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Abstract
Coherence misses in shared-memory multiprocessors ac-

count for a substantial fraction of execution time in many
important workloads. Just as branch predictors reduce
the performance impact of branches, coherence predictors
can reduce the performance impact of coherence misses.
Two-level pattern-based coherence predictors have offered
a general prediction method to trigger appropriate coher-
ence actions. This paper presents the design and evalua-
tion of a perceptron-based coherence predictor that extends
a conventional directory-based write-invalidate protocol to
predict when to push updates to remote nodes. When pre-
dicted correctly, the update eliminates a coherence miss on
the remote node. We also present a simple mechanism for
predicting to which nodes we should push updates.

We evaluate our perceptron-based update predictor on a
variety of SPLASH-2 and PARSEC benchmarks. Simulation
indicates that the update predictor eliminates an average of
30% of coherence misses. Our simple consumer prediction
mechanism sent very few useless updates – on average 87%
of updates were consumed (eliminated misses).

1 Introduction

Coherence activities remain an increasingly challenging
problem for traditional shared memory processors and are
likely to become a major performance bottleneck in future
chip multiprocessors (CMPs). With increasing cache sizes
and number of cores in future CMPs, coherence misses [7]
will account for a larger fraction of all cache misses. As
communication latencies increase, coherence misses may
take hundreds of cycles, which can severely degrade perfor-
mance.

A common approach to reduce memory latencies in mul-
tiprocessors is to use private or hierarchical caches in con-
junction with a directory-based cache coherence protocol.
Write-invalidate protocols are efficient for situations where
data is used exclusively by a single processor or mostly
read-shared, but are inefficient for other sharing patterns,
like producer-consumer, wide-sharing, and migratory shar-
ing [6, 19, 37, 39]. In contrast, pure write-update protocols

are inappropriate because they tend to generate excessive
network traffic by sending useless updates, updates that are
unlikely to be consumed before the cache line is modified
again [5, 12].

Previous studies have argued for hybrid coherence pro-
tocols that employ a mix of invalidate and update mes-
sages [38]. Such techniques typically rely on complex adap-
tive coherence protocols that directly capture sharing pat-
terns in protocol states [20, 24] and are limited to learning
one sharing pattern per-memory-block at a time. An alter-
native to building complex hybrid coherence protocols is
to employ a pattern-based coherence predictor. Mukherjee
and Hill [33] adapted the classical two-level PAp branch
prediction scheme [41] to learn and predict coherence ac-
tivities for a memory block. [22] improved upon the first
generation of pattern-based predictors by providing better
accuracy and implementation over general message predic-
tors. Recent efforts have focused primarily on hardware op-
timizations that reduce the high storage overheads of such
predictors [3, 34, 9]. We take a different approach and focus
on using machine learning techniques to improve predictor
accuracy.

Our main contribution is the design and evaluation of an
online machine learning technique usingperceptrons[36]
to reduce coherence protocol overhead in a CMP. We attach
a small perceptron to the directory cache entries of shared
blocks and train them using the stream of memory accesses
to that block. Over time, our predictor learns to identify
whena write update should be sent. After a producer is done
writing to a cache block, the predictor can recommend that
we speculatively forward new data to its likely consumers
and downgrade the coherence state of the owner fromMod-
ified to Shared.

We use a simple, yet very effective, heuristic to predict
the likely consumers of each update. Our coherence predic-
tor is not tied to a particular coherence optimization, e.g.,
data forwarding in our case, and could be used to enable
other optimizations instead.

Akin to the way the outcome of a branch predictor is a
notion of whether or not a particular branch will be taken
or not taken, the outcome of our coherence predictor is



whether or not a particular write to a cache line will be
consumedremotely before the line is modified again. Put
another way, we predict whether or not a particular write is
the last by a given writer before some remote node reads
the cache line. We refer to a write operation as alast write
if it is the last time a processor (producer) writes to a cache
line before the line is read by another processor (consumer).
Much like Jiménez and Lin [17] advocate the use of percep-
trons for making fast accurate branch predictions, we use
perceptrons to predict whether a write is alast write and is
going to beconsumed. Predicting who the consumer(s) of
this data are going to be is an orthogonal question that has
been addressed previously [6, 16, 21, 35], and in a more so-
phisticated manner in [25]. Our focus is on the prediction
of whento perform a push, and could use any of the above
consumer set prediction mechanisms.

Our novel perceptron-based coherence predictor is sim-
ple, yet highly accurate. We evaluated a simple single-
layer unbiased perceptron mechanism on a mix of appli-
cations from the SPLASH-2 [40] and PARSEC [2] bench-
mark suites. Our predictor achieved a predictionaccuracy
of over 99%. Most predictions were true negatives (i.e., “do
not push”), but we correctly identified sufficient opportuni-
ties to push data to eliminate an average of 30% (and up to
69%) of coherence misses, despite being very conservative.
The predictionprecisionwas given by the percentage of up-
dates that are consumed by remote nodes prior to an inter-
vening write, i.e., the percentage of updates that eliminate
a coherence miss compared to a traditional write-invalidate
protocol. Our predictor had an average precision of 87%
(and at best 99%). The predictionsensitivity[13] demon-
strated that on average 73% (and at best 97%) of all avail-
able update opportunities were successfully identified.

Like pattern-based predictors, our perceptron-based pre-
dictor is able to learn from and adapt to an application’s
runtime sharing patterns, able to capture multiple distinct
sharing patterns for a memory block, and does not require
modifications of the base coherence protocol. Although our
design evaluates only perceptron-based predictors, we be-
lieve other online machine learning techniques [11, 14, 26]
are also worth exploring.

The rest of the paper is organized as follows. Section 2
provides the background needed to understand our predic-
tor. Section 3 explains how a perceptron can be used in
coherence prediction and gives the details of our implemen-
tation. Section 4 presents our evaluation methodology and
results. Section 5 discusses related work. We conclude and
suggest future work in Section 6.

2 Perceptron Learning Model

In this section we review how perceptron learning algo-
rithms work. Perceptrons [36] have been widely studied by

the machine learning community and are capable of recog-
nizing many classes of patterns. We selected perceptron for
our study because they are simple to implement, have no
tunable parameters (learning rate, norm, etc.) and tend to
work well empirically. We now outline how perceptron pre-
dictors are trained using an error correction mechanism.

A perceptron is represented by a vector whose elements
are the currentweightsassociated with specificfeaturesthat
are used to predict a particular outcome. For our purposes,
weights are signed integers and inputs are binary values.
The outputy of a perceptron is binary and is given by the
sign of the dot product of a weights vectorw1..n and an
input features vectorx1..n:

y = sign

(

∑

i

xiwi

)

(1)

If the value ofy is positive, the perceptron is said to pre-
dict a positive outcome. A feedback-based learning algo-
rithm is used to train a perceptron to identify positive corre-
lations between its inputs and the desired output. The learn-
ing algorithm continually adjusts the weights vector based
on whether (and the degree to which) the perceptron’s pre-
vious prediction was correct. It is well known that the per-
ceptron algorithm will converge after a finite number of ex-
amples to an optimal linear classifier (of a form given by
Eq.(1)), should one exist. By tracking correlations between
the desired prediction and the inputs, perceptrons can iso-
late the relevant portions of its input from the irrelevant por-
tions.

The following pseudocode illustrates a simple unbi-
ased prediction algorithm using additive updates to adjust
weights:

Initialize w to zero
while (true) do

Obtain inputx
Predicty = sign(

∑n

i=1
wi · xi)

if y is incorrectthen
Do Update:w← w − y · x

end if
end while

3 Design and Implementation

Recall that the goal of our coherence predictor is to de-
cide at the time of each write whether that write is the last
one by a producer and if it is likely to be consumed by an-
other node. If so, we perform a write-update by downgrad-
ing the writer tosharedmode and pushing the dirty data to
a set of predicted consumers. We predict consumers using
a simple heuristic described in Section 3.4.

Our perceptron model is designed to identify correlations
between particular write outcomes tracked in ablock access
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Figure 1. Perceptron Predictor Block Diagram

history tableand the current write. These correlations are
represented by weights. The larger a weight, the stronger
the correlation of that feature with a positive (update) out-
come, and the more likely that a particular memory access
appearing in the history table contributes to the prediction
of current write.

The number and size of perceptrons that we can employ
is dictated by a hardware budget. Existing coherence pre-
dictors require fairly large history tables, which are likely to
limit their use in commercial systems. However, a majority
of coherence misses have been found to be confined to a
fairly small part of an application’s memory footprint [34].
Since we need to make predictions for cache lines that are
subject to coherence misses, we tracked perceptron weights
only for cache lines that have ever been invalidated (marked
by an extra bit), referred to ascoherence blocks[34]. In
particular, we introduce a table of perceptrons that tracks
the weights associated with coherence blocks, and track a
small amount of their access history. This enables us to train
the perceptrons and predict to which nodes to push updates.

Figure 1 presents a high-level block diagram for the re-
sulting perceptron predictor. We assume a centralized pre-
diction scheme wherein a single global predictor is accessed
by all processors in the system. It maintains separate set
of weights and memory access history for each coherence
block. All tables are initialized to zero. We also assume
the presence of anaddress filterto identify memory ref-
erences to coherence blocks. Our implementation simply

filters memory blocks that were ever invalidated in past be-
cause of a remote write operation.

In the remainder of this section, we delve into some of
the implementation details of our design.

3.1 Feature Set (Input Set)
A featureis an observable value that can be used to make

a prediction. For example, features can include data such as
the last writer of a cache line or whether the last access was
a read or write. The number of features that we track per-
line is a design parameter that we can adjust, similar to how
the history length tracked can be adjusted for perceptron-
based branch predictors [17].

To minimize space requirements, we characterize a data
memory access by two simple attributes: (i) the request-
ing processor ID and (ii) whether the access was a READ
or a WRITE. Perceptrons work best when features can be
encoded as a vector of boolean values, so we encode fea-
tures as follows. For a system withn processors, we use a
bitmap of lengthn + 2 to represent a memory access. Each
processor is uniquely assigned a single bit from the firstn

bits - which is set to 1 if it is the requesting processor. The
(n + 1)th bit is set to 1 to indicate that the operation was
a READ, while the(n + 2)th bit is set to 1 to indicate that
it was aWRITE. Since we considered a naive unbiased per-
ceptron, a representation with separate R/W bits was conve-
nient. Note that, only one of firstn bits can be a 1, and either
of (n+1)th or (n+2)th bit can be 1; all remaining bits will
be 0. For example, in a 4-core system (P1, P2, P3, P4), a
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read by processorP2 will be represented as010010 while a
write by processorP1 will have a representation of100001.
Figure 2 illustrates our feature set (input format) for a 4-core
system. Although our calculation needs such a representa-
tion, information storage does not. We describe at the end
of this section 3.2 how to store block access information
economically by using accesssignatures.

3.2 Storage Estimation
Having defined the encoding for a memory access, we

next must decide how much history to track. In general, a
perceptron-based predictor considers the lasth operations
when making a prediction.h is referred to as thehis-
tory length, and like the feature set itself is a tunable de-
sign parameter – a largerhistory lengthtypically improves
accuracy but incurs greater storage and computation over-
head. To explore how well we could do while minimizing
space overhead, we model a very small history length of2
throughout our experiments.

To determine whether or not our last prediction was cor-
rect, we need to track what that prediction was (PUSH or
NO-PUSH, 1-bit) and whether or not there has been a re-
mote read to that cache line since the PUSH was performed
(a bitmap ofn-bits consumer set). Thus, the amount of state
required to make predictions and update the weight tables
is h(n + 2) + n + 1 binary values. For our specific design,
wheren varies from 4 to 16 andh is fixed at2, we track 17-
53 bits of history information per cache block in theblock
access history table. Further, since every feature has its cor-
responding weight, there areh(n + 2) weights per block.
Currently we employ integer weights, but we believe that
similar results could be obtained with 4-bit weights, thereby
decreasing storage overhead. In general, if a weight isb bits
long, thenbh(n + 2) bits are needed for representing an en-
try in the weight table. Hence, the total amount of storage
required by our prediction scheme ish(n+2)(b+1)+n+1
bits per memory block.

We can reduce the amount of storage required by the
history table by using block accesssignatures, whereby
an access is simply characterized by its type (R/W, 1-bit)
and a processor-id (log

2
n bits). Thus, it suffices to store

h(log
2
n + 1) + n + 1 bits in the block access history table.

For our specific design parameters, this works out to 11-27
bits.

3.3 Update-Predict Algorithm
We realized that at the time of a memory write, we are

able to both determine whether the last prediction was cor-
rect and make a prediction about whether this write should
perform a write-update. Consequently, no training is needed
at the time of a memory read. This observation highly sim-
plified our perceptron design and allowed us to integrate our
coherence predictor with a traditional coherence protocol.

To make this work, we had to make a small modification
to a generic perceptron algorithm that did not affect its cor-
rectness. Specifically, in our design, the update step, where
the weights associated with a perceptron are updated based
on the accuracy of the last prediction, is performed before
the prediction step.

As described in Section 2, each time the perceptron
makes a prediction, we need to update its weights based
on whether or not the prediction was correct.

To determine whether our last prediction was correct, we
track what that prediction was (PUSH or NO-PUSH) and
the set of nodes to which we pushed (if any). LetS0 (con-
sumer copyset) andS1 (current copyset) denote the com-
plete set of nodes that have a shared copy at the time of
the previous and current write operation, respectively. Ifwe
predicted PUSH, then our prediction is accurate iff at least
one node inS1 is also inS0, not including the node that per-
formed previous write. If we predicted NO-PUSH, then our
prediction is accurate iff no node inS1 is in S0. Otherwise,
our prediction was incorrect.

We now describe the operation of our perceptron-based
coherence predictor. On a write access to a coherence block,
the following steps are taken:

1. Fetch: The corresponding perceptron weightsW ,
copysetC and block access historyH are fetched.

2. Determine Truth: We determine whether any of the
nodes that had a shared copy before thelastwrite (S0)
was also a sharer before thecurrent write operation
(S1) (not including the last writer) If so, the truth (cor-
rect outcome) was that we should have pushed after the
last write (t = 1), otherwise the truth was not to push
(t = −1).

3. Update Weights(based on previous prediction): We
compare the correct outcome with the prediction made
at the time of the last write (p). The training algorithm
updates the weights inW as described in Section 2. If
we predicted correctly, we do nothing. If we predicted
incorrectly, we increase weights if truth was positive
(W ← W + H) or decrease weights if truth was neg-
ative (W ←W −H).



4. Predict: y (prediction for this write) is computed us-
ing the dot product ofW and block access historyH ,
(y = sign(

∑

n

i=1
Wi ·Hi)). If y is positive, we predict

PUSH, otherwise we predict NO-PUSH.

5. Manage History: H is updated with the current write
access information by shifting the oldest feature set out
of H and adding the current feature set, i.e., the bit vec-
tor that encodes whether this was a read or write and
which processor is performing the operation. Further,
copysetS0 is set toS1, andS1 is reset to null.

On a read access to a coherence block, the following
steps are taken:

1. The reading node is added to the current copyset (S1)

2. H is updated with this read access information, i.e.,
we shift the oldest feature set out ofH and shift in a
bit vector that encodes this read operation.

3.4 Tracking Consumers
We employ an extremely simple mechanism to predict

likely consumers of a particular write – we just use the set
of most recent readers as tracked in thecopyset. Copyset
is a bitmap representing the readers since last write to that
block, and are reset after each write operation. Subsequent
readers continue to add themselves to this list until the next
write operation, at which point this new copyset is used to
predict the consumers, if a push is predicted. For example,
let S0 andS1 be the set of nodes that have a shared copy
at the time of the previous and current write, respectively.
On a PUSH prediction, we send updates to the set of nodes
given by (S1 ∩ S0) ∪ (S1 − S0). Despite its simplicity,
we found that this mechanism does a good job of predict-
ing likely consumers and does not cause a high number of
useless updates.

4 Evaluation

In this section we discuss our evaluation methodology
and then present our results.

4.1 Simulation Environment
We evaluate our system using the Virtutech Simics full

system execution-driven simulator [30]. We model a CMP
architecture consisting of 4, 8 or 16 in-order, single-issue
processors. Each core has a private split L1 cache, with
a 64KB I-cache and a 32KB D-cache, plus a single large
shared 8MB L2. We chose this configuration to minimize
conflict or capacity misses and let us focus on coherence
activities. The block size is 64 bytes, the L1 caches are
4-way set-associative, and the unified L2 cache is 8-way
set-associative. We assume a simple MSI directory-based
cache coherence protocol among the L1 caches. Since our
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Figure 3. Coherence Miss Reduction Percentage
in First Level Caches

primary focus is reducing the coherence miss rate, this sim-
ple processor model is sufficient to evaluate our predictor’s
fundamental performance.

All experiments were conducted with a history depth of
2. This means that while making a prediction, only the pre-
vious two accesses to a block (reads or writes) are consid-
ered. We anticipate that we could achieve even better re-
sults if we increased the history depth, so the results pre-
sented here are a conservative estimate of the potential of
perceptron-based coherence predictors.

We considered 13 applications from SPLASH-2 [40] and
PARSEC [2] benchmark suites. We used the default in-
put sets for SPLASH-2 and sim-medium configuration for
PARSEC applications. SPLASH-2 applications were run to
completion starting from the beginning of their parallel sec-
tions, and the PARSEC applications were run for a billion
instructions starting from their region of interest.

4.2 Results
Our perceptron predictor achieved a prediction accuracy

of roughly 99%. This high prediction accuracy is primarily
due to the large number of true-negative (NO-PUSH) pre-
dictions that arise because the prediction is performed for
each access to the private L1 caches. Non-shared accesses
make up the vast majority of accesses to the L1 cache, so the
predictor had a little scope for making a positive prediction.
For the remaining (shared) accesses, the predictor’s accu-
racy ranged from 50% to well over 90%, and in particular
the true positive (useful push) prediction rate far exceeded
the false positive (useless push) rate.

We compare the results of a system extended to include
our percepton-based coherence predictor against a baseline
system that employs a conventional directory-based coher-
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Figure 4. Prediction Precision: Percentage of
speculative updates that were consumed

ence mechanism. Figure 3 presents the net L1 cache coher-
ence miss reduction achieved by our predictor, for 4-, 8-,
and 16-core configurations. It should be noted that these re-
sults include cold start effects, so they are a bit pessimistic.
Nevertheless, our coherence predictor eliminated on aver-
age 34% , 30%, and 23% (and up to 69%, 59%, and 57%)
of coherence misses on 4-, 8-, and 16-processor systems,
respectively. Blackscholes benefitted the most among all
benchmarks, while Swaptions benefitted the least. In no
case did the coherence miss rate increase, but the value of
coherence prediction varied considerably across the set of
applications.

Because a positive prediction generates updates, it is im-
portant to verify that our predictor does not cause a flood of
useless updates, which doomed the original work on write-
update protocols. To assess our predictor’s ability to only
push updates that will be usefully consumed, we use the
precisionmetric. Our predictor’sprecisionis given by the
ratio of number of pushes consumed over the total number
of pushes that were speculatively sent.

Consider a situation where the coherence predictor rec-
ommends pushing a cache line to six nodes. If three of these
nodes read the data before the cache line is next modified,
the prediction precision is 50%; if five of the nodes read the
data prior to when it is next modified, the precision is 87%.
Higher the precision, the better job the predictor has done
at avoiding useless update messages. Every consumed push
saves a cache miss, so our goal is to balance the predictor
design to identify as many opportunities as possible to push
data, without flooding the network with useless updates.

Figure 4 plots the precision achieved by our predictor
combined with our simple consumer predictor heuristic.
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Figure 5. Prediction Sensitivity: Percentage of
update opportunities that were identified

The average precision is 87%, and ranges between 61-99%.
Thus, on average five of our six speculative updates elimi-
nate remote cache misses, and only one in six are useless.

To further evaluate the performance of our predictor, we
use theSensitivitymetric. Also commonly known asRecall,
it demonstrates the ability of a prediction model to select
positive instances from data. Sensitivity measures the per-
centage of positive predictions versus all positive opportuni-
ties and is defined by the ratio of true-positive to the sum of
true-positive and false-negative predictions. Figure 5 plots
the sensitivity and shows that our predictor correctly iden-
tifies on average 73%, and at best 97%, of write-update op-
portunities available.

Combining the results from Figures 3, 4 and 5, we con-
clude that our perceptron-based coherence predictor issen-
sitiveenough not to miss too many opportunities for sending
useful updates (Fig. 5). Its high predictionprecision(Fig. 4)
ascertains that most speculative updates are fruitful, which
results in a significant reduction in the number of coherence
misses eliminated (Fig. 3).

5 Related Work

Speculative data forwarding in a multiprocessor was first
proposed by Lebeck and Wood [24]. Their technique,dy-
namic self-invalidation, triggers the invalidation of shared
data blocks, identified via coherence protocol hints, at an-
notated critical section boundaries.Last touch predic-
tion (LTP) proposed by Lai et al [23] associated invalida-
tion events with the sequence of instructions accessing a
cache block prior to its invalidation. Hu et al [15] inves-
tigated timekeeping approaches for predicting memory sys-



tem events that are straightforward to adapt for coherence
prediction.

Write-update and hybrid update-invalidate protocols
have been extensively studied [1, 31]. Producer-initiated
communication and prefetching are two commonly used
techniques to hide long miss latencies [4]. Predicting the
subsequent sharers of a newly produced value, typically re-
ferred to asconsumer set prediction, was first proposed by
Mukherjee and Hill [32]. They took the first step towards
using general prediction to accelerate coherence protocols
by developing theCosmoscoherence message predictor.
Cosmos’s design was inspired by Yeh and Patt’s two-level
PAp branch predictor [41]. Branch prediction has made
tremendous progress since then. Current designs based on
neural learning are known to be the most accurate predic-
tors [18, 28]. Jiménez and Lin [17] were the first to adapt
perceptrons to branch predictors. Our work is related in the
sense that we employ perceptrons to make accurate predic-
tions, but we tackle a very different problem.

The design of general coherence predictors was exten-
sively studied after Mukherjee and Hill’s initial work [32].
Lai and Falsafi propose thememory sharing predictor
(MSP) and the more efficientvector memory sharing pre-
dictor (VMSP) [22]. MSP is a generalization of theCos-
mos predictor [32], which eliminated prediction of ac-
knowledgement messages and offered better implementa-
tion and accuracy. However, all of these predictors are fun-
damentally two-level pattern-based predictors with saturat-
ing counters, which in our opinion can be augmented or
replaced by neural networks to achieve better accuracy with
lower space overheads.

Levanthal and Franklin [25] recently proposed using per-
ceptrons to make predictions within the framework of a co-
herence protocol. However, they use perceptrons to per-
form consumer set prediction, whereas our work addresses
the problem of predictingwhento perform speculative up-
dates, a problem they specifically do not address. The two
mechanisms are orthogonal, and likely very complimentary.

6 Conclusions and Future Work
In this paper, we have introduced a new class of coher-

ence predictors that uses perceptrons to identify opportu-
nities for sending useful write-updates. We have shown
how a perceptron-based coherence predictor can be added
to an existing directory-based cache coherent system. Our
results demonstrate that perceptrons can eliminate a signif-
icant number (on average 30%) of coherence misses on a
wide range of benchmarks. When coupled with a simple
consumer set prediction heuristic, over 87% of speculative
updates generated by our predictor are usefully consumed.

There are many ways to extend and improve our work.
One weakness of perceptrons in general is their inability to
learn linearly inseparable functions. Despite this weakness,

perceptrons have been an attractive choice for branch pre-
dictors, because most programs possess linearly separable
branches [17]. We would like to investigate whether such
relationships can be observed in the case of write-update
predictions, or explain why and when a perceptron-based
predictor is likely to fail.

The performance and accuracy of our simple predic-
tor, despite employing a very simple consumer prediction
heuristic (push to the last set of readers), a very small his-
tory window (the last two accesses), and a small set of fea-
tures (the processor ID and whether the access was a read
or write), demonstrate the effectiveness of perceptron-based
coherence predictors.

A major focus of our ongoing work is to perform a
detailed sensitivity analysis to changes in: (i) the predic-
tion threshold levels (i.e., the cutoff in perceptron values
between a positive and negative prediction), (ii) history
lengths, (ii) input feature set size, and (iv) the number of bits
we use to represent perceptron weights. We believe that we
can tune the perceptron-based coherence predictor to fur-
ther improve prediction accuracy while maintaining a small
perceptron storage overhead. Recent studies on percep-
tron branch predictors have proposed many fast, power- and
resource-efficient implementation strategies [10, 27, 29].
We would also like to study the potential ofcost sensitive
classification[8, 42] in discouraging false positive predic-
tions.

Finally, the machine learning field is replete with pre-
diction mechanisms that have long been used to develop
classifiers that learn patterns from data and group them into
classes. We have explored the use of only one online learn-
ing scheme, perceptrons. There are other learning algo-
rithms [11, 14, 26] that may also be useful, and are waiting
to be evaluated.
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