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Abstract

The task of learning to partition data into similar sets occurs frequently
in many disciplines. We construct a Bayesian model for learning to parti-
tion from labeled data. Our model is based on the nonparametric Dirich-
let process prior. Experimental results show that our model is able to
outperform existing solutions on real world datasets.

1 Introduction
Problem definition. In this paper, we explore the task of supervised clustering; like clus-
tering, we are given data, a subset ofX , and must split it into like subsets. Unlike clustering,
we also have as training data subsets of X and a desired partitions of these subsets. The
learning task is to predict the correct partition of an unseen (typically disjoint) subset of X .
This problem has been investigated in many domains including identity uncertainty, record
linkage, reference matching, coreference resolution and schema matching. We take our ter-
minology and notation from the reference matching task (eg., the CiteSeer/ResearchIndex
problem). Specifically, we assume that we are given a list of citations to publications and
we need to identify which citations correspond to the same publication.

Prior work. The most common solution to the supervised clustering problem is to build
a binary classifier over pairs, and apply a heuristic algorithms to deal with non-transitivity
[1, 2], but this separation of learning and clustering is not ideal. Another approach is
to learn a distance metric to seed a clustering algorithm [3, 4]. One other recent work
considers a generative approach in the style of relational learning [5].

2 A generative model for supervised clustering
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Figure 1: Graphical model

Model. We formulate the task in a generative Bayesian
framework. We assume that there is an underlying set of
possible publications {yi} and a set of ways to refer to
each publication {tj}, called reference types. In the ref-
erence matching task, one reference type might be good at
identifying long, journal-style citations, another might be
good at recognizing shorter conference-style citations, and
another might be able to recognize the first initial, versus
full name distinction. Of course, the intuitive interpretation
of the reference types varies across different tasks.

In our supervised clustering model (SCM), shown in Figure 1, we posit that a citation
xn is generated from a single publication ycn

and a single reference type tdn
. The cn

and dn components are indicator variables for y and t, respectively. Publications yi are



chosen with probability πy
i and types tj are chosen with probability πt

j . The πs are drawn
according to their corresponding αs. Publications y is drawn from a base distribution Gy

and reference types t are drawn from a base distribution Gt. Additionally, the publications
y are conditioned on the chosen publications, t. This is crucial: experiments based on
a model without this dependence perform poorly. The reference types are the key to the
learning component of our algorithm: they are global across the training and test data.

By making the πs multinomial r.v.s, the standard conjugate prior used would be a Dirichlet.
However, since π is now a random distribution, as it is defined over infinitely many values,
the Dirichlet distribution is no longer adequate, so instead we use a Dirichlet process (DP).
The DP is, formally, a measure over measures. F p is a DP if p is a finite measure over
B and if B1, . . . , Bk is a finite partition of B then 〈F p(B1), . . . , F

p(Bk)〉 is distribution
Dirichlet with parameter p(B1), . . . , p(Bk) (under mild technical restrictions).

One can understand our model as an extension of the standard (Bayesian) naı̈ve Bayes
classifier. If the number of publications K were known and all publications appeared in the
training data, this would be multiclass classification and a Dirichlet prior could be placed
on the (finite) π. By removing the second assumption, we would prefer to use a symmetric
Dirichlet distribution and finally to relax the assumption that K is known, we take the limit
as K → ∞, which corresponds to the DP [6].

The DP can be understood in terms of Pòlya Urns [7]: We start with an urn containing a
black ball. We draw a ball from the urn: if it is black, we add a ball of a novel color to the
urn and replace the black ball; if it is not black, we replace it along with a new ball of the
same color. This distribution corresponds to samples from a DP with α = 1.

Model Parameterization. As usual, we must make assumptions about the distributions
underlying the data generating process. Here, we assume that the xns are normally dis-
tributed with mean ycn

and precision (i.e., inverse variance) tdn
. In the terminology of

reference matching, we view all citations as located somewhere in space around the publi-
cation mean. We make Gp a normal distribution to preserve conjugacy. For computational
reasons, we will assume that the t matrices are diagonal, thus enabling us to make Gt a
gamma distribution. For the parameterization of p(y|t), to preserve generalization ability,
we wish to ascribe no meaning to actual values of the ys, so we define the conditional prob-
ability of the publications x under the reference types t in terms of their relative distances
to each other, approximated as

∏J−1

j=1

∏J

j′=j+1
Gam(||yj − yj′ ||

−1
t ; 1, 1).

Inference. The full Bayesian approach to inference would simultaneously consider both
training data and testing data, integrating out the reference types to find a MAP solution
to the cluster labels ci for the test data. This involves integrating out the types plate and
the representation of the publications. This approach has the disadvantage that it is compu-
tationally costly, especially when prediction is done for many data sets. An alternative is
to split inference into a training phase and a prediction phase. The training phase samples
from the posterior distribution of the reference types, conditioned on the training data (for
which the c are observed). During prediction, the training data is ignored and the sample
reference types are used to replace the bottom plate and the c variables are estimated.

Prediction. The training phase (discussed below) will leave us with a finite number of fi-
nite samples for reference types. Thus, we may consider that the t plate has been reduced to
a finite size. Furthermore, the parameters of Gy have been estimated. Given the assumption
on the form of p(xn|ycn

, tdn
), prediction becomes a mixture of Gaussians problem, where

each Gaussian can have one of J possible diagonal precision matrices, with an unknown
(or infinite) number of means.

The algorithm we use is Algorithm 2 from [6], and involves resampling each indicator
variable according to its conditional distribution, given the rest of the variables. Then, the
y values (essentially the means) are drawn according to their posterior. The draws for the



indicator variables are according to:

cn = cj | c−i ∼ δc−i,cj
Nor(xn; ycj

, t)

cn 6= cj | c−i ∼ αy
∫

dNor(0, σ0)Nor(xn; ycj
, t)

(1)

Training. The general technique for training this model is identical to that of prediction,
though the algorithm differs slightly due to the the distribution placed on the citations. The
distribution for the model is broken down into two cases as before, one for shared reference
types and one for new/unique reference types:

di = d | d
−i ∼ δd−i,d

∏
j<j′ Gam(||yj − yj′ ||

−1
t )Nor(x; y, t)

di 6= dj | d−i ∼ αt
∫

dGam(a, b)
∏

j<j′ Gam(||yj − yj′ ||
−1
t )Nor(x; y, t)

(2)

Unfortunately, these distributions are no longer conjugate, so we can neither efficiently
sample from them nor compute the integral in closed form. Thus, we must use a different
sampling algorithm from that described previously. The changes we make are few: Instead
of computing the marginal for each point under the integral, we approximate this integral
by a Student’s t-distribution, which arises when one does not consider the effect of the
reference types t on the publications y. Then, in order to rectify this approximation, during
the initial sampling process, we sample R many extra reference types from the underlying
distribution Gt = Gam(a, b); in our experiments, R = 6. α is estimated as described in [8].
We run 10k iterations of burnin, and take 1k samples at a spacing of 100 in all experiments.

3 Results
Metrics. The standard metric used in the clustering literature, when a gold-standard clus-
tering is available, is the Rand index, which views clustering as a binary classification
problem; its value is the number of correct decisions made, divided by the total number
of decisions. This metric unfortunately obscures many aspects of the problem, so we also
report precision, recall and F-score, as well as a variant of the cluster edit distance (CED)
metric, which counts the number of moves, merges and creates needed to transform the hy-
pothesis clustering into the gold standard. Our variant, the normalized edit score (NES) is
NES(g, h) = 1− (CED(g, h)+CED(h, g))/(2N), and falls between 0 (bad) and 1 (good).
Other metrics are discussed in [9], but we have not experimented with these.

Baseline systems. For now, we evaluate against three baseline systems; in the future, this
list will likely grow to include more recent methodologies proposed in the literature. The
first two, which are straw men, simply either put all the elements in their own cluster (FINE)
or put all the elements in a single cluster (COARSE). The third baseline system (SVM) is an
SVM using an RBF kernel, tuned by cross-validation; clustering is done using the technique
[1], tuned through more cross-validation. In addition, we also compare our system with a
“partially trained” (PT-SCM) version of our system, where only one reference type is used
(identity matrix), but αy is estimated from the training data.

Table 1: Digits results.
# Model RI P R F NES

COARSE .116 .116 1.00 .207 .176
FINE .885 .000 .000 .000 .053
PT-SCM .886 .970 .016 .031 .000

2 SVM .911 .802 .304 .441 .394
SCM .893 .542 .501 .521 .476

5 SVM .921 .730 .497 .592 .537
SCM .937 .622 .658 .639 .618

Digits data. We apply our system to the
USPS handwritten digits dataset by using
digits {1, 3, 5, 8, 9} as testing data and the
other digits as training data; with the task
of identifying identical numbers (subsets
were randomly selected). For brevity, the
full results are omitted, but a selection are
shown in Table 1. These results show that
the trained SCM model consistently outper-
forms the partially trained model, showing that the model is able to learn valuable informa-
tion from the training data. Furthermore, our model outperforms the SVM-based system,



according to the NES metric in all cases. It also achieves higher RI and F measures on most
training sizes.

Reference matching. One advantage of our parameterization is that all formulae depend
only on pairwise distances, means distances, and sample variance of any set of points.
Given two sets of points {ai} and {bj} we can compute the distance between the means
as 1

IJ

∑
i

∑
j ||ai − bj ||2 −

1

I2

∑
i<i′ ||ai − ai′ ||2 −

1

J2

∑
j<j′ ||bb − bj′ ||2. This deriva-

tion assumes that pairwise distances are calculated in Euclidean space. To deal with non-
Euclidean distances, one could first embed the data into Euclidean space using a known
algorithm, then compute distances in this space. Such an embedding can only lose infor-
mation, so instead we advocate the direct use of any metric, Euclidean or not. (Some care
must be taken: the Gaussian assumption makes no sense in the case of discrete values; how-
ever, in this case, Gy can be replaced with a Beta or Dirichlet distribution.) Generalization
to the other relevant cases and multidimensional inputs is straightforward.

Table 2: Reference matching results.

Model RI P R F NES
COARSE .118 .118 1.00 .568 .010
FINE .882 .000 .000 .000 .000
PT-SCM .782 .141 .094 .113 .097
SVM .936 .714 .616 .686 .721
SCM .977 .779 .884 .828 .749

We evaluate on the Cora reference
matching data [10]. This data consists
of 1916 citations from 121 publications
by M. Kearns, R. Schapire and Y. Fre-
und. This data is noisy: the labeling of
the fields has been done automatically
and there are many errors. We treat the
labeled data for two of these authors as
training data, using the third author as testing data. As features, we use several string edit
distance computations (on publication names, primary author names, full names and con-
ference names) and Euclidean distance between publication years, conference publication
count and number of coauthors. The results are shown in Table 2, averaged over the three
runs. In this data, our system outperforms any of the other approaches we compare against
on all metrics. We cannot compare directly to [10] because their test data is not available.

4 Discussion
We have presented a graphical model framework for the supervised clustering task, based
on the Dirichlet process prior, using a Gaussian parameterization. We have applied our
model to artificial problems on naturally occurring data and to a full-fledged reference
matching problem. On all data, our model has consistently outperformed all baselines and
competing approaches. In the future, we wish to apply this model to more problems, such
as identity uncertainty, explore other features and parameterizations, and experiment with
different evaluation criteria.
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