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Abstract

The parsing community has long recog-
nized the importance of lexicalized mod-
els of syntax. By contrast, these models
do not appear to have had an impact on
the statistical NLG community. To prove
their importance in NLG, we show that a
lexicalized model of syntax improves the
performance of a statistical text compres-
sion system, and show results that suggest
it would also improve the performances of
an MT application and a pure natural lan-
guage generation system.

1 Introduction

We distinguish between three types of language
models:

��� -gram language models look only at word se-
quences to gauge the quality of a sentence.

� Non-lexicalized syntax models consider only
syntactic structure down to the level of word
tags in assessing the grammaticality of a sen-
tence. A PCFG is an example of such a model.

� Lexicalized syntax models take into account
both sentence syntax and lexical values when
determining the quality of a sentence.

The parsing community has long recognized
the importance of lexicalized models of syntax
for building robust natural language applications.
For example, Charniak (1997) showed that by us-
ing a lexicalized syntax model instead of a non-
lexicalized PCFG syntax model trained on Penn

Treebank data, one can increase the performance of
a syntactic parser from ���	�
����
 labeled recall and
precision to ���	�
����
 . More sophisticated lexicalized
models of syntax (Collins, 1997; Charniak, 2000)
have increased the performance of syntactic parsers
to ����
 labeled recall and precision. Lexicalized
models of syntax have been also proven useful in
speech recognition (Chelba and Jelinek, 1998) and
language modeling (Charniak, 2001; Roark, 2001).

By contrast, lexicalized models of syntax do not
appear to have had an impact on the statistical NLG
community. Langkilde and Knight (1998), for ex-
ample, use an � -gram model to select between dif-
ferent lexical renderings of a meaning representa-
tion. Knight and Marcu (2000) use a combination
of bigram and context free probabilities to select be-
tween sentence compressions. To our knowledge,
the only NLG work that resonates with the work in
parsing, speech recognition, and language modeling
is that of Bangalore and Rambow (2000), who show
that a statistical generation system that uses a lexi-
calized hierarchical model of syntax outperforms a
system that uses a random model.

Given the small interest in exploiting lexicalized
models of syntax in NLG, we may conclude that
such models have no role to play in this area. In
this paper, we show that this is not the case. To
prove the importance of lexicalized models of syn-
tax in NLG, we focus on three distinct tasks, each
involving a generation component. First, we show
that a lexicalized model of syntax can improve the
performance of a statistics-based text compression
system. Second, we show that a lexicalized model
of syntax may improve the outputs of a Chinese-to-
English machine translation system. Finally, we an-
alyze the results of a pure natural language genera-



tion system.1

In each experiment, we assess the impact that a
lexicalized model of syntax may have on improving
the quality of existing systems using an off-the-shelf
component: the parser built by Charniak (2000).

Our use of Charniak’s parser provides for a loose
coupling of a lexicalized model of syntax with a gen-
eration system, which is far from ideal. Neverthe-
less, these experiments provide evidence that lex-
icalized models of syntax can improve the quality
of the outputs of statistics-based generators. Our
results motivate work aimed at building generation
systems that choose between possible renderings of
the same meaning using not only n-gram proba-
bilistic models, but lexicalized models of syntax,
such as those proposed by Collins (1997) and Char-
niak (2000).

2 Statistical Summarization

2.1 Document Compression

To assess the impact that lexicalized models of syn-
tax may have on the task of summary generation, we
used a noisy-channel document compression system
(Daumé III and Marcu, 2002), which generalizes the
sentence compression system developed by Knight
and Marcu (2000) to the document level.

In Daumé and Marcu’s system, possible docu-
ment compressions are packed into a shared-forest
structure which contains explicit channel-model
probability scores. These channel probabilities are
based on discourse PCFG probabilities and syntac-
tic PCFG probabilities, as well as compression prob-
abilities. None of these probabilities are lexicalized.

We then use a generic forest ranker which com-
bines these channel probabilities with bigram-based
source model probabilities (Langkilde, 2000) to ex-
tract the top scoring compression. The only point
at which lexicalization enters the model is in the
bigram-based source model. This leads to the gen-
eration of many poor syntactic structures. For in-
stance, the model does not know the difference be-
tween transitive and intransitive verbs, and therefore
will often “compress off” the objects of transitive
verbs.

1We are grateful to Eugene Charniak for suggesting these
experiments to us.

After the system was constructed, we evaluated its
performance on ��� documents chosen from the Wall
Street Journal portion of the Penn Treebank, each
containing between ��� and ��� words2. We also eval-
uated it on � documents selected from the Mitre cor-
pus (Hirschman et al., 1999), each document con-
taining between ��� and ��� words. We used two cor-
pora to see whether the system’s performance varied
with text genre. In the evaluations, the system out-
performed a baseline system presented by Knight &
Marcu (2000), applied iteratively. However, it still
made many errors which would not have been made,
had it had a good grasp of English grammar. We per-
formed an exhaustive error analysis on the system to
see where it could be improved.

2.2 Error Analysis

After analyzing the errors the system made, we clas-
sified them into ten classes, each listed in Table 1
with an example of the error and an example of this
error fixed.

We then tabulated the frequency with which these
error occurred in the summaries produced by the
system. They are shown in Table 2.

Three of these error classes can be consid-
ered grammaticality errors: DET, MOD, COMP,
NOVERB and NUM. These three alone account for
��� errors out of a total of ��� errors. It seemed
that the integration of a lexicalized model of syn-
tax into the source model would easily remove all
of these problems. Since the document compression
system was able to output an � -best list of possible
compressions, we were able to rerank this list using
Charniak’s parser.

2.3 Syntax-Based Reranking

To do this reranking, we modified Charniak’s (2000)
parser so that instead of outputting the optimal
parse tree for a given sentence, it outputs its non-
normalized maximum entropy score. We then ran
the modified parser on the 1000 best compressions
according to the bigram model, normalized the prob-
abilities by length and chose the single best com-
pression.

2Because there are an exponential number of summaries that
can be generated for any text, the decoder runs out of memory
for longer documents; therefore, we selected shorter subtexts
from the original documents.



Grammatical Errors

DET - A noun or noun phrase is missing a determiner.

Erroneous “El Paso owns and operates refinery.”
Fixed “El Paso owns and operates a refinery.”

COMP - The complement of a verb or noun is missing, rendering the output ungrammatical.

Erroneous “Banco Exterior was run by politicians who lacked the skills or the will.”
Fixed “Banco Exterior was run by politicians who lacked the skills or the will to do ����� .”

NUM - Often if the original document contains a percentage (for instance “5%”), the number will be dropped without the percent-
age sign.

Erroneous “The rate is %.”.
Fixed “The rate is 5%.”.

NOVERB - Sentence lacking a verb.

Erroneous “Stewart, the builder.”
Fixed “It is named for Stewart, the builder.”

Discourse/Coherence-specific Errors

ANTE - The antecedent of an anaphor has been dropped, resulting in incoherence.

Erroneous “Terms are subject to change, the company said.”
Fixed “Terms are subject to change, Banko Exterior said.”

CUE+ - Uninterpretable cue-word. For instance, if
���

and
���

form a discourse constituent and
���

is contrasting
���

and
���

begins with “But”, but
� �

is dropped, so should be “But.”

Erroneous “But the proposed transaction calls for an exchange of the debt ����� ”
Fixed “The proposed transaction calls for an exchange of the debt ����� ”

CUE- - A cue word or phrase is missing, rendering the output incoherent.

Erroneous “The President of the United States urged the armed forces to advance. His commanders did not have
the initiative.”

Fixed “President of the United States urged the armed forces to advance. When he did, his commanders did
not have the initiative.”

Summarization-specific Errors

MOD - A nominal modifier which should not have been dropped has been and significant meaning is lost.

Erroneous “Tons will fill damp barns across the land.”
Fixed “Tons of vegetables ���	� will fill damp barns across the land.”

MISS - The compression misses important information.

EXTRA - The compression contains unimportant information.

Table 1: Types of errors in the texts generated by the model.

This is far from an ideal language model. For in-
stance, there is no guarantee that the structure the
parser will derive for the sentence will be the same
structure the compression model generated. Further-
more, since the parser assumes only one input sen-
tence, the scores produced by the best parse for two
different sentences may not be comparable.

2.4 Evaluation

After reranking, we performed the same error anal-
ysis as before. The results for the new error analysis
are summarized in Table 3.

We can see from the delta row in Table 3 (negative

numbers are good), that we removed most grammat-
icality errors. We saw modest improvement with re-
spect to the dropping of important modifiers; this is
to be expected, though, since the syntax model has
no idea of “importance.” The same argument ex-
plains the minimal change in the missing antecedent
problems. We removed all instances of extra infor-
mation but added seven additional counts of missing
information.

Any summarization system must balance length
of summary against informational and grammati-
cal quality. In order to have more documents of
higher grammaticality, more words are often nec-



Grammaticality Discourse Summarization
DET MOD COMP NUM NOVERB ANTE CUE+ CUE- MISS EXTRA

wsj 0607 � �
wsj 0616 � � � �
wsj 0632 �
wsj 0654 � � �
wsj 0655 �
wsj 0667 � � �
wsj 0689 � � � �
wsj 1126 � � �
wsj 1146 �
wsj 1189 � � �
wsj 1307 � � � �
wsj 1331 �
wsj 1346 � �
wsj 1376 � � �
wsj 1380 � �
wsj 2386 � � �
rm5-10 � � �
rm5-22 � � �
rm5-27 � �
rm5-6 � �
rm5-9
Count ��� ��� ��� � � � � � � �

Table 2: Tabulation of the errors in the texts generated by the model.

Grammaticality Discourse Summarization
DET MOD COMP NUM NOVERB ANTE CUE+ CUE- MISS EXTRA

wsj 0607
wsj 0616 � �
wsj 0632 � �
wsj 0654 �
wsj 0655 � � �
wsj 0667 �
wsj 0689 � � �
wsj 1126 �
wsj 1146 �
wsj 1189
wsj 1307 �
wsj 1331 � �
wsj 1346 �
wsj 1376 � �
wsj 1380 � �
wsj 2386 �
rm5-10 � �
rm5-22 � �
rm5-27 � �
rm5-6
rm5-9 � �
Count � � � � � � � � �	� �
Delta 
�� 
�� 
�� � 

� 
�� 

� 

� ��� 
��

Table 3: Tabulation of the errors in the texts generated by the model with syntax-based rescoring.

essary, which reduces the amount of information
which can be packed into a summary of comparable
length. Here, by removing most of the grammatical-
ity errors, we caused the system to drop some of the
important information.

To determine whether the changes in the system

are noticeable to a user, we carried out a subjec-
tive evaluation. We presented � human judges with
the outputs generated by the original text compres-
sion system, the results after rescoring, and human-
generated compressions. These judges were asked
to rank outputs on a scale from � to � ( � being the



WSJ Texts Mitre Texts
Cmp Grm Coh Qual Cmp Grm Coh Qual

Old 0.47 3.11 2.98 2.55 0.47 3.57 2.90 2.80
Rescored 0.42 3.41 3.11 2.64 0.30 3.00 3.05 2.23

Hand 0.59 4.38 4.33 3.97 0.46 4.70 4.45 4.10

Table 4: Evaluation Results

best) on metrics of compression rate (Cmp), Gram-
maticality (Grm), Coherence (Coh) and Compres-
sion Quality (Qual). The results of this evaluation
are summarized in Table 4.

In the Wall Street Journal data, there was a mod-
erate improvement in grammaticality, coherence and
quality, as error analysis suggested. In the Mitre
data, grammaticality and quality went down signif-
icantly, while coherence remained steady. This can
be attributed to two factors. First, there were few
errors in the Mitre data to start with and thus less
room for improvement; Second, the Mitre data is out
of domain for both the document compression sys-
tem and for the parser, which leads to less reliable
statistics.

3 Machine Translation

For our machine translation experiments, we use the
statistical MT system of Yamada and Knight (2001).
This system produces English translations of foreign
language sentences by exploiting three components:

� A Translation model (TM). For any given pair�
English parse tree � , foreign language string���

, this model returns a probability ��� �	� ��
 .
� A Language model (LM). For any English tree
� , this model returns a probability �����

 .

� A Search algorithm. Given a foreign language
sentence

�
, this algorithm searches for the En-

glish tree e that maximizes ����� ��� 
��������

��
��� ��� �

 .

Yamada and Knight (2001; 2002) describe the
TM and the search algorithm, respectively. The
search algorithm takes a foreign language sentence
and produces a vast number of candidate English
trees, packed into a forest structure, as in sum-
marization (see Section 2), then searches for the
highest-scoring tree. The current algorithm uses a
trigram LM, ignoring the internal structure of the

candidate trees. Therefore, the system does not nec-
essarily produce syntactically correct translations.

To see the effect of a lexicalized syntax language
model, we performed what automatic speech recog-
nition (ASR) researchers call “a cheating experi-
ment”. For a given acoustic signal, ASR researchers
know both the correct target transcription, A, (which
was done by hand) and the current automatic system
transcription, B. The probabilistic score for B will be
greater than that for A. However, a new knowledge
source may provide additional scores that cause A to
be reranked higher. This is cheating for two reasons:
(1) it does not include a search algorithm that inte-
grates the new knowledge source, and (2) there may
be an incorrect string C that scores higher than both
A and B under reranking.

This kind of experiment is not regularly done in
machine translation because there is no single cor-
rect translation A. Using a human translation as a
target A does not work, because human translations
are often non-literal and current statistical models do
not recognize them as good translations. To rem-
edy this, we manually created a set of target trans-
lations, which we called “hope” translations. These
are good translations that we believe to be within
reach of the system: we can reasonably hope that
the system would prefer them.

In our experiment, we score both hope sentences,
A, and current system translations, B, over a num-
ber of examples, using combinations of these knowl-
edge sources:

� T: translation model

� R: word-trigram language model

� C: score from Charniak’s parser

Table 5 shows the results. A sentence marked
“dec1” is a decoder output (Sentence B) and “hope”
is a hope sentence (Sentence A); lower scores are
better. The last row shows the average difference of
the score (a positive difference means that the sys-
tem prefers “hope” sentences over current system
outputs). Just above the last row is the number of
sentences which ranked better.3

3The score from Charniak’s parser (C) is a

�������� un-normalized prob � , thus it may yield negative
value. The TM scores are calculated from parse trees, not from



T R C T+R T+2R T+C T+R+C T+2C T+R+2C

1 dec1 great attention his first visit to china 36.36 39.63 17.44 75.99 115.62 53.80 93.43 71.24 110.87
hope his first visit is highly important to the chinese side 66.74 54.17 -5.14 120.91 175.08 61.60 115.77 56.46 110.63

2 dec1 he briefed reporters declaring the major contents 45.47 52.62 16.53 98.09 150.72 62.00 114.62 78.53 131.15
hope he declared the main contents to the press agency 64.81 56.69 0.72 121.50 178.20 65.52 122.22 66.24 122.93

3 dec1 industrial production and marketing join basic level restored to normal state 50.84 74.34 25.62 125.17 199.51 76.45 150.79 102.07 176.41
hope the basic link between supply and marketing in industry resumed normal status 81.84 83.53 15.01 165.37 248.90 96.85 180.38 111.86 195.39

4 dec1 renminbi exchange rate stability this reputation 16.99 43.38 36.31 60.37 103.75 53.30 96.68 89.61 132.99
hope the renminbi exchange rate continued to maintain stability 27.34 45.43 18.27 72.77 118.20 45.62 91.05 63.89 109.32

5 dec1 order form is really “ agricultural ” the rapid development 27.32 57.36 25.96 84.68 142.04 53.29 110.65 79.25 136.61
hope third , “ agriculture to order ” has developed rapidly 47.61 62.06 17.79 109.67 171.73 65.40 127.46 83.19 145.25

6 dec1 talks have topic hot spot 23.65 49.54 28.26 73.19 122.73 51.91 101.45 80.17 129.71
hope talks will have many hot topics 39.73 47.08 13.31 86.81 133.88 53.03 100.11 66.34 113.42

7 dec1 reminding one person alone can not treat 39.80 42.88 16.20 82.69 125.57 56.01 98.89 72.21 115.09
hope to remind chen that one-man rule is unacceptable 44.26 73.31 39.15 117.56 190.87 83.41 156.71 122.55 195.86

8 dec1 bad now like this ? 45.15 30.03 7.01 75.18 105.21 52.16 82.19 59.17 89.21
hope now it is not good ? 39.78 29.43 -10.12 69.20 98.63 29.66 59.09 19.54 48.97

9 dec1 stratify bimonthly the masses 17.69 32.87 34.18 50.56 83.43 51.87 84.74 86.05 118.92
hope the masses are stratified 26.52 34.07 11.30 60.58 94.65 37.82 71.89 49.12 83.19

10 dec1 undercompensation conditions for accept the us side to this aspect 51.95 53.75 38.74 105.70 159.45 90.69 144.44 129.43 183.18
hope the us side did not accept the dprk side ’s proposed compensation terms 52.35 70.89 27.98 123.24 194.13 80.33 151.22 108.31 179.19

11 dec1 this is extremely absurd 21.93 18.81 2.01 40.74 59.54 23.94 42.74 25.95 44.75
hope this is extremely absurd 24.15 18.81 2.01 42.96 61.76 26.16 44.96 28.16 46.97

12 dec1 rights and obligations are associated with each other 40.96 32.37 -3.53 73.33 105.69 37.44 69.80 33.91 66.27
hope but rights and obligations are mutually linked 35.73 52.06 12.32 87.79 139.84 48.05 100.10 60.37 112.42

13 dec1 mass various channels to reflect the views 39.88 39.22 16.68 79.10 118.32 56.55 95.77 73.23 112.45
hope there are many such channels to reflect the views of the masses 57.78 45.56 -4.22 103.33 148.89 53.56 99.11 49.34 94.89

14 dec1 hong kong is our home 13.93 23.39 12.34 37.32 60.71 26.27 49.66 38.61 61.99
hope hong kong is our home 16.78 23.39 12.34 40.17 63.55 29.12 52.50 41.45 64.84

15 dec1 he said china evermore taste 31.68 32.81 27.96 64.49 97.31 59.64 92.45 87.59 120.41
hope he said he often eats chinese food 47.46 54.21 8.63 101.67 155.88 56.09 110.30 64.72 118.93

16 dec1 hu jintao said 5.52 14.57 39.17 20.09 34.66 44.69 59.26 83.86 98.43
hope hu jintao said 7.90 14.57 39.17 22.47 37.04 47.07 61.64 86.24 100.81

17 dec1 this is not possible 22.03 17.21 -3.10 39.24 56.44 18.93 36.14 15.83 33.04
hope “ this is not possible 21.26 19.97 4.00 41.23 61.20 25.26 45.23 29.27 49.24

18 dec1 this globalization of production 18.67 25.89 10.68 44.56 70.46 29.35 55.24 40.03 65.92
hope this is the globalization of production 22.08 25.90 -0.59 47.98 73.88 21.49 47.39 20.90 46.80

19 dec1 many successes possible ? 24.15 32.48 13.53 56.63 89.11 37.68 70.16 51.21 83.69
hope how much success is possible ? 28.77 35.91 -4.54 64.68 100.59 24.23 60.14 19.70 55.61

20 dec1 clinton meeting was held this idea 42.07 40.63 15.04 82.69 123.32 57.11 97.73 72.15 112.78
hope holding this meeting was clinton ’s decision 52.66 49.59 14.71 102.24 151.83 67.37 116.95 82.08 131.66

21 dec1 reiterative he explained 10.10 17.77 23.17 27.87 45.63 33.27 51.03 56.44 74.20
hope he has repeatedly explained 18.72 21.66 7.40 40.39 62.05 26.12 47.78 33.52 55.18

T dec1 18 19 6 20 20 12 14 9 9
hope 3 5 18 1 1 9 7 12 12

ave. diff -1.048 -0.776 0.956 -1.825 -2.601 -0.092 -0.868 0.864 0.088

Table 5: Results of the experiment on the MT system



(H37 :ADJUNCT "earlier"
:LOGICAL-SUBJECT (H5 / "company")
/ "announce"
:ADJUNCT (H34 :ADJUNCT "its"

/ "plan"))

Figure 1: An underspecified input for the sentence,
”Earlier the company announced its plans.”

As expected, our current system (T+R) almost
never ranks the hope sentence higher than the system
sentence. If we replace the trigram model with Char-
niak’s parser (T+C), the hope sentence is ranked
higher than the originally preferred sentences in 9
cases. These results are slightly better than rerank-
ing with the parser (T+R+C). Best results are ob-
tained by assigning a higher weight to the parser
score relative to the translation model (T+2C): here,
the hope sentence comes out on top in 12 cases.

4 Natural Language Generation

From the sentences in section 23 of the Penn
Treebank, inputs to the HALogen generator sys-
tem were automatically derived and then re-
generated(Langkilde-Geary, 2002). The inputs
derived were feature-value dependency structures,
where the features represent syntactic relationships
between values, and the values were either words in
root form or a nested feature-value structure. The
inputs were underspecified with respect to proper-
ties such as part-of-speech category, tense, voice,
and number, as well as constituent order and some
closed-class words like auxiliary verbs and deter-
miners. Underspecification tests the ability of a lan-
guage model to pick the best solution from among a
set of choices.

HALogen overgenerates possible expressions for
an input, in part because of enumerating possible
choices for underspecified details. It then ranks po-
tential outputs using an � -gram model. Both bigram
and trigram models were available, but because the
trigram model takes two orders of magnitude more
time to use (roughly 40 minutes per sentence, ver-
sus 1 minute per sentence for the bigram model), the
sentences were generated using the bigram model.

sentences. For “dec1” sentences, we use the parse tree returned
from the decoder to calculate it. For “hope” sentences, we use
a parse tree generated from Collins parser (1997) to calculate
it. Thus, there may be different T scores for the same sentence.

One hundred sentences were randomly chosen from
among the successfully generated outputs. Each was
paired with its original Treebank sentence, and then
trigram and Charniak-parser scores were calculated
for all the sentences. About 3% of the sentence pairs
were exact matches. Sentences within pairs had very
similar lengths in all cases. The average sentence
length was 24 tokens. The original Treebank sen-
tence serves as a gold standard for the generator.

Trigram scores for original Treebank sentences
scored better than the output of the generator sys-
tem 71% of the time. In comparison, Charniak-
parse scores preferred the original Treebank sen-
tences 83% of the time. This indicates that the gen-
erator system would benefit even more from a statis-
tical model of syntax than from trigrams.

5 Conclusion

In statistical summarization, we have shown that
having a lexicalized syntax model reduces the fre-
quency of grammatical errors through both a care-
ful error analysis and a human evaluation. We
furthermore show that a lexicalized syntax model
might assist in the selection of good translations in a
syntax-based machine translation system. Finally,
we present results that indicate the importance of
lexicalized models of syntax in the HALogen nat-
ural language generation system (Langkilde-Geary,
2002).

It seems from these results that the integration
of such a language model in these tasks and in
statistical natural language generation systems will
prove to be fruitful. Most importantly, all three
of these systems use the same forest ranking algo-
rithm/component. Thus, if this one component were
extended to use a lexicalized model of syntax in
place of the current � -gram scoring method, the per-
formance of all three system would undoubtedly im-
prove significantly.
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