
http://pub.hal3.name#daume04intents

Web Search Intent Induction via Automatic Query Reformulation

Hal Daumé III
Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292
hdaume@isi.edu

Eric Brill
Microsoft Research
One Microsoft Way
Seattle, WA 98052

brill@microsoft.com

Abstract

We present a computationally efficient method
for automatic grouping of web search results
based on reformulating the original query to al-
ternative queries the user may have intended.
The method requires no data other than query
logs and the standard inverted indices used by
most search engines. Our method outperforms
standard web search in the task of enabling
users to quickly find relevant documents for in-
formational queries.

1 Introduction and Motivation
In a study of web search query logs, Broder (2002) ob-
served that most queries fall into one of three basic cate-
gories: navigational, informational and transactional. A
navigational query is one where the user has a particu-
lar URL they are attempting to find. An informational
query is one where the user has a particular information
need to satisfy. A transactional query is one in which the
user seeks to perform some sort of web-mediated activity
(such as purchasing a product).

In that paper, Broder (2002) also confirms that most
queries are very short: on the order of two words. For in-
formational queries this is often inadequate. The brevity
of queries is often due to the fact that the user does not
know exactly what he is looking for. This makes it dif-
ficult for him to formulate enough, or even correct, key-
words. These types of queries make up anywhere be-
tween 39 and 48 percent of all web queries, according to
Broder, making them a prime target for research.

2 Prior Work
Our interest is in informational queries. The general ap-
proach we explore to assist users find what they want is
to present structured results. Dumais et. al. (2001) have
shown that displaying structured results improves a user’s
ability to find relevant documents quickly.

There are three general techniques for presenting web
search results in a structured manner, ranging from to-
tally supervised methods to totally unsupervised meth-
ods. The first approach, manual classification, is typi-
fied by a system like Yahoo!, where humans have cre-
ated a hierarchical structure describing the web and man-
ually classify web pages into this hierarchy. The second
approach, automatic classification (see, for instance, the
classification system reported by Dumais (2000)) builds
on the hierarchies constructed for manual classification
systems, but web pages are categorized by a (machine-
learned) text classification system. The third approach,
typified by systems such as Vivisimo and the system of
Zamir et al. (1999), look at the text of the returned docu-
ments and perform document clustering.

A related unsupervised approach to this problem is
from Beeferman and Berger (2000). Their approach
leverages click-through data to cluster related queries.
The intuition behind their method is that if two differ-
ent queries lead to users clicking on the same URL, then
these queries are related (and vice-versa). They per-
form agglomerative clustering to group queries, based on
click-through data.

Our approach is most closely related to this agglom-
erative clustering approach, but does not require click-
through data. Moreover, the use of click-through data
can result in query clusters with low user utility (see Sec-
tion 3.2). Furthermore, our approach does not suffer from
the computation cost of document clustering by text and
produces structured results with meaningful names with-
out the economic cost of building hierarchies.

3 Methodology
Our goal is to provide a range of possible needs to a
user whose query is underspecified. Suppose a naive
user John enters a query for “fly fishing.” This query
will retrieve a large set of documents. We assume that
John’s search need (information about flies for catching
trout) is somewhere in or near this set, but we do not

know exactly where. However, we can attempt to iden-
tify other queries, made by other people, that are relevant
to John’s need. We refer to this process as Query Driven
Search Expansion and henceforth refer to our system as
the QDSE system.

3.1 Formal Specification
Formally, if Q is the set of queries to our search engine
and D is the set of indexed documents, let R be a binary
relation on Q×D where qRd if and only if d is in the re-
turn set for the query q. It is likely that the set of related
queries is quite large for a given q (in practice the size
is on the order of ten thousand; for our dataset, “fly fish-
ing” has 29, 698 related queries). However, some of these
queries will be only tangentially related to q. Moreover,
some of them will be very similar to each other. In order
to measure these similarities, we define a distance met-
ric between two queries q and q′ based on their returned
document sets, ignoring the text of the query:

‖q, q′‖ = 1 −
|R[q] ∩ R[q′]|

|R[q] ∪ R[q′]|
(1)

One could then sort the set of related queries according
to ‖q, q′‖ and present the top few to the user. Unfortu-
nately, this is insufficient: the top few are often too sim-
ilar to each other to provide any new useful information.
To get around this problem, we use the maximal marginal
relevance (MMR) scheme originally introduced by Car-
bonell et. al. (1998). In doing so, we order alternative
quereies according to:

argmin
q′

[

λ ‖q, q′‖ − (1 − λ) min
q′′

‖q′, q′′‖

]

(2)

where q′s are drawn from unreturned query expansions
and q′′s are drawn from the previously returned set.1

3.2 Alternative Distance Metrics
One particular thing to note in Equation 1 is that we do
not take relative rankings into account in calculating dis-
tance. One could define a distance metric weighted by
each document’s position in the return list.

We ran experiments using PageRank to weight the dis-
tance (calculated based on a recent full web crawl). Sys-
tem output was observed to be significantly inferior to the
standard ranking. We attribute this degradation to the fol-
lowing: if two queries agree only on their top documents,
they are too similar to be worth presenting to the user as
alternatives. This is the same weakness as is found in the
Beeferman and Berger (2000) approach.

4 System
The system described above functions in a completely
automatic fashion and responds in real-time to users
queries. Across the top of the return results, the query

1Queries that appear to be URLs, and strings with a very
small edit distance to the original are discarded.

is listed, as are the top ranked alternative queries. Each
of these query suggestions is a link to a heading, which
are shown below. Below this list are the top five search
result links from MSN Search under the original query2.
After the top five results from MSN Search, we display
each header with a +/- toggle to expand or collapse it.
Under each expanded query we list its top 4 results.

5 Evaluation Setup
Evaluating the results of search engine algorithms with-
out embedding these algorithms in an on-line system is
a challenge. We evaluate our system against a standard
web search algorithm (in our case, MSN Search). Ide-
ally, since our system is focused on informational queries,
we would like a corpus of 〈query, intent〉 pairs, where the
query is underspecified. One approach would be to create
this corpus ourselves. However, doing so would bias the
results. An alternative would be to use query logs; unfor-
tunately, these do not include intents. In the next section,
we explain how we create such pairs.

5.1 Deriving Query/Intent Pairs
We have a small collection of click-through data, based
on experiments run at Microsoft Research over the past
year. Given this data, for a particular user and query,
we look for the last URL they clicked on and viewed
for at least two minutes3. We consider all of these doc-
uments to be satisfactory solutions for the user’s search
need. We further discard pairs that were in the top five
because we intend to use these pairs to evaluate our sys-
tem against vanilla MSN Search. Since the first five re-
sults our system returns are identical to the first five re-
sults MSN Search returns, it is not worthwhile annotating
these data-points (this resulted in a removal of about 20%
of the data, most of which were navigational queries).

These 〈query, URL〉 pairs give us a hint at how to get to
the desired 〈query, intent〉 pairs. For each 〈query, URL〉
pair, we looked at the query itself and the web page at the
URL. Given the query, the relevant URL and the top five
MSN Search results, we attempted to create a reasonable
search intent that was (a) consistent with the query and
the URL, but (b) not satisfied by any of the top five re-
sults. There were a handful of cases (approximately an
additional 5%) where we could not think of a reasonable
intent for which (b) held – in these cases, we discarded
that pair.4 In all, we created 52 such pairs; four randomly

2The top five queries originally returned by MSN Search are
included because there is a chance the user knew what he was
doing and actually entered a good query.

3It may be the case that the users found an earlier URL also
to be relevant. This does not concern us, as we do not actually
use these URLs for evaluation purposes – we simply use them
to gain insight into intents.

4We make no claim that the intents we derive were neces-
sarily the original intent in the mind of the user. We only go
through this process to get a sense of the sorts of information

chosen 〈query, URL, intent〉 triples are shown in Table 1.
Once the intents have been derived, the original URLs are
thrown away: they are not used in any of our experiments.

5.2 Relevance Annotation

Our evaluation now consists of giving human annotators
〈query, intent〉 pairs and having them mark the first rele-
vant URL in the return set (if there is one). However, in
order to draw an unbiased comparison between our sys-
tem and vanilla MSN Search, we need to present the out-
put from both as a simple ordered list. This requires first
converting our system’s output to a list.

5.2.1 Linearization of QDSE Output
We wish to linearize our results in such a way that

the position of the first relevant URL enables us to draw
meaningful inferences. In vanilla MSN search, we can
ascribe a cost of 1 to reading each URL in the list: having
a relevant URL as the 8th position results in a cost of 8.

Similarly, we wish to ascribe a cost to each item in our
results. We do this by making the assumption that the
user is able to guess (with 100% accuracy) which sub-
category a relevant URL will be in (we will evaluate this
assumption later). Given this assumption, we say that the
cost of a link in the top 5 vanilla MSN links is simply its
position on the page. Further down, we assume there is a
cost for reading each of the MSN links, as well as a cost
for reading each header until you get to the one you want.
Finally, there is a cost for reading down the list of links
under that header. Given this cost model, we can linearize
our results by simply sorting them by cost (in this model,
several links will have the same cost – in this case, we fall
back to the original ordering).

5.2.2 Annotation
We divided the 52 〈query, intent〉 pairs into two sets of

32 (12 common pairs). Each set of 32 was then scrambled
and half were assigned to class System 1 and half were
assigned to class System 2. It was ensured that the 12
overlapping pairs were evenly distributed.

Four annotators were selected. The first two were pre-
sented with the first 32 pairs and the second two were
presented with the second 32 pairs, but with the sys-
tems swapped.5 Annotators were given a query, the in-
tent, and the top 100 documents returned from the search
according to the corresponding system (in the case of
QDSE, enough alternate queries were selected so that
there would be exactly 100 total documents listed). The
annotator selected the first link which answered the in-
tent. If there was no relevant link, they recorded that.

people really are looking for, so that we need not invent queries
off the tops of our heads.

5The interface used for evaluation converted the QDSE re-
sults into a linear list using our linearization technique so that
the interface was consistent for both systems.

5.3 Predictivity Annotation
Our cost function for the linearization of the hierarchical
results (see Section 5.2.1) assumes that users are able to
predict which category will contain a relevant link. In or-
der to evaluate this assumption, we took our 52 queries
and the automatically generated category names for each
using the QDSE system. We then presented four new an-
notators with the queries, intents and categories. They se-
lected the first category which they thought would contain
a relevant link. They also were able to select a “None”
category if they did not think any would contain relevant
links. Each of the four annotators performed exactly the
same annotation – it was done four times so agreement
could be calculated.

6 Results and Analysis
Our results are calculated on two metrics: relevance and
predictivity, as described in the previous section.

6.1 Relevance Results
The results of the evaluation are summarized in Table 2.
The table reports four statistics for each of the systems
compared. In the table, MSN is vanilla MSN search and
QDSE is the system described in this paper.

The first row is probability of success using this sys-
tem (number of successful searches divided by the num-
ber of total searches). The second line is the probability
of success, given that you are only allowed to read the
first 20 results. Next, Avg. Success Cost, is the average
cost of the relevant URL for that system. This cost aver-
ages only over the successes (queries for which a relevant
URL was found). The next statistic, Avg. Cost, is the av-
erage cost including failures, where the cost of a failure
is, in the case of vanilla MSN, the number of returned
results and, in the case of QDSE, the cost of reading the
top five results, all the labels and one category expansion6

The last statistic, Avg. Mutual Cost, is the average cost
for all pairs where both systems found a relevant docu-
ment. The last line reports inter-annotator agreement as
calculated over the 12 pairs, which is low due partly to
the small sample size and partly to the fact that the in-
tents themselves were still somewhat underspecified.7

6.2 Predictivity Results
We performed two calculations on the results of the pre-
dictivity annotations. In the first calculation, we consider
the relevance judgments on the QDSE system to be the
gold standard. We calculated accuracy of choosing the
correct first category. This measures the extent to which

6The user may have been able to determine his search had
failed having only read the categories, yielding a lower cost.

7We intend to run timed user studies in our future work;
however, it has been observed (Dumais et al., 2001) that pre-
senting users with structured results enables them to find rel-
evant documents more quickly; to do timed studies in the lin-
earization is an unrealistic scenario, since one would never de-
ploy the system in this configuration.

Query: Soldering iron URL: www.siliconsolar.com/accessories.htm

Intent: looking for accessories for soldering irons (but not soldering irons themselves)
Query: Whole Foods URL: www.wholefoodsmarket.com/company/communitygiving.html

Intent: looking for the Whole Foods Market’s community giving policy
Query: final fantasy URL: www.playonline.com/ff11/home/

Intent: looking for a webforum for final fantasy games
Query: online computer course URL: www.microsoft.com/traincert/

Intent: looking for information on Microsoft Certified Technical Education centers

Table 1: Four random 〈query, URL, intent〉 triples

MSN QDSE
Prob. Success 88.0% 67.7%

Prob. Success 20 68.7% 62.6%
Avg. Success Cost 12.4 4.7

Avg. Cost 22.9 9.0
Avg. Mutual Cost 23.0 9.0

kappa 0.57 0.45

Table 2: Results of the evaluation

the oracle system is correct. On this task, accuracy was
0.54. The second calculation we made was to determine
whether a user can predict, looking at the headers only,
whether their search has been successful. In the task
of simply identifying failed searches, accuracy was 0.70.
Inter-annotator agreement for predictivity was somewhat
low, with a kappa value of only 0.49.

6.3 Analysis
As can be seen from Table 2, a user is less likely to find a
relevant query in the top 100 documents using the QDSE
system than using the MSN system. However, this is an
artificial task: very few users will actually read through
the top 100 returned documents before giving up. At a
cutoff of 20 documents, the user is still more likely to suc-
ceed using MSN, but the difference is not nearly so large
(note, however, that by cutting off at 20 in the QDSE lin-
earization, the user will typically see only one result from
each alternate query, thus heavily relying on the under-
lying search engine to do a good job). The rest of the
numbers (not included for brevity) are consistent at 20.

Moreover, as seen in the evaluation of the predictiv-
ity results, users can decide, with 70% accuracy, whether
their search has failed having read only the category la-
bels. This is in stark contrast to the vanilla MSN search
where they could not know without reading all the results
whether their search had succeeded.

If one does not wish to give up on recall at all, we could
simply list all the MSN search results immediately after
the QDSE results. By doing this, we ensure that the prob-
ability of success is at least as high for the QDSE system.
We can upper-bound the additional cost this would incur
to the QDSE system by 4.15, yielding an upper bound of
13.2, still superior to vanilla MSN.

If one is optimistic and is willing to assume that a user
will know based only on the category labels whether or
not their search has succeeded, then the relevant com-
parison from Table 2 is between Avg. Success Cost for

QDSE and Avg. Cost for MSN. In this case, our cost
of 4.7 is a factor of 5 better than the MSN cost. If, on
the other hand, one is pessimistic and believes that a user
will not be able to identify based on the category names
whether or not their search has succeeded in the QDSE
system, then the interesting comparison is between the
Avg. Costs for MSN and QDSE. Both favor QDSE.

Lastly, the reciprocal rank statistic at 20 results confirm
that the QDSE system is more able to direct the user to
relevant documents than vanilla MSN search.
7 Conclusion
We have presented a method for providing useful sug-
gested queries for underspecified informational queries.
We evaluated our system using an unbiased metric
against a standard web search system and found that
our system enables users to more quickly find relevant
pages. This conclusion is based on an “oracle” assump-
tion, which we also evaluate. Based on these evaluations,
we can show that even under a pessimistic view point, our
system outperforms the vanilla search engine.

There is still room for improvement, especially in the
predictivity results. We would like users to be able to
more readily identify the class into which a relevant doc-
ument (if one exists) would be found. We are investi-
gating multi-document summarization techniques which
might allow users to better pinpoint the category in which
a relevant document might be found.

References
D. Beeferman and A. Berger. 2000. Agglomerative clus-

tering of a search engine query log. In KDD.
S. Brin and L Page. 1998. The anatomy of a large-scale

hypertextual Web search engine. Computer Networks
and ISDN Systems.

A. Broder. 2002. A taxonomy of web search. In SIGIR.
J. Carbonell and J. Goldstein. 1998. The use of MMR,

diversity-based reranking for reordering documents
and producing summaries. In Research and Develop-
ment in Information Retrieval.

S. Dumais and H. Chen. 2000. Hierarchical classifica-
tion of Web content. In Proc. of SIGIR-00.

S. Dumais, E. Cutrell, and H. Chen. 2001. Optimizing
search by showing results in context. In CHI.

O. Zamir and O. Etzioni. 1999. Grouper: a dynamic
clustering interface to Web search results. In Com-
puter Networks.

