusions and Discussion

We have presented a fully nonparametric Bayesian approach to sparse factor regression, modeling
the gene-factor relationship using a sparse variant of the IBP. However, the true power of nonpara-
metric priors is evidenced by the ease of integration of task-specific models into the framework.
Both gene selection and hierarchical factor modeling are straightforward extensions in our model
that do not significantly complicate the inference procedure, but lead to improved model perfor-
manceandmore understandable outputs. We applied Kingman’s coalescent as a hierarhical model
on V, the matrix modulating the expression levels of genes in factors. An interesting open question
is whether the IBP can, itself, be modeled hierarchically.
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