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Abstract

We present a document compression sys-
tem that uses a hierarchical noisy-channel
model of text production. Our compres-
sion system first automatically derives the
syntactic structure of each sentence and
the overall discourse structure of the text
given as input. The system then uses a sta-
tistical hierarchical model of text produc-
tion in order to drop non-important syn-
tactic and discourse constituents so as to
generate coherent, grammatical document
compressions of arbitrary length. The sys-
tem outperforms both a baseline and a
sentence-based compression system that
operates by simplifying sequentially all
sentences in a text. Our results support
the claim that discourse knowledge plays
an important role in document summariza-
tion.

1 Introduction

Single document summarization systems proposed
to date fall within one of the following three classes:

Extractive summarizers simply select and present
to the user the most important sentences in
a text — see (Mani and Maybury, 1999;
Marcu, 2000; Mani, 2001) for comprehensive
overviews of the methods and algorithms used
to accomplish this.

Headline generators are noisy-channel probabilis-
tic systems that are trained on large corpora
of (Headline, Text) pairs (Banko et al., 2000;
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Berger and Mittal, 2000). These systems pro-
duce short sequences of words that are indica-
tive of the content of the text given as input.

Sentence simplification systems (Chandrasekar et
al., 1996; Mahesh, 1997; Carroll et al., 1998;
Grefenstette, 1998; Jing, 2000; Knight and
Marcu, 2000) are capable of compressing long
sentences by deleting unimportant words and
phrases.

Extraction-based summarizers often produce out-
puts that contain non-important sentence fragments.
For example, the hypothetical extractive summary
of Text (1), which is shown in Table 1, can be com-
pacted further by deleting the clause “which is al-
ready almost enough to win”. Headline-based sum-
maries, such as that shown in Table 1, are usually
indicative of a text’s content but not informative,
grammatical, or coherent. By repeatedly applying a
sentence-simplification algorithm one sentence at a
time, one can compress a text; yet, the outputs gen-
erated in this way are likely to be incoherent and
to contain unimportant information. When summa-
rizing text, some sentences should be dropped alto-
gether.

Ideally, we would like to build systems that have
the strengths of all these three classes of approaches.
The “Document Compression” entry in Table 1
shows a grammatical, coherent summary of Text (1),
which was generated by a hypothetical document
compression system that preserves the most impor-
tant information in a text while deleting sentences,
phrases, and words that are subsidiary to the main
message of the text. Obviously, generating coher-
ent, grammatical summaries such as that produced
by the hypothetical document compression system
in Table 1 is not trivial because of many conflicting



Type of Hypothetical output Output Output is Output is
Summarizer containsonly | coherent | grammatical
important info

Extractive John Doe has already secured the vote of most IV
summarizer | democratsin his constituency, which is already

almost enough to win. But without the support

of the governer, heis still on shaky ground.
Headline mayor vote constituency governer Vi
generator
Sentence The mayor is now looking for re-election. John Doe IV
simplifi er has already secured the vote of most democrats

in his constituency. Heis still on shaky ground.
Document | John Doe has secured the vote of most democrats. IV IV VA
compressor | But heis still on shaky ground.

Table 1: Hypothetical outputs generated by various types of summarizers.

goalst. The deletion of certain sentences may result
in incoherence and information loss. The deletion of
certain words and phrases may also lead to ungram-
maticality and information loss.

The mayor is now looking for re-election. John Doe (1)
has already secured the vote of most democratsin his
constituency, which is already almost enough to win.

But without the support of the governer, heis still on
shaky grounds.

In this paper, we present a document compression
system that uses hierarchical models of discourse
and syntax in order to simultaneously manage all
these conflicting goals. Our compression system
first automatically derives the syntactic structure of
each sentence and the overall discourse structure of
the text given as input. The system then uses a sta-
tistical hierarchical model of text production in or-
der to drop non-important syntactic and discourse
units so as to generate coherent, grammatical doc-
ument compressions of arbitrary length. The system
outperforms both a baseline and a sentence-based
compression system that operates by simplifying se-
guentially all sentences in a text.

2 Document Compression

The document compression task is conceptually
simple. Given a document D = (wyws . ..w,), our
goal is to produce a new document D’ by “dropping”
words w; from D. In order to achieve this goal, we

A number of other systems use the outputs of extrac-
tive summarizers and repair them to improve coherence (DUC,
2001; DUC, 2002). Unfortunately, none of these seemsfkxible
enough to produce in one shot good summaries that are simul-
taneously coherent and grammatical.

extent the noisy-channel model proposed by Knight
& Marcu (2000). Their system compressed sen-
tences by dropping syntactic constituents, but could
be applied to entire documents only on a sentence-
by-sentence basis. As discussed in Section 1, this
is not adequate because the resulting summary may
contain many compressed sentences that are irrele-
vant. In order to extend Knight & Marcu’s approach
beyond the sentence level, we need to “glue” sen-
tences together in a tree structure similar to that used
at the sentence level. Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) provides us this
“glue.”

The tree in Figure 1 depicts the RST structure
of Text (1). In RST, discourse structures are non-
binary trees whose leaves correspond to € ementary
discourse units (EDUs), and whose internal nodes
correspond to contiguous text spans. Each internal
node in an RST tree is characterized by a rhetor-
ical relation. For example, the first sentence in
Text (1) provides sackcrounp information for inter-
preting the information in sentences 2 and 3, which
are in a ConTrast relation (see Figure 1). Each re-
lation holds between two adjacent non-overlapping
text spans called nucLeus and sateLLite. (There are
a few exceptions to this rule: some relations, such
as List and conTrasT, are multinuclear.) The dis-
tinction between nuclei and satellites comes from
the empirical observation that the nucleus expresses
what is more essential to the writer’s purpose than
the satellite.

Our system is able to analyze both the discourse
structure of a document and the syntactic structure
of each of its sentences or EDUs. It then compresses



the document by dropping either syntactic or dis-
course constituents.

3 A Noisy-Channel Model

For a given document D, we want to find the
summary text S that maximizes P(S|D). Using
Bayes rule, we flip this so we end up maximizing
P(D|S)P(S). Thus, we are left with modelling two
probability distributions: P(D|S), the probability of
a document D given a summary S, and P(S), the
probability of a summary. We assume that we are
given the discourse structure of each document and
the syntactic structures of each of its EDUs.

The intuitive way of thinking about this applica-
tion of Bayes rule, reffered to as the noisy-channel
model, is that we start with a summary S and add
“noise” to it, yielding a longer document D. The
noise added in our model consists of words, phrases
and discourse units.

For instance, given the document “John Doe has
secured the vote of most democrats.” we could add
words to it (namely the word “already”) to gener-
ate “John Doe has already secured the vote of most
democrats.” We could also choose to add an en-
tire syntactic constituent, for instance a prepositional
phrase, to generate “John Doe has secured the vote
of most democrats in his constituency.” These are
both examples of sentence expansion as used previ-
ously by Knight & Marcu (2000).

Our system, however, also has the ability to ex-
pand on a core message by adding discourse con-
stituents. For instance, it could decide to add another
discourse constituent to the original summary “John
Doe has secured the vote of most democrats” by
conTrAsTing the information in the summary with
the uncertainty regarding the support of the gover-
nor, thus yielding the text: “John Doe has secured
the vote of most democrats. But without the support
of the governor, heis still on shaky ground.”

As in any noisy-channel application, there are
three parts that we have to account for if we are to
build a complete document compression system: the
channel model, the source model and the decoder.
We describe each of these below.

The source model assigns to a string the probabil-
ity P(S), the probability that the summary S
is good English. Ideally, the source model
should disfavor ungrammatical sentences and

documents containing incoherently juxtaposed
sentences.

The channel model assigns to any  docu-
ment/summary pair a probability P(D|S).
This models the extent to which D is a good
expansion of S. For instance, if S is “The
mayor is now looking for re-election.”, D; is
“The mayor is now looking for re-election.
He has to secure the vote of the democrats.”
and D, is “The major is now looking for
re-election. Sharks have sharp teeth.”, we
expect P(Dq|S) to be higher than P(D;|S)
because D; expands on S by elaboration,
while D, shifts to a different topic, yielding an
incoherent text.

The decoder searches through all possible sum-
maries of a document D for the summary
S that maximizes the posterior probability
P(D|S)P(S).

Each of these parts is described below.

3.1 Source model

The job of the source model is to assign a score
P(S) to a compression independent of the original
document. That is, the source model should measure
how good English a summary is (independent of
whether it is a good compression or not). Currently,
we use a bigram measure of quality (trigram scores
were also tested but failed to make a difference),
combined with non-lexicalized context-free syntac-
tic probabilities and context-free discourse probabil-
ities, glvmg P(S) = Pbigmm(s) * Ppcpg(S) *
Pppcra(S). It would be better to use a lexical-
ized context free grammar, but that was not possible
given the decoder used.

3.2 Channel model

The channel model is allowed to add syntactic
constituents (through a stochastic operation called
constituent-expand) or discourse units (through an-
other stochastic operation called EDU-expand).
Both of these operations are performed on a com-
bined discourse/syntax tree called the DS-tree. The
DS-tree for Text (1) is shown in Figure 1 for refer-
ence.

Suppose we start with the summary S = “The
mayor is looking for re-election.” A constituent-
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Figure 1: The discourse (full)/syntax (partial) tree for Text (1).

expand operation could insert a syntactic con-
stituent, such as “this year” anywhere in the syntac-
tic tree of S. A constituent-expand operation could
also add single words: for instance the word “now”
could be added between “is” and “looking,” yielding
D = “The mayor is now looking for re-election.”
The probability of inserting this word is based on
the syntactic structure of the node into which it’s in-
serted.

Knight and Marcu (2000) describe in detail a
noisy-channel model that explains how short sen-
tences can be expanded into longer ones by inserting
and expanding syntactic constituents (and words).
Since our constituent-expand stochastic operation
simply reimplements Knight and Marcu’s model, we
do not focus on them here. We refer the reader
to (Knight and Marcu, 2000) for the details.

In addition to adding syntactic constituents, our
system is also able to add discourse units. Consider
the summary .S = “John Doe has already secured the
vote of most democrats in his consituency.” Through
a sequence of discourse expansions, we can expand
upon this summary to reach the original text. A com-
plete discourse expansion process that would occur
starting from this initial summary to generate the
original document is shown in Figure 2.

In this figure, we can follow the sequence of
steps required to generate our original text, begin-
ning with our summary S. First, through an op-
eration D-Project (“D” for “D”iscourse), we in-
crease the depth of the tree, adding an intermediate

Nuc=SPAN node. This projection adds a factor of
P(Nuc=Span — Nuc=Span| Nuc=Span) to the probabil-
ity of this sequence of operations (as is shown under
the arrow).

We are now able to perform the second operation,
D-Expand, with which we expand on the core mes-
sage contained in S by adding a satellite which eval-
uates the information presented in .S. Thisexpansion
adds the probability of performing the expansion
(called the discourse expansion probabilities, Ppg.
An example discourse expansion probability, writ-
ten P(Nuc=Span — Nuc=Span Sat=Eval| Nuc=Span —
Nuc=Span), reflects the probability of adding an eval-
uation satellite onto a nuclear span).

The rest of Figure 2 shows some of the remaining
steps to produce the original document, each step la-
beled with the appropriate probability factors. Then,
the probability of the entire expansion is the prod-
uct of all those listed probabilities combined with
the appropriate probabilities from the syntax side of
things. In order to produce the final score P(D|S)
for a document/summary pair, we multiply together
each of the expansion probabilities in the path lead-
ing from S to D.

For estimating the parameters for the discourse
models, we used an RST corpus of 385 Wall Street
Journal articles from the Penn Treebank, which we
obtained from LDC. The documents in the corpus
range in size from 31 to 2124 words, with an av-
erage of 458 words per document. Each document
is paired with a discourse structure that was manu-
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Figure 2: A sequence of discourse expansions for Text (1) (with probability factors).

ally built in the style of RST. (See (Carlson et al.,
2001) for details concerning the corpus and the an-
notation process.) From this corpus, we were able
to estimate parameters for a discourse PCFG using
standard maximum likelihood methods.

Furthermore, 150 document from the same corpus
are paired with extractive summaries on the EDU
level. Human annotators were asked which EDUs
were most important; suppose in the example DS-
tree (Figure 1) the annotators marked the second
and fifth EDUs (the starred ones). These stars are
propagated up, so that any discourse unit that has
a descendent considered important is also consid-
ered important. From these annotations, we could
deduce that, to compress a Nuc=ConTrasT that has
two children, Nuc=Span and SAT=EVALUATION, W€
can drop the evaluation satellite. Similarly, we can
compress a Nuc=ConTrasT that has two children,
sat=conpiTioN and Nuc=Span by dropping the first
discourse constituent. Finally, we can compress the
Root deriving into SAT=BACKGROUND Nuc=SpaN by
dropping the sat=Backcrounp constituent. We keep
counts of each of these examples and, once col-
lected, we normalize them to get the discourse ex-
pansion probabilities.

3.3 Decoder

The goal of the decoder is to combine P(S) with
P(D|S) to get P(S|D). There are a vast number
of potential compressions of a large DS-tree, but

we can efficiently pack them into a shared-forest
structure, as described in detail by Knight & Marcu
(2000). Each entry in the shared-forest structure has
three associated probabilities, one from the source
syntax PCFG, one from the source discourse PCFG
and one from the expansion-template probabilities
described in Section 3.2. Once we have generated a
forest representing all possible compressions of the
original document, we want to extract the best (or
the n-best) trees, taking into account both the ex-
pansion probabilities of the channel model and the
bigram and syntax and discourse PCFG probabili-
ties of the source model. Thankfully, such a generic
extractor has already been built (Langkilde, 2000).
For our purposes, the extractor selects the trees with
the best combination of LM and expansion scores
after performing an exhaustive search over all possi-
ble summaries. It returns a list of such trees, one for
each possible length.

4 System

The system developed works in a pipelined fash-
ion as shown in Figure 3. The first step along the
pipeline is to generate the discourse structure. To
do this, we use the decision-based discourse parser
described by Marcu (2000)2. Once we have the dis-
course structure, we send each EDU off to a syn-

2The discourse parser achieves an f-score of 38.2 for EDU

identifi cation, 50.0 for identifying hierarchical spans, 39.9 for
nuclearity identifi cation and 23.4 for relation tagging.
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Figure 3: The pipeline of system components.

tactic parser (Collins, 1997). The syntax trees of
the EDUs are then merged with the discourse tree
in the forest generator to create a DS-tree similar to
that shown in Figure 1. From this DS-tree we gener-
ate a forest that subsumes all possible compressions.
This forest is then passed on to the forest ranking
system which is used as decoder (Langkilde, 2000).
The decoder gives us a list of possible compressions,
for each possible length. Example compressions of
Text (1) are shown in Figure 4 together with their
respective log-probabilities.

In order to choose the “best” compression at
any possible length, we cannot rely only on the
log-probabilities, lest the system always choose the
shortest possible compression. In order to compen-
sate for this, we normalize by length. However, in
practice, simply dividing the log-probability by the
length of the compression is insufficient for longer
documents. Experimentally, we found a reasonable
metric was to, for a compression of length n, divide
each log-probability by »'-2. This was the job of
the length chooser from Figure 3, and enabled us
to choose a single compression for each document,
which was used for evaluation. (In Figure 4, the
compression chosen by the length selector is itali-
cized and was the shortest one3.)

5 Results

For testing, we began with two sets of data. The
first set is drawn from the Wall Street Journal (WSJ)
portion of the Penn Treebank and consists of 16 doc-
uments, each containing between 41 and 87 words.
The second set is drawn from a collection of stu-

3This tends to be the case for very short documents, as the
compressions never get suffi ciently long for the length normal-
ization to have an effect.

dent compositions and consists of 5 documents, each
containing between 64 and 91 words. We call this
set the MITRE corpus (Hirschman et al., 1999). We
would liked to have run evaluations on longer docu-
ments. Unfortunately, the forests generated even for
relatively small documents are huge. Because there
are an exponential number of summaries that can be
generated for any given text?, the decoder runs out
of memory for longer documents; therefore, we se-
lected shorter subtexts from the original documents.

We used both the WSJ and Mitre data for eval-
uation because we wanted to see whether the per-
formance of our system varies with text genre. The
Mitre data consists mostly of short sentences (av-
erage document length from Mitre is 6 sentences),
quite in constrast to the typically long sentences in
the Wall Street Journal articles (average document
length from WSJ is 3.25 sentences).

For purpose of comparison, the Mitre data was
compressed using five systems:

Random: Drops random words (each word has a
50% chance of being dropped (baseline).

Hand: Hand compressions done by a human.

Concat: Each sentence is compressed individually;
the results are concatenated together, using
Knight & Marcu’s (2000) system here for com-
parison.

EDU: The system described in this paper.

Sent: Because syntactic parsers tend not to work
well parsing just clauses, this system merges
together leaves in the discourse tree which are
in the same sentence, and then proceeds as de-
scribed in this paper.

The Wall Street Journal data was evaluated on the
above five systems as well as two additions. Since
the correct discourse trees were known for these
data, we thought it wise to test the systems using
these human-built discourse trees, instead of the au-
tomatically derived ones. The additionall two sys-
tems were:

PD-EDU: Same as EDU except using the perfect
discourse trees, available from the RST corpus
(Carlson et al., 2001).

%In theory, atext of n words has 2™ possible compressions.



len log prob

& —118.9060
13 —137.1010
16 —147.5970
18 —160.4310
22 —176.1990

best compression
Mayor is now looking which is enough.

ground.
28  —239.9490
governer, heis still on shaky ground.

The mayor is now looking which is already almost enough to win.

The mayor is now looking but without support, heis still on shaky ground.
Mayor is now looking but without the support of governer, he is till on shaky ground.

The mayor is now looking for re-election but without the support of the governer, heis still on shaky

Figure 4: Possible compressions for Text (1).

PD-Sent: The same as Sent except using the perfect
discourse trees.

Six human evaluators rated the systems according to
three metrics. The first two, presented together to
the evaluators, were grammaticality and coherence;
the third, presented separately, was summary qual-
ity. Grammaticality was a judgment of how good
the English of the compressions were; coherence
included how well the compression flowed (for in-
stance, anaphors lacking an antecedent would lower
coherence). Summary quality, on the other hand,
was a judgment of how well the compression re-
tained the meaning of the original document. Each
measure was rated on a scale from 1 (worst) to 5
(best).

We can draw several conclusions from the eval-
uation results shown in Table 2 along with aver-
age compression rate (Cmp, the length of the com-
pressed document divided by the original length).®
First, it is clear that genre influences the results.
Because the Mitre data contained mostly short sen-
tences, the syntax and discourse parsers made fewer
errors, which allowed for better compressions to be
generated. For the Mitre corpus, compressions ob-
tained starting from discourse trees built above the
sentence level were better than compressions ob-
tained starting from discourse trees built above the
EDU level. For the WSJ corpus, compression ob-
tained starting from discourse trees built above the
sentence level were more grammatical, but less co-
herent than compressions obtained starting from dis-
course trees built above the EDU level. Choosing the
manner in which the discourse and syntactic repre-
sentations of texts are mixed should be influenced by
the genre of the texts one is interested to compress.

SWe did not run the system on the MITRE datawith perfect
discourse trees because we did not have hand-built discourse
trees for this corpus.

The mayor is now looking which is already almost enough to win. But without the support of the

WSJ
Cmp Grm Coh Qual

Mitre
Cmp Grm Coh Qual

Random
Concat
EDU
Sent

0.51 1.60 1.58 2.13
0.44 3.302.98 2.70
0.49 3.36 3.33 3.03
0.47 3.453.16 2.88

047 1.431.77 1.80
0.42 2.87 2.50 2.08
0.47 3.40 3.30 2.60
0.44 4.27 3.63 3.36

PD-EDU
PD-Sent
Hand

0.47 3.61 3.23 2.95
0.48 3.96 3.65 2.84

0.59 4.654.48 453 || 0.46 4.97 4.80 4.52

Table 2: Evaluation Results

The compressions obtained starting from per-
fectly derived discourse trees indicate that perfect
discourse structures help greatly in improving coher-
ence and grammaticality of generated summaries. It
was surprising to see that the summary quality was
affected negatively by the use of perfect discourse
structures (although not statistically significant). We
believe this happened because the text fragments we
summarized were extracted from longer documents.
Itis likely that had the discourse structures been built
specifically for these short text snippets, they would
have been different. Moreover, there was no compo-
nent designed to handle cohesion; thus it is to be ex-
pected that many compressions would contain dan-
gling references.

Overall, all our systems outperformed both the
Random baseline and the Concat systems, which
empirically show that discourse has an important
role in document summarization. We performed ¢-
tests on the results and found that on the Wall Street
Journal data, the differences in score between the
Concat and Sent systems for grammaticality and
coherence were statistically significant at the 95%
level, but the difference in score for summary quality
was not. For the Mitre data, the differences in score
between the Concat and Sent systems for grammati-
cality and summary quality were statistically signif-
icant at the 95% level, but the difference in score for



coherence was not. The score differences for gram-
maticality, coherence, and summary quality between
our systems and the baselines were statistically sig-
nificant at the 95% level.

The results in Table 2, which can be also as-
sessed by inspecting the compressions in Figure 4
show that, in spite of our success, we are still far
away from human performance levels. An error that
our system makes often is that of dropping comple-
ments that cannot be dropped, such as the phrase
“for re-election”, which is the complement of “is
looking”. We are currently experimenting with lex-
icalized models of syntax that would prevent our
compression system from dropping required verb ar-
guments. We also consider methods for scaling up
the decoder to handling documents of more realistic
length.
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