
http://pub.hal3.name#daume05search

Search-Based Structured Prediction as Classification

Hal Daumé III1, John Langford2 and Daniel Marcu3

1,3Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA, 90292
2Toyota Technological Institute at Chicago, 1427 East 60th Street, Chicago, IL, 60637

hdaume@isi.edu, jl@tti-c.org, marcu@isi.edu

Abstract

Solutions to computationally hard problems often require that search be
used. Integrating search into the learning phase has been previously pro-
posed in an ad-hoc manner [2]. In this paper, we show that structured
prediction can be mapped into a search setting using language from rein-
forcement learning, and known techniques for reinforcement learning [7]
can give formal performance bounds on the structured prediction task.

1 Introduction
Structured prediction (SP) is the task of learning a function that maps x ∈ X to y ∈ Y ,
where elements y have structure represented in the features and loss function. Typical
approaches assume that Y has a well-behaved structure (eg., linear chain or tree) and the
features and loss decompose over substructures (the Markov and context-free assumptions)
[6, 8]. However, in many real-world problems, this assumption is invalid, and dynamic
programming techniques are not applicable. In such problems, the final prediction must be
performed using search; for example, in machine translation [3] or speech recognition [4].
In such cases, we believe it to be appropriate to consider search during learning, since it is
worthless to build a model that can score a good y ∈ Y high, if such a y cannot be found.

In this paper, we present a reduction from SP to reinforcement learning (RL) that can be
composed with known results for RL [7] to give bounds on the performance of a search-
based SP method. Moreover, this reduction suggests novel training methods for SP models,
yielding efficient learning algorithms that appear to perform well in practice.

2 Definitions
Definition 1. A structured prediction problem is a cost-sensitive classification problem
with structure in the prediction space Y; elements y ∈ Y decompose into variable-length
vectors (y1, y2, . . . , yk). The problem DSP is a distribution over inputs x ∈ X and cost
vectors c, where the length of c is a variable in 2k.

Treating y as a vector is simply a useful encoding. The goal is a function h that maps x to
y and minimizes the corresponding cost: L(DSP , h) = E(x,c)∼DSP

{

ch(x)

}

. Similarly, the
RL problem can be stated generally as in [7].

Definition 2. A reinforcement learning problem DRL is a conditional probability table
DRL(o′, r | (o, a, r)∗) on an observation set O and rewards r ∈ [0,∞) given any (possibly
empty) history (o, a, r)∗ of past observations, actions (from an action set A), and rewards.

The goal of the RL problem is as follows. Given some horizon T , find a pol-
icy π : (o, a, r)∗ → a, optimizing the expected sum of rewards: η(DRL, π) =

E(o,a,r)T∼DRL,π{
∑T

t=1 rt}. Here, rt is the tth observed reward, and the expectation is
over the process which generates a history using DRL and choosing actions from π.

3 Reducing Structured Prediction to Reinforcement Learning
Our mapping from SP to RL is as follows. The RL action set A is the space of indexed
predictions, so Ak = Y , and A = Yi. The observation o′ is x initially, and the empty set
otherwise. The reward r is zero, except at the final iteration when it is the negative loss
for the corresponding structured output. Putting this together, we can define a RL problem
DRL(DSP) according to the following rules. When the history is empty, o′ = x and r = 0,
where x is drawn from the marginal DSP (x). For all non-empty histories, o′ = ∅. The
reward r is zero, except when t = k, in which case r = −ca, where c is drawn from the
conditional DSP (c | x), and ca is the ath value of c, thinking of a as an index. Solving the
search-based SP problem is equivalent to solving the induced RL problem, as stated in the
following theorem (the proof is a straightforward application of the definitions):

Theorem 1. Let DSP be an SP problem and let DRL(DSP) be the induced RL problem.
Let π be a policy for DRL(DSP). Then η(DRL(DSP), π) = L(DSP , search(π)).

Notice that under this mapping, RL is more general than SP. Moreover, note that whereas
in RL the concept of time is important, it serves no purpose in SP.

4 Bounds for Structured Prediction Performance
In [7], it is shown that when the RL problem is solved using classification (i.e., using a
classifier to predict actions), one can lower-bound the RL reward by the loss on the induced
classification problems. Since SP can be seen as a degenerate RL problem, a similar result
holds here. The main difference is that in the RL analysis, it was assumed that the horizon
T (the number of steps) was fixed; in SP, it is variable. For completeness, and to account
for this change, we will sketch the reduction here and state the relevant theorem.

The reduction from RL to classification involves running search to solve the RL problem,
and using the search path to define a sequence of cost-sensitive classification problems.
Let π be a policy; for a given input x, π defines a search path (sequence of observations,
actions and rewards) that results in a structured output, (p1, p2, . . . , pJ). For each history
pj = (o, a, r)1:j , we define one cost-sensitive classification problem. The classification
problem is: of all possible next actions, which should we choose. Each possible action has
a corresponding cost. To compute this cost, we first compute the optimal completion of the
current history: given the history pj , find the sequence of actions aj+1, . . . , aJ that max-
imize the cumulative reward. Denote this reward rj . Next, for each possible subsequent
action, we compute the optimal completion, given that we first perform that action. The
cost associated with an action is then J (the length of the search path) times the difference
between rj and the reward of the optimal completion given that we take the chosen action.

This reduction gives the same bounds as the reduction in [7], but without a constant horizon
(the proof is omitted, but is an adaptation of Lem 2.3 from [7]).

Theorem 2. Denote by F (D, πh) the above reduction. For every RL problem DRL and
every policy π given by a classifier h, we have L(DRL, πh) = L(F (DRL, πh), h).

For solving the resulting cost-sensitive multiclass problem, we use the weighted all-pairs
(WAP) reduction [1]. In SP, it is often the case that the total number of actions is large,
but only a few are possible at any given step. WAP has the advantage over more complex
techniques (like trees or error coding methods) because only the possible actions need to
be considered for a single prediction. When composed with the Costing reduction [9], the
test error of the weighted problem is upper-bounded by two times the error of the resulting
binary classification problem, times the expected sum of costs for a single problem. Putting
this all together, we obtain the following bounds for the SP problem:

L(DSP , search(h)) ≤ 2 Z L(Costing(WAP(F (DRL(DSP), πh))), h) (1)

where Z is the expected cost for the SP problem (this term accounts for “scaling” the loss
to the range expected by the SP loss).

5 Training
The results in the previous section tell us that if we have a classifier h, then we have
guarantees about the performance on the SP problem. They do not tell us how to get
such a classifier. For this, we appeal to a RL technique: Conservative Policy Iteration
(CPI) [5]. CPI solves the RL problem using prior knowledge in the form of a “restart
distribution” µ. Space precludes in-depth discussion of CPI, but the basic algorithm is as
follows: (0) initialize a policy π; (1) compute a policy π′ based on π and µ that is good; (2)
estimate how much better π′ is than π; (3) if it is not better, return π; (4) otherwise, update
π to be a linear combination of π and π′ and go to (1). This will converge (with high
probability) after O(72R2/ε2) iterations to a solution within 2ε of being optimal, where
R is the maximum reward possible (see [5, Thm 4.4]). Also, the difference between the
reward of the optimal policy and the found policy will be bounded by ε times a constant
times a factor that represents the mismatch between µ and the true state distribution.

The µ restart distribution, central to the RL technique, is useful primarily to account for
“exploration.” In SP, however, exploration is not of significant importance; in fact, we
often know (or can compute) the optimal search path. By defining µ to be this path, the
divergence in the optimality bound is reduced optimally, leading to a tight result. Under
this definition of µ, step (1) of CPI requires that we use the current policy π together with
the optimal path to learn a new policy. In the language of SP, this means that we first draw
a state from a distribution µ over search states, then use the current classifier (policy) to
trace a search path from that initial state. We train a new classifier that performs well on
this set of sequences (one for each training instance).

This analysis gives the following iterative technique for learning the binary classifier for
search-based SP. We initialize a classifier h0 arbitrarily, then repeat the following steps
until convergence. (A) Create a training set Si by drawing examples (x, y) from the SP
training set and drawing states n0 from the optimal search path, then by following the
path taken by hi−1 on n0. Each step along this path induces a cost-sensitive multiclass
classification problem among all possible actions. The cost associated with the step n → m
is l(x, y, ym) − l(x, y, yn), where ym (yn) is the minimum loss y ∈ Y that is reachable
from node n (node m). (B) Train hi on Si. (C) Evaluate the advantage of hi over hi−1

as in [5]. (D) If the advantage is small or time has run out, return hi; otherwise, update
hi = αhi + (1 − α)hi−1, with α as given in [5] and go to (A).

This procedure is nearly identical to the ad-hoc method proposed recently called Learning
as Search Optimization (LASO) [2]. The two major differences are that LASO considered
only 0/1 loss (here we extend it to arbitrary losses using a weaker assumption than the
monotonicity used by LASO) and the LASO procedure always resets to the optimal search
path, whereas we consider both the optimal search paths as well as those given by the
previous iteration’s classifier. This latter difference enables us to obtain stronger theoretical
guarantees than before. Despite the differences, the resemblance is sufficiently strong that
we refer to the reduction described here as the LASO reduction. In practice, using α as
defined above may be too conservative; we advocate using a 1D line search on α at each
iteration. Alternatively, setting α = 1 may perform well, but is not guaranteed to converge.

6 Experiments
To demonstrate this approach on a trivial SP problem, we consider a simple syntactic
chunking task for identifying noun-, verb- and prepositional-phrases. We use a subset
of the CoNLL’00 data set: 1000 sentences for training, 500 for development and 1000 for
test (63k words, total). We use word identity, stem, part of speech, prefix, suffix and case
as features. As structured features, we use a history of the previous two tags. The loss
function used is weighted F-score, where 1 point is given for correct span and tag, and 1

2
point is given for correct span and incorrect tag. In all experiments, we set α by line search;
other experiments setting α = 1 performed slightly worse and are not reported here.

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

With LaSO
W

ith
ou

t L
aS

O

Perceptron
Winnow
LogisticR
Boosted DT

LASO Classifier
+Mar -Mar +Mar -Mar

Perceptron 0.895 0.886 0.845 0.839
Winnow 0.881 0.880 0.822 0.832
LogisticR 0.859 0.871 0.846 0.855
Boosted DT 0.847 0.833 0.831 0.802
Perceptron-Cost 0.833 0.838 0.857 0.851
Winnow-Cost 0.827 0.814 0.774 0.805
Perceptron-Full 0.932 0.921 0.886 0.876
Winnow-Full 0.911 0.910 0.869 0.870

Original LASO: 0.835 Structured Perceptron: 0.816

Figure 1: (Left) Plot of all results, points below the line indicate LASO performed better and points
above indicate that a plain classifier performed better (the two outliers are non-Costed Perceptrons).
(Right) Numerical results for LASO versus classifier, with and without Markov features.

In our experiments, we compare four base learners: Perceptron, Logistic Regression, Win-
now and boosted Decision trees. We compare with and without using Markov features (the
previous two predicted tags). We also compare using LASO versus using a plain classifier
applied sequentially (that will potentially exhibit label-bias). The results are shown in Fig-
ure 1. In the left panel, we compare LASO(below line) versus classifiers (above); as we
can see, with two exceptions, LASO performs better. In the right panel, we present the nu-
merical results from the experiments; we additionally present results for the Perceptron and
Winnow without Costing. As we can see, except for Perceptron without Costing, LASO
always outperforms the Classifier. Strangely, for logistic regression, Markov features seem
to hurt; they also appear to hurt in several of the non-Costed examples. We also report
baseline results for “Original LASO” (0.835) and the structured voted Perceptron (0.816).
Finally, we report results using the full CoNLL’00 dataset for Perceptron and Winnow (the
datasets were too large for our current LR and DT implementations); these are nearly at the
state of the art level (in the 94-95 range), but importantly use purely greedy search rather
than Viterbi. We believe extensions to non-greedy search will easily close the gap.

7 Conclusion and Discussion
We have presented an approach to SP based on greedy search, by reduction to classification
using RL as a stepping-stone. Our technique is applicable to any SP problem with any loss
function; specifically, we do not require feature locality of well-behaved loss functions
(i.e., ones that decompose over the output structure). We have given bounds for test set
performance based on binary classification performance, and a training algorithm that is
guaranteed to converge in a polynomial number of steps to a formally good solution. Our
current work involves extending this technique to non-greedy search algorithms, (such as
beam-search) and alternatives to WAP that do not create quadratically many examples,
which is unreasonable in problems with high branching factor (like machine translation).

References
[1] A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B.

Zadrozny. Error limiting reductions between classifica-
tion tasks. In ICML, 2005.

[2] H. Daumé III and D. Marcu. Learning as search opti-
mization: Approximate large margin methods for struc-
tured prediction. In ICML, 2005.

[3] U. Germann, M. Jahr, K. Knight, D. Marcu, and K.
Yamada. Fast decoding and optimal decoding for ma-
chine translation. Artificial Intelligence, 154(1-2):127–
143, 2003.

[4] X. Huang, A. Acero, and H-W. Hon. Spoken Language
Processing: A Guide to Theory, Algorithm, and System
Development. Prentice Hall, 2001.

[5] S. Kakade and J. Langford. Approximately optimal ap-
proximate reinforcement learning. In ICML, 2002.

[6] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, 2001.

[7] J. Langford and B. Zadrozny. Relating reinforcement
learning performance to classification performance. In
ICML, 2005.

[8] B. Taskar, C. Guestrin, and D. Koller. Max-margin
Markov networks. In NIPS 2003.

[9] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive
learning by cost-proportionate example weighting. In
ICMD, 2003.

