Reinforcement Learning I: Temporal Differences

Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 23 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Announcements

➢ None...

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Survey Results

- Pace:
- ≻ Cvg:
- ≻ HW:
- ≻ P1:
- ► P2:

Reinforcement Learning

Reinforcement learning:

- Still have an MDP:
 - > A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- > Still looking for a policy $\pi(s)$

[DEMO]

- New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

Example: foraging

- Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
- Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to V(s) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way...
- but it's tricky!

Passive Learning

Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- > You are given a policy $\pi(s)$
- Goal: learn the state values (and maybe the model)

In this case:

- No choice about what actions to take
- Just execute the policy and learn from experience
- We'll get to the general case soon

Example: Direct Estimation

Episodes:

- (1,1) up -1 (1,1) up -1
- (1,2) up -1 (1,2) up -1
- (1,2) up -1 (1,3) right -1
- (1,3) right -1 (2,3) right -1
- (2,3) right -1 (3,3) right -1
- (3,3) right -1 (3,2) up -1
- (3,2) up -1 (4,2) exit -100
- (3,3) right -1 (done)

(4,3) exit +100

(done)

 $\gamma = 1, R = -1$

 $U(1,1) \sim (92 + -106) / 2 = -7$

 $U(3,3) \sim (99 + 97 + -102) / 3 = 31.3$

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy
- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

Model-Based Learning

Idea:

- Learn the model empirically (rather than values)
- Solve the MDP as if the learned model were correct
- Empirical model learning
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') the first time we experience (s,a,s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. "stationary noise")

Example: Model-Based Learning

Episodes:

- (1,1) up -1 (1,1) up -1
- (1,2) up -1 (1,2) up -1
- (1,2) up -1 (1,3) right -1
- (1,3) right -1 (2,3) right -1
- (2,3) right -1 (3,3) right -1
- (3,3) right -1 (3,2) up -1
- (3,2) up -1 (4,2) exit -100

(done)

- (3,3) right -1
- (4,3) exit +100

(done)

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy

What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them
- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- Big idea: why bother learning T?
 - Update V each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)
- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

$$V^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, a, s') + \gamma V^{\pi}(s')]$$
$$sample = R(s, a, s') + \gamma V^{\pi}(s')$$

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

s, a

S

s,a,s

Example: Passive TD

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[R(s, a, s') + \gamma V^{\pi}(s') - V^{\pi}(s) \right]$$

(1,1) up -1 (1,1) up -1 (1,2) up -1 (1,2) up -1 (1,2) up -1 (1,3) right -1 (1,3) right -1 (2,3) right -1 (2,3) right -1 (3,3) right -1 (3,3) right -1 (3,2) up -1 (3,2) up -1 (4,2) exit -100 (3,3) right -1 (done) (4,3) exit +100 (done)

2

Hal Daumé III (me@hal3.name)

Take $\gamma = 1$, $\alpha = 0.5$

3

2

1

1

4

3

Problems with TD Value Learning

TD value leaning is model-free for policy evaluation

However, if we want to turn our value estimates into a policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

1

Idea: learn Q-values directly

Makes action selection model-free too!