
http://pub.hal3.name#daume02pbhmm

A Phrase-Based HMM

Hal Daumé III

18 December 2002

1 Introduction

A standard hidden Markov model is represented as a graph, with probabilities on
the edges. As edges are transitioned, observable emissions are made. However,
the actual path taken in the model is unknown (hence the “hidden” in the
name). One common extension to the HMM model is the epsilon transition:
allowing transitions to be made without emitting any symbol at all. Here, we
present a further, related extension:

Edges may emit more than one observation: that is, they can emit

a sequence of observations.

Before we begin, we make some notation:
S = {s1 . . . sN} set of states
K = {k1 . . . kM} output alphabet
Π = {πj : j ∈ S} initial state probabilities
A = {ai,j : i, j ∈ S} transition probabilities
B = {bi,j,k̄ : i, j ∈ S, k̄ ∈ K+} emission probabilities

Here, the states are indexed by natural numbers from 1 to N (hence there
are N states, total). The observation sequences come from the alphabet K
(of size M). πj is the probability of beginning in state sj . The transition
probability ai,j is the probability of transitioning from state si to state sj . bi,j,k̄
is the probability of emitting (the non-empty) observation sequence k̄ while
transitioning from state i to state j. Finally, xt means the state we are in after
emitting the first t symbols.

We use standard sequence notation where xb
a is shorthand for 〈xa . . . xb〉. If

b < a then xb
a refers to the empty sequence.

Given an observation sequence oT
1 = 〈o1 . . . oT 〉, our goal is to estimate the

probability of this sequence given a model µ = (S,K,Π, A,B). Thus, we are
trying to estimate Pr

(

oT
1 µ

)

. Considering only the final output from the HMM
(remember that this may be one or more symbols), we can break this down into:

Pr
(

oT
1 µ

)

=

T
∑

t=1

(

Pr
(

ot−1
1 µ

)

· Pr
(

oT
t µ, ot−1

1

))

The t parameter in the sum represents the first position of the last output
sequence. In the case where t = 1, the inner product becomes 1 · Pr

(

oT
1 µ

)

and the machine is outputting the entire sequence in one transition. In the case
where t = T , the inner product becomes Pr

(

oT−1
1 µ

)

·Pr
(

oT µ, oT−1
1

)

in which

1



case this is emitting only one observation in the last transition (assuming, as we
will for the remainder of this paper, no epsilon transitions). For t somewhere in
the middle, the machine is outputting a phrase of length T − t+ 1.

At this point, we make the standard Markov assumption:
Assumption: The probability of an observation [sequence] at a given state

does not depend on the previous states, but only on the state the machine is
currently in.

Thus, in the above expression, the second probability simplifies to:

Pr
(

oT
t µ, xt−1

)

Where, again, xt−1 is state the machine was in after outputting the first t−1
symbols (note that this does not mean that it has taken t − 1 steps: all t − 1
symbols could have been outputted in one step).

2 Forward

Now we are ready to calculate the actual probability of an observation sequence.
We present a dynamic programming solution analogous to the forward algorithm
for standard HMMs. We define αj(t) := Pr

(

ot−1
1 , xt−1 = j µ

)

, for j ∈ S and
1 ≤ t ≤ T + 1: the probability of being in state j after emitting the first t− 1
symbols (in whatever grouping we want).

Assuming we can calculate these values, we can calculate the probability
of an entire observation sequence as Pr

(

oT
1 µ

)

=
∑

j∈S Pr
(

oT
1 , xT = j µ

)

=
∑

j∈S αj(T + 1).
To calculate the α values, we initialize αj(1) = Pr (x0 = j µ) := πj . We

then perform dynamic programming recursion to calculate α for t > 0 by:

αj(t+ 1) = Pr
(

ot
1, xt = j µ

)

{consider each possible previous observation and

each possible previous state}

{chain rule}

=

t−1
∑

t′=0

∑

i∈S

(

Pr
(

ot′

1 , xt′ = i µ
)

· Pr
(

ot
t′+1, xt = j ot′

1 , xt′ = i, µ
))

{Markov assumption and definition of α}

=
t−1
∑

t′=0

∑

i∈S

(

αi(t
′ + 1) · Pr

(

ot
t′+1, xt = j xt′ = i, µ

))

{definitions of a and b}

=
t−1
∑

t′=0

∑

i∈S

(

αi(t
′ + 1) · ai,j · bi,j,ot

t′+1

)

2



3 Backward

Just as we can compute the probability of an observation sequence by mov-
ing forward, so can we calculate it by going backward. We define βi(t) :=
Pr

(

oT
t µ, xt−1 = i

)

the probability of emitting the sequence oT
t given that we

are starting out in state i (again, defined for i ∈ S and 1 ≤ t ≤ T + 1).
Again, assuming we can calulate these values, we can calculate the proba-

bility of an entire observation sequence as Pr
(

oT
1 µ

)

=
∑

i∈S Pr (x0 = i µ) ·

Pr
(

oT
1 µ, x0 = i

)

=
∑

i∈S πiβi(1).
We initialize βi(T + 1) = 1 for all i ∈ S and then the recursive form of β is

derived as:

βi(t) = Pr
(

oT
t µ, xt−1 = i

)

{sum over all breaks in o, and all previous states}

=

T
∑

t′=t

∑

j∈S

(

Pr
(

ot′

t , xt′ = j µ, xt−1 = i
)

· Pr
(

oT
t′+1 µ, xt−1 = i, ot′

t , xt′ = j
))

{Markov assumption, definition of a and b}

=

T
∑

t′=t

∑

j∈S

(

ai,j · bi,j,ot′
t
· Pr

(

oT
t′+1 µ, xt′ = j

)

)

{definition of β}

=

T
∑

t′=t

∑

j∈S

(

ai,j · bi,j,ot′
t
· βj(t

′ + 1)
)

Being able to calculate these backwards values enables us to calculate prob-
abilities of being in a particular state after emitting some symbols. We estimate
for any t:

Pr
(

oT
1 , xt = i µ

)

{splitting the observation sequence}

= Pr
(

ot
1, xt = i, oT

t µ
)

{chain rule}

= Pr
(

ot
1, xt = i µ

)

· Pr
(

oT
t+1 µ, xt = i, ot

1

)

{Markov assumption}

= Pr
(

ot
1, xt = i µ

)

· Pr
(

oT
t+1 µ, xt = i

)

{definitions of α and β}

= αi(t+ 1) · βi(t+ 1)

Therefore, we get Pr
(

oT
1 µ

)

=
∑

i∈S αi(t)βi(t) for any 0 ≤ t ≤ T . In
particular, when t = 0, this becomes

3



∑

i∈S

(αi(1)βi(1))

{definition of α}

=
∑

i∈S

(πiβi(1))

{definition of π and β}

=
∑

i∈S

(

Pr (x0 = i) Pr
(

oT
1 µ, x0 = i

))

{math}

= Pr
(

oT
1 µ

)

We can perform the same calculation when t = T and get:

∑

i∈S

(αi(T + 1)βi(T + 1))

{definitions of α and β}

=
∑

i∈S

(

Pr
(

oT
1 , xT = i µ

)

Pr
(

oT
T+1 µ, xT = i

))

{oT
T+1 = 〈〉}

=
∑

i∈S

Pr
(

oT
1 , xT = i µ

)

{math}

= Pr
(

oT
1 µ

)

Again, this is exactly what we expect.

4 Best Path

The purpose of the Viterbi algorithm is to calculate the most likely state se-
quence given observations. However, we must also keep track of which parts of
the observation sequence are attributed to each transition. This is not unlike
the situation with HMMs which allow epsilon transitions: there you also need
to keep track of which transitions emit observations, since transitions can be
made which emit nothing.

We define a path as a sequence P = 〈p1 . . . pL〉 such that pi is a tuple 〈t, x〉
where t corresponds to the last of the (possibly multiple) observations made,
and x refers to the state we were coming from when we output this observation
(phrase).

Thus, we want to find:

argmax
P

Pr
(

P oT
1 , µ

)

= argmax
P

Pr
(

P, oT
1 µ

)

4



Given a path P = pL
1 , we can calculate the states which correspond to the

phrases of observations. Of course, we must constrain the paths such that their t
component is monotonically increasing. If we write pi 〈t, x〉 to mean that t is the
t component of pi and x is the x component, then we get that the observation
phrase opi.t

pi−1.t+1 corresponds exactly to state pi 〈x, 〉, where we implicitly define
p0.t := 0.

In order to calculate the P which maximizes the above expression, we intro-
duce a dynamic programming algorithm which is an extension to the Viterbi
algorithm for standard HMMs. To do this calculation, we wish to estimate the
value:

ζj(t) = max
l,p

l−1

1

Pr
(

pl−1
1 , ot−1

1 , pl.t = t− 1, pl.x = j µ
)

The idea here is that the path pl
1 accounts for observations ot−1

1 (and thus
must end there); furthermore, the “next” element in the path, pl should have j
as its state. Thus ζj(t) is the probability of the most likely path which emits
observations ot−1

1 and ends in state j. Given such a complete ζ table, we can
calculate the probability of the optimal path as:

max
P

Pr
(

P, oT
1 µ

)

= max
l,p

l−1

1

max
j∈S

Pr
(

pl−1
1 , oT

1 , pl.t = T, pl.x = j µ
)

= max
j∈S

ζj(T + 1)

And, as usual, by storing in a secondary table ψ the tuple (t, x) we can
calculate the optimal path by standard Viterbi methods.

We initialize the ζ table by setting:

ζj(1) := max
l,p

l−1

1

Pr
(

pl−1
1 , ot−1

1 , pl.t = t− 1, pl.x = j µ
)

= Pr
(

p0
1, o

0
1, p0.t = 0, p1.x = j µ

)

= Pr (p1.x = j µ)

= πj

This is essentially because there cannot be any path before outputting any
observations, thus l must be 1, thus we are simply considering the first state in
any path. We similarly define ψj(1) := (0, ∅) to indicate that this is the start of
the path.

For the inductive step (t > 1), we define:

5



ζj(t) := max
l,p

l−1

1

Pr
(

pl−1
1 , ot−1

1 , pl.t = t− 1, pl.x = j µ
)

{Expand out pl−2}

= max
l,p

l−2

1

i∈S,t′<t

Pr
(

pl−2
1 , ot′−1

1 , pl−1.t = t′ − 1, pl−1.x = i

ot−1
t′ , pl.t = t− 1, pl.x = j µ

)

{Chain rule}

= max
l,p

l−2

1

i∈S,t′<t

Pr
(

pl−2
1 , ot′−1

1 , pl−1.t = t′ − 1, pl−1.x = i µ
)

Pr
(

ot−1
t′ , pl.t = t− 1, pl.x = j

pl−2
1 , ot′−1

1 , pl−1.t = t′ − 1, pl−1.x = i, µ
)

{Definition of ζ, and Marlov assumption}

= max
l,p

l−2

1

i∈S,t′<t

ζi(t
′)Pr

(

ot−1
t′ , pl.t = t− 1, pl.x = j

pl−1.x = i, µ
)

{Definition of a and b}

= max
i∈S,t′<t

ζi(t
′)ai,jbi,j,ot−1

t′

And, of course, when we calculate ζj(t), we essentially need to choose an
appropriate i and t′, which we store in ψj(t), so we can calculate the actual
path at the end.

5 Parameter Re-estimation

The final problem we need to tackle in order to make the Phrase-Based HMM
effective is that of parameter re-estimation. Essentially we want to find the
model µ which best explains observations. There is no known analytic solution
for standard HMMs, so we are fairly safe in assuming that it is far too difficult
to find an analytic solution for this more complex problem. Thus, we also revert
to an interative hill-climbing solution analogous to Baum-Welch re-estimation
(i.e., the Forward Backward algorithm).

In order to achieve this, we define the re-esimated values â and b̂ as:

âi,j =
E [# of transitions i ; j]

E [# of transitions i ;?]

b̂i,j,k̄ =
E

[

# of transitions i ; j with k̄ observed
]

E [# of transitions i ; j]

In order to calculate these, we define:

τi,j(t
′, t) = E

[

# of transitions i ; j emitting ot
t′

]

6



If we can calculate this, then we can re-estimate a and b as:

âi,j =

∑T
t′=1

∑T
t=t′ τi,j(t

′, t)
∑T

t′=1

∑T
t=t′

∑

j′∈S τi,j′(t
′, t)

b̂i,j,k̄ =

∑T+1−|k̄|
t=1 δ(k̄, o

t+|k̄|−1
t )τi,j(t, t+ |k̄| − 1)

∑T
t′=1

∑T
t=t′ τi,j(t

′, t)

If we let ηi,j =
∑T

t′=1

∑T
t=t′ τi,j(t

′, t), then we can rewrite these re-estimations
as:

âi,j =
ηi,j

∑

j′∈S ηi,j′

b̂i,j,k̄ =

∑T+1−|k̄|
t=1 δ(k̄, o

t+|k̄|−1
t )τi,j(t, t+ |k̄| − 1)

ηi,j

So the parameter re-estimation problem boils down to calculating the τ table.
We can do this using a combination of the forward and backward probabilities.
Recall that these are defined as:

αj(t) = Pr
(

ot−1
1 , xt−1 = j µ

)

βi(t) = Pr
(

oT
t µ, xt−1 = i

)

Now, we are set to calculate τ :

τi,j(t
′, t)

{definition of τ}

= E
[

# of transitions i ; j emitting ot
t′

]

{calculating the probability explicitly}

= Pr
(

xt′−1 = i, xt = j oT
1 , µ

)

{Bayes’ Rule}

=
Pr

(

xt′−1 = i, xt = j, oT
1 µ

)

Pr
(

oT
1 µ

)

{split the observation sequence in half}

=
Pr

(

xt′−1 = i, ot′−1
1 , oT

t′ , xt = j µ
)

Pr
(

oT
1 µ

)

{reverse chain rule}

=
Pr

(

xt′−1 = i, ot′−1
1 µ

)

Pr
(

oT
t′ , xt = j xt′−1 = i, ot′−1

1 , µ
)

Pr
(

oT
1 µ

)

{definition of α and reverse chain rule}

7



=
αi(t

′) Pr
(

xt = j xt′−1 = i, ot′−1
1 , µ

)

Pr
(

oT
t′ xt′−1 = i, ot′−1

1 , xt = j, µ
)

Pr
(

oT
1 µ

)

{splitting the observation sequence again and reverse chain rule}

=
αi(t

′) Pr
(

xt = j xt′−1 = i, ot′−1
1 , µ

)

Pr
(

ot
t′ , o

T
t+1 xt′−1 = i, ot′−1

1 , xt = j, µ
)

Pr
(

oT
1 µ

)

{definition of a and b, and Markov assumption}

=
αi(t

′)ai,jbi,j,ot
t′

Pr
(

oT
t+1 xt = j, µ

)

Pr
(

oT
1 µ

)

{definition of β}

=
αi(t

′)ai,jbi,j,ot
t′
βj(t+ 1)

Pr
(

oT
1 µ

)

6 Summary and Complexity Analysis

Recall the final definitions from the previous sections:

αj(t+ 1) =
∑t−1

t′=0

∑

i∈S

(

αi(t
′ + 1) · ai,j · bi,j,ot

t′+1

)

, ∀j ∈ S, 1 ≤ t ≤ T

βi(t) =
∑T

t′=t

∑

j∈S

(

ai,j · bi,j,ot′
t
· βj(t

′ + 1)
)

, ∀i ∈ S, 1 ≤ t ≤ T

τi,j(t
′, t) =

αi(t
′)ai,jb

i,j,ot
t′

βj(t+1)

Pr(oT
1

µ)
, ∀i, j ∈ S, 1 ≤ t′ ≤ t ≤ T

ηi,j =
∑T

t′=1

∑T
t=t′ τi,j(t

′, t) , ∀i, j ∈ S

âi,j =
ηi,j�

j′∈S ηi,j′
, ∀i, j ∈ S

b̂i,j,k̄ =
� T+1−|k̄|

t=1
δ(k̄,o

t+|k̄|−1

t )τi,j(t,t+|k̄|−1)
ηi,j

, ∀i, j ∈ S, k̄ ∈ K+

Of course, we needn’t consider all k̄ ∈ K+ for the re-estimation of b: only
the ones which actually appear in oT

1 .
Calculating the α, β and τ tables will take time O

(

N2T 2
)

each. Calculating

the η table will only take time O
(

N2
)

. Re-estimating â will take time O
(

N2
)

assuming we are decently intelligent about calculating the denominator. Fi-
nally, re-estimating b̂ will take time O

(

N2T 2
)

since we need to consider every

subsequence of oT
1 . Thus, all in all, the re-estimation will take O

(

N2T 2
)

time.
In many applications we needn’t actually consider all subsequences of obser-

vations. Usually we will want to bound the length of the sequence; otherwise
we are unlikely to encounter enough training data to get reasonable estimates of
emission probabilities. If we enforce a maximum observation sequence length of
l, then all the factors of T 2 drop to T l, a fairly substantial improvement, leaving
us with a complexity of O

(

N2T l
)

for parameter re-estimation (typically l will
be much smaller than T ).

Moreover, if the HMM is sparse, then the sums over all i, j ∈ S need only
be a sum over all the i ∈ S and j such that there is an edge from i to j. If the
maximum out-degree of any node is b, all the N 2 factors drop to Nb, leaving us
with a final complexity of O (NTbl).

8


