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Abstract

We propose a nonparametric Bayesian factor regressionlrtiateaccounts for
uncertainty in the number of factors, and the relationskgtwien factors. To
accomplish this, we propose a sparse variant of the IndidfeBBrocess and
couple this with a hierarchical model over factors, baseliogman’s coalescent.
We apply this model to two problems (factor analysis anddiactgression) in
gene-expression data analysis.

1 Introduction

Factor analysis is the task of explaining data by means of afdatent factors Factorregression
couples this analysis with a prediction task, where theiptieths are made solely on the basis of the
factor representation. The latent factor representatibreses two-fold benefits: (1) discovering the
latentprocesaunderlying the data; (2) simpler predictive modeling thglboa compact data represen-
tation. In particular, (2) is motivated by the problem ofgiition in the“large P small N” paradigm
[1], where the number of featurésgreatly exceeds the number of examplegpotentially resulting

in overfitting.

We address three fundamental shortcomings of standamt faicalysis approaches [2, 3, 4, 1]: (1)
we do not assume a known number of factors; (2) we do not asfactws are independent; (3)
we do not assume all features are relevant to the factor sisalur motivation for this work stems
from the task of reconstructing regulatory structure fraenerexpression data. In this context, fac-
tors correspond to regulatory pathways. Our contributibns parallel the needs of gene pathway
modeling. In addition, we couple predictive modeling (factor regression) within the factor anal-
ysis framework itself, instead of having to model it sepelsat

Our factor regression model is fundamentally nonparametn particular, we treat the gene-to-

factor relationship nonparametrically by proposing a sparariant of the Indian Buffet Process

(IBP) [5], designed to account for the sparsity of relevaries (features). Weouplethis IBP with

a hierarchical prior over the factors. This prior explaihe fact that pathways are fundamentally
related: some are involved in transcription, some in siggasome in synthesis. The nonparametric
nature of our sparse IBP requires that the hierarchicaf pigmbe nonparametric. A natural choice

is Kingman'’s coalescent [6], a popular distribution ovdinite binary trees.

Since our motivation is an application in bioinformaticar aotation and terminology will be drawn
from that area. In particulagenesarefeatures samplesare examplesandpathwaysarefactors.
However, our model is more general. An alternative appbeatight be to a collaborative filtering
problem, in which case our genes might correspond to moeigssamples might correspond to
users and our pathways might correspond to genres. In thiexto all three contributions of our
model still make sense: we do not know how many movie genegs tiire; some genres are closely
related (romance to comedy versus to action); many movigsh@apurious.



2 Background

Our model uses a variant of the Indian Buffet Process to ntbddeature-factor (i.e., gene-pathway)
relationships. We further use Kingman'’s coalescent to miatknt pathway hierarchies.

2.1 Indian Buffet Process

The Indian Buffet Process [7] defines a distribution ovemiidi binary matrices, originally moti-
vated by the need to model the latent factor structure of @gbet of observations. In the standard
form it is parameterized by a scale value, The distribution can be explained by means of a simple
culinary analogy. Customers (in our contegéne$ enter an Indian restaurant and select dishes
(in our contextpathway3 from an infinite array of dishes. The first customer seldtissson(«)
dishes. Thereafter, each incoming custoigzlects a previously-selected diskwith a probability

my /(i — 1), wherem,, is the number of previous customers who have selectedidiSlustomer
then selects aadditional Poisson(a/i) new dishes. We can easily define a binary ma#riwith
value Z;;, = 1 precisely when customerselects disht. This stochastic process thus defines a
distribution over infinite binary matrices.

It turn out [7] that the stochastic process defined aboveesponds to an infinite limit of an
exchangeable process over finite matrices withcolumns. This distribution takes the form

p(Z]a) =1, %F(m’}fli)ff;mrl), wheremy, = Y, Z;x and P is the total number of cus-
K

tomers. Takingk — oo yields the IBP. The IBP has several nice properties, the ingsbrtant

of which is exchangeablility. It is the exchangeablilitywéo samples) that makes efficient sam-

pling algorithms possible. There also exists a two-parangsneralization to IBP where the second

parameteps controls the sharability of dishes.

2.2 Kingman's Coalescent

Our model makes use of a latent hierarchical structure @atofs; we use Kingman'’s coalescent [6]
as a convenient prior distribution over hierarchies. Kiagrs coalescent originated in the study of
population genetics for a set of single-parent organisniie doalescent is a nonparametric model
over a countable set of organisms. It is most easily undedsito terms of its finite dimensional
marginal distributions over individuals, in which case it is called ancoalescent. We then take
the limitn — oo. In our case, the individuals afactors

Then-coalescent considers a populationnrobrganisms at time = 0. We follow the ancestry of
these individuals backward in time, where each organisnekastly one parent at time< 0. The
n-coalescent is a continuous-time, partition-valued Margmocess which starts with singleton
clusters at timg¢ = 0 and evolvesdackward coalescing lineages until there is only one left. We
denote byt; the time at which theith coalescent event occurs (ndte< 0), andd; = t;—1 —

t; the time between events (naig > 0). Under then-coalescent, each pair of lineages merges
indepentently with exponential ratesod; ~ &p (("~2™")). With probability one, a random draw
from then-coalescent is a binary tree with a single root at —oco andn individuals at timef = 0.

We denote the tree structure by The marginal distribution over tree topologies is unifoamd
independent of coalescent times; and the model is infingrthangeable. We therefore consider
the limit asn — oo, calledthe coalescent.

Once the tree structure is obtained, one can define an adlititarkov process to evolve over the
tree. One common choice is a Brownian diffusion process.rawian diffusion inD dimensions,
we assume an underlying diffusion covarianceAofe RP*P p.s.d. The root is @-dimensional
vector drawnz. Each non-root node in the tree is drawn Gaussian with meaal égjthe value of
the parent, and varianéeA, whered; is the time that has passed.

Recently, Teh et al. [8] proposed efficient bottom-up agglmative inference algorithms for the
coalescent. These (approximately) maximize the proltghifir andjs, marginalizing out internal
nodes by Belief Propagation. If we associate with each nodke tree aneany andvariancewv
message, we update messages as Eq (1), wietke current node and andri are its children.

vi = [(v1i + (t — 1) A)"E + (v + (b — t)A) ] (1)
y; = [y (i + (i — t)A) " 4y (vei + (b — t)A) ]



3 Nonparametric Bayesian Factor Regression

Recall the standard factor analysis problefn= AF + E, for standardized datd. X isaP x N
matrix consisting ofN samples £, ..., xy] of P features eachA is the factor loading matrix of
sizeP x K andF = [f, ..., f 5] is the factor matrix of sizéC x N. E =[ey, ..., ex] is the matrix
of idiosyncratic variationsk, the number of factors, is known.

Recall that our goal is to treat the factor analysis problemparametrically, to model feature rele-
vance, and to model hierarchical factors. For expositorpases, it is simplest to deal with each of
these issues in turn. In our context, we begin by modelingyme-factor relationship nonparamet-
rically (using the IBP). Next, we propose a variant of IBP todal gene relevance. We then present
the hierarchical model for inferring factor hierarchiese \@bnclude with a presentation of the full
model and our mechanism for modifying the fachmalysisproblem to factoregression

3.1 Nonparametric Gene-Factor Model

We begin by directly using the IBP to infer the number of fastoAlthough IBP has been applied

to nonparametric factor analysis in the past [5], the stathti3P formulation places IBP prior on

the factor matrix F') associatinggampleqi.e. a set of features) with factors. Such a model assumes
that the sample-fctor relationship is sparse. Howeves, desumption is inappropriate in the gene-
expression context where it is not the factors themselvéghauassociationsamong genes and
factors (i.e., the factor loading matriX) that are sparse. In such a context, each sample depends on
all the factors but each gene within a sample usually depenigson a small number of factors.

Thus, it is more appropriate to model the factor loading m4tA) with the IBP prior. Note that
sinceA andF are related with each other via the number of factgrsodelingA nonparametrically
allows our model to also have an unbounded number of factors.

For most gene-expression problems [1], a binary factoritmgdmatrix (A) is inappropriate. There-
fore, we instead use the Hadamard (element-wise) produathifary matrixZ and a matrixV

of reals. Z andV are of the same size #s The factor analysis model, for each sample¢hus
becomesx; = (Z o V)f, +e;. We haveZ ~ IBP(«,3). a andg are IBP hyperparameters
and have vague gamma priors on them. Our initial model assmméactor hierarchies and hence
the prior overV would simply be a Gaussia/ ~ Nor(0, o21) with an inverse-gamma prior on
o,. F has a zero mean, unit variance Gaussian prior, as used iasthfactor analysis. Finally,
e; = Nor(0, ¥) models the idiosyncratic variations of genes whrés a P x P diagonal matrix
(diag(Vy, ..., ¥p)). Each entryl p» has an inverse-gamma prior on it.

3.2 Feature Selection Prior

Typical gene-expression datasets are of the order of deemasands of genes, most of which
are not associated with any pathway (factor). In the above, theseacounted for only by the
idiosyncratic noise term. A more realistic model is thatt@ier genes simply do not participate in
the factor analysis: for a culinary analogy, the genes ghterestaurant and leave before selecting
any dishes. Those genes that “leave”, we term “spurious.atldean additional prior term to account
for such spurious genes; effectively leading to a sparstisal (over the rows of the IBP matrix).
It is important to note that this notion of sparsity is fundantally differentfrom the conventional
notion of sparsity in the IBP. The sparsity in IBP is oe@lumns notrows. To see the difference,
recall that the IBP contains a “rich get richer” phenomenfsaquently selected factors are more
likely to get reselected. Consider a truly spurious geneasidwhether it is likely to select any
factors. If some factok is already frequently used, tharpriori this gene is more likely to select it.
The only downside to selecting it is the data likelihood. Bytieg the corresponding value Wi to
zero, there is no penalty.

Our sparse-IBP prior is identical to the standard IBP priithwne exception. Each customer (gene)
p is associated with Bernoulli random varialillg that indicates whether it samplasydishes. The
T vector is given a parametgr which, in turn, is given a Beta prior with parameters.

3.3 Hierarchical Factor Model

In our basic model, each column of the matéxand the corresponding column¥n) is associated
with a factor. These factors are considered unrelated. Taeirtbe fact that factors are, in fact, re-



lated, we introduce a factor hierarchy. Kingman’s coalesf is an attractive prior for integration
with IBP for several reasons. It is nonparametric and dbssrexchangeable distributions. This
means that it can model a varying number of factors. More@fcient inference algorithms exist

[8].
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Figure 1: The graphical model for nonparametfiégure 2: Training and test data are combined to-
Bayesian Factor RegressioN. consists of respon@ether and test responses are treated as missing values
variables as well. to be imputed

3.4 Full Model and Extension to Factor Regression

Our proposed graphical model is depicted in Figure 1. Thedspects of this model are: the IBP
prior overZ, the sparse binary vect@r, and the Coalescent prior ov¥f.

In standard Bayesian factor regression [1], factor analigsfollowed by the regression task. The
regression is performed only on the basigofrather than the full datX. For example, a simple
linear regression problem would involve estimatingadimensional parameter vectérwith re-
gression valu@ " F. Our model, on the other hand, integrates factor regressiarponent in the
nonparametric factor analysis framework itself. We do sgispending the responsgsto the
expression vectog; and joining the training and test data (see figure 2). The owkiresponses
in the test data are treated as missing variables to beivsatmputed in our MCMC inference
procedure. It is straightforward to see that it is equivaterfitting another sparse model relating
factors to responses. Our model thus allows the factor aisaly take into account the regression
task as well. In case of binary responses, we add an extrét pegibession step to predict binary
outcomes from real-valued responses.

4 Inference

We use Gibbs sampling with a few M-H steps. The Gibbs distidims are summarized here.

Sampling the IBP matrix Z: SamplingZ consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptatio in the associated M-H step. For
sampling existing dishes, an entry Fhis set as 1 according to(Z;, = 1|X,Z_;x,V,F, ¥) x

%p(X\Z,VF,@) whereas it is set as 0 according #0Z;, = 0|X,Z_;;,V,F,¥)

P+B—1—m_; _
WP(X|Z,V, F, ‘I’) m_;r = Zj;éz

For sampling new dishes, we use an M-H step where we simulteshe proposen =
(Knew ynew pnewy where K™ ~ Poisson(af/(8 + P — 1)). We accept the proposal with

an acceptance probability (following [9]) given ly= min{1, %}. Here,p(rest|n) is the

likelihood of the data given parameteys We proposel/ <" from its prior (either Gaussian or
Coalescent) but, for faster mixing, we propdse&" from its posterior.

Zji is how many other customers chose dish

Samplingl’"¢* from the coalescent is slightly involved. As shown picttyién figure 3, proposing

a new column ofV corresponds to adding a new leaf node to the existing caaiédoee. In
particular, we need to find a sibling)(to the new node’ and need to find an insertion point on the
branch joining the sibling to its parentp (the grandparent af’). Since the marginal distribution
over trees under the coalescent is uniform, the siblilgchosen uniformly over nodes in the tree.
We then use importance sampling to select an insertion tonéhe new node/’ betweent, and
t,, according to the exponential distribution given by theleseent prior (our proposal distribution
is uniform). This gives an insertion point in the tree, whigdrresponds to the new parent gf



We denote this new parent by and the time of insertion as The predictive density of the newly
inserted nodeg’ can be obtained by marginalizing the parghtThis yieldsNor(y,, vo), given by:

vo = [(vs + (ts = )A) ™! + (v + (t — 1) A) 1]
Yo = [Ys/(vs + (ts = A) + 4,/ (vp + (tp — ) A)]vo

Here, y; and v, are the messages passguthrough the tree, whilg, andv, are the messages
passedlownthrough the tree (compare to Eq (1)).

Sampling the sparse IBP vector T:In thesparse IBP priorrecall that we P (L)

have an additionaP-many variabled’,, indicating whether geng “eats”

any dishesT, is drawn from Bernoulli with parameter, which, in turn, is p’ (1)

given al3et(a, b) prior. For inference, we collapseand ¥ and get Gibbs g

posterior ovefT), of the formp(T}, = 1|.) x (a + Zq# T,)Stu(x,|(Z, ®
Vp)F,g/h,g)) andp(T}, = 0].) oc (b+ P =3 ., Tq)u(y|0,9/h, g),

whereStu is the non-standard Student’s t- d|str|but|@nh are hyperparam- p.(t) y

eters of the inverse-gamma prior on the entrie@of °

Sampling the real valued matrix V: For the case wheW has a Gaus- Figure 3: Adding a
sian prior on it, we sampl&/ from its posteriorp(V, ;|X,Z,F,¥) o new node to the tree

N F},
Nor(Vy jlugj. Bg,5), where S5 = (3L, 3¢ + 5)' and

oz

te; = Toi(0N Fjs Xr )Wl We define X7, = X, —

Z£17l¢j( g1V ) Flis andA = Z ® V. The hyperparameter, onV has an inverse-gamma
prior and posterior also has the same form. For the case w#lescent prior oV, we have
i = (ZZV1I;“ + Uij) Landp,; = %, ZZ VEaX ) (P + y”“) 1 wherey, and
vg are the Gaussian posteriors of the leaf node added in thescrmit tree (see Eq (1)), which
corresponds to the column ¥fbeing sampled.

Sampling the factor matrix F: We sample foF from its posteriop(F|X, Z,V, ¥) oc Nor(F|u, X)
wherey = AT(AAT + )" 1X andE =1 — (AAT + ¥)"1A , whereA=Z oV

Sampling the idiosyncratic noise term:We place an inverse- gamma prlor on the diagonal entries
of ¥ and the posterior too is inverse-gamma¥,|.) «x ZG(g + whereE =
X—(Zo®V)F.

Sampling IBP parameters: We sample the IBP parameter from its posterior: p(«|.)
Gam( K + a, #P(B))’ whereK , is the number of active features at any moment Apd5) =

2 P 144 tr(ETE))

S 1/(B+i—1). Bis sampled from a prior proposal using an M-H step.
Sampling the Factor Tree: Use theGreedy-Ratel algorithm [8].

5 Related Work

A number of probabilistic approaches have been proposelerpast for the problem of gene-
regulatory network reconstruction [2, 3, 4, 1]. Some take account the information on the prior
network topology [2], which is not always available. Mossasie the number of factors is known.
To get around this, one can perform model selection via BélerJump MCMC [10] or evolu-
tionary stochastic model search [11]. Unfortunately, ¢heethods are often difficult to design and
may take quite long to converge. Moreover, they are diffitnintegrate with other forms of prior
knowledge (eg., factor hierarchies). A somewhat similggrapch to ours is the infinite indepen-
dent component analysis (ilICA) model of [12] which treatstdéa analysis as a special case of ICA.
However, their model is limited to factor analysis and doestake into account feature selection,
factor hierarchy and factor regression. As a generaliraticthe standard ICA model, [13] proposed
a model in which the components can be related via a treetstad graphical model. It, however,
assumes a fixed number of components.

Structurally, our model with Gaussian-(i.e. no hierarchy over factors) is most similar to the
Bayesian Factor Regression Model (BFRM) of [1]. BFRM asssimesparsity inducing mixture
prior on the factor loading matrik. Specifically,A,, ~ (1 — mp)d0(Apk) + TprNOr(Api|0, %)



wheredy () is a point mass centered at zero. To complete the model speifi, they definer,;, ~
(1= pr)do(mpk) + prBet(mpr|sr, s(1 —r)) andpy, ~ Bet(py|av, a(1 —v)). Now, integrating outr,,
gives: Ay, ~ (1—vpg)do(Apk) +vprNor(A,,|0, 71,). Itis interesting to note that the nonparametric
prior of our model (factor loading matrix defined as= Z ® V) is actually equivalent to the
(parametric) sparse mixture prior of the BFRMEs— oo. To see this, note that our prior on the
factor loading matriXA (composed oZ having an IBP prior, an¥ having a Gaussian prior), can be
written asA, . ~ (1 — px)do(Apk) + peNOr (A, |0, 02), if we definepy, ~ Bet(1, a3/ K). Itis easy

to see that, for BFRM wherg;, ~ Bet(av, a(1 —v)), settinga = 1 + of/K andv = 1 — af/(aK)
recovers our model in the limiting case wh&n— oc.

6 Experiments

In this section, we report our results on synthetic and ratdgbts. We compare our nonparametric
approach with the evolutionary search based approach gedgn [11], which is the nonparametric
extension to BFRM.

We used the gene-factor connectivity matrix of E-coli netw(described in [14]) to generate a
synthetic dataset having 100 samples of 50 genes and 8 vimdefactors. Since we knew the
ground truth for factor loadings in this case, this datases ideal to test for efficacy in recovering
the factor loadings (binding sites and number of factorsg algo experimented with a real gene-
expression data which is a breast cancer dataset havinga®idless of 226 genes and 5 prominent
underlying factors (we know this from domain knowledge).

6.1 Nonparametric Gene-Factor Modeling and Variable Seledabn

For the synthetic dataset generated by the E-coli netwogkdsults are shown in figure 4 comparing
the actual network used to generate the data and the inflxcént loading matrix. As shown in
figure 4, we recovered exactly the same number (8) of facénmd,almost exactly the same factor
loadings (binding sites and number of factors) as the gramrtd. In comparison, the evolutionary
search based approach overestimated the number of facitbeinferred loadings clearly seem
to be off from the actual loadings (even modulo column peatiomns).

Factor Loadings Inferred by BFRM

True Factor Loadings Inferred Factor Loadings

Genes

50

4 5 6 4
Factors Factors

Figure 4: (Left and middle) True and inferred factor loadings (with our apphnpdor the synthetic data
with P=50, K=8 generated using connectivity matrix of E-coli data. (Rigifgrred factor loadings with the
evolutionary search based approach. White rectangles repretieatsites. The data also has added noise with
signal-to-noise-ratio of 10

Our results on real data are shown in figure 5. To see the affaariable selection for this data,
we also introduced spurious genes by adding 50 random &satareach sample. We observe the
following: (1) Without variable selection being on, spuriogenes result in an overestimated number
of factors and falsely discovered factor loadings for spusigenes (see figure 5(a)), (2) Variable
selection, when on, effectively filters out spurious geneishout overestimating the number of
factors (see figure 5(b)). We also investigated the effecioige on the evolutionary search based
approach and it resulted in an overestimated number ofrfgulics false discovered factor loadings
for spurious genes (see figure 5(c)). To conserve space, wetdghow here the cases when there
are no spurious genes in the data but it turns out that vargdection does not filter out any of 226
relevant genes in such a case.

6.2 Hierarchical Factor Modeling

Our results with hierarchical factor modeling are shown guife 6 for synthetic and real data. As
shown, the model correctly infers the gene-factor associsitthe number of factors, and the factor
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Figure 5:Effect of spurious genes (heat-plots of factor loading matrix shoge))Standard IBP (b) Our model
with variable selection (c) The evolutionary search based approach

hierarchy. There are several ways to interpret the hieyafedom the factor hierarchy for E-coli data
(figure 6), we see that column-2 (corresponding to factasf2pe V matrix is the most prominent
one (it regulates the highest number of genes), and is ¢ltsése tree-root, followed by column-
2, which it looks most similar to. Columns correspondingdsser prominent factors are located
further down in the hierarchy (with appropriate related)es-igure 6 (d) can be interpreted in a
similar manner for breast-cancer data. The hierarchy cambd to find factors in order of their
prominence. The higher we chop off the tree along the hibyathe more prominent the factors,
we discover, are. For instance, if we are only interestedn2 factors in E-coli data, we can
chop off the tree above the sixth coalescent point. Thisiis @kthe agglomerative clustering sense
which is usually don@ost-hoc In contrast, our model discovers the factor hierarchigsaisof the
inference procedure itself. At the same time, there is noattgion of data reconstruction (in mean
squared error sense) and the log-likelihood, when comparéte case with Gaussian prior dh
(see figure 7 - they actuallypnprove. We also show in section 6.3 that hierarchical modelingliss
in better predictive performance for the factor regressigk. Empirical evidences also suggest that
the factor hierarchy leads to faster convergence since ofitisé unlikely configurations will never
be visited as they are constrained by the hierarchy.

ssssssss

(@) (b)

(d)

Figure 6: Hierarchical factor modeling results. (a) Factor loadings for E-cdk.déb) Inferred hierarchy for
E-coli data. (c) Factor loadings for breast-cancer data. (d) kdenrerarchy for breast-cancer data..

6.3 Factor Regression

We report factor regression results for binary and reale@lresponses and compare both variants
of our model (Gaussial and Coalescern¥) against 3 different approaches: logistic regression,
BFRM, and fitting a separate predictive model on the dis@adactors (see figure 7 (c)). The
breast-cancer dataset had two binary response varialiieadfypes) associated with each sample.
For this binary prediction task, we split the data into tiragaset of 151 samples and test-set of 100
samples. This is essentially a transduction setting agidesicin section 3.4 and shown in figure 2.
For real-valued prediction task, we treated a 30x20 block@flata matrix as our held-out data and
predicted it based on the rest of the entries in the matrixs frfethod of evaluation is akin to the
task of image reconstruction [15]. The results are averaged 20 random initializations and the
low error variances suggest that our method is fairly rolaust. initializations.



Model Binary Real
; (Yoerror,std dev) | (MSE)
LogReg 17.5(1.6) -
g BFRM 19.8 (1.4) 0.48

Nor-V 15.8 (0.56) 0.45
Coal-V 14.6 (0.48) 0.43
PredModel 18.1(2.1) -

MSE
log likelihood

0% MSE of BFRM 1

B0 w0 1000

W w0 &0
Iterations. Iterations

Figure 7:(a) MSE on the breast-cancer data for BFRM (horizontal line), ourahaith Gaussian (top red
curved line) and Coalescent (bottom blue curved line) priors. This M8teiseconstruction error for the data
- different from the MSE for the held-out real valued responses/(é(b) Log-likelihoods for our model with
Gaussian (bottom red curved line) and Coalescent (top blue curvegbtingd. (c) Factor regression results

7 Conclusions and Discussion

We have presented a fully nonparametric Bayesian appraasparse factor regression, modeling
the gene-factor relationship using a sparse variant ofBife However, the true power of nonpara-
metric priors is evidenced by the ease of integration of-tgmécific models into the framework.

Both gene selection and hierarchical factor modeling agttforward extensions in our model

that do not significantly complicate the inference procediut lead to improved model perfor-

manceand more understandable outputs. We applied Kingman'’s coattss a hierarhical model

onV, the matrix modulating the expression levels of genes itofac An interesting open question
is whether the IBP can, itself, be modeled hierarchically.
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