Reinforcement Learning I:
Temporal Differences

Hal Daumé II1

Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

23 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

H\H":-F;‘L_

;:'% %

15 56
3

) S

Rm.?ﬁl

Announcements

> None...

Survey Results

> Pace:
> Cvg:
> HW:
> P1:

> P2:

Reinforcement Learning

> Reinforcement learning:

> Still have an MDP:
A setof statess 1S

>

> A set of actions (per state) A g /

> A model T(s,a,s’)
> Areward function R(s,a,s’)

» Still looking for a policy 11(s) [DEMO]

> New twist: don’t know T or R
> l.e. don’t know which states are good or what the actions do
> Must actually try actions and states out to learn

Example: Animal Learning

> RL studied experimentally for more than 60 years in
psychology
» Rewards: food, pain, hunger, drugs, etc.
» Mechanisms and sophistication debated

> Example: foraging
> Bees learn near-optimal foraging plan in field of artificial
flowers with controlled nectar supplies

> Bees have a direct neural connection from nectar intake
measurement to motor planning area

Example: Backgammon

> Reward only for win / loss in
terminal states, zero otherwise 0 123456 73809101112

» TD-Gammon learns a function
approximation to V(s) using a
neural network

> Combined with depth 3 search,
onelé)f the top 3 players in the
wor

> You could imagine training
Pacman this way...

25 24 23 22 21 20 19 18 17 16 15 14 13

> ... butit’s tricky!

Passive Learning

> Simplified task
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’) o]t

!

B

You are given a policy 11(s) 1
Goal: learn the state values (and maybe the model)

YV V V VY

> In this case:
> No choice about what actions to take
> Just execute the policy and learn from experience
> We'll get to the general case soon

Example: Direct Estimation

> Episodes:

(1,1)up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(4,3) exit +100
(done)

(1,1)up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(4,2) exit -100
(done)

y
3| == | = | == ||+100
2 | | b || -100
L |-~ | = | -
: 2 3 4
y=1,R=-1

U(1,1) ~ (92 +-106) / 2 = -7

U@3,3) ~ (99 + 97 +-102) /3 =31.3

Model-Based Learning

> In general, want to learn the optimal policy, not
evaluate a fixed policy

> ldea: adaptive dynamic programming
> Learn an initial model of the environment:

> Solve for the optimal policy for this model (value or policy
iteration)
> Refine model through experience and repeat

> Crucial: we have to make sure we actually learn about all of
the model

Model-Based Learning

> |dea:
> Learn the model empirically (rather than values)
> Solve the MDP as if the learned model were correct

> Empirical model learning
> Simplest case:
> Count outcomes for each s,a
> Normalize to give estimate of T(s,a,s’)
> Discover R(s,a,s’) the first time we experience (s,a,s’)

> More complex learners are possible (e.g. if we know that all
sqpare)s have related action outcomes, e.g. “stationary
noise”

Example: Model-Based Learning

> Episodes:

(1,1)up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(4,3) exit +100
(done)

y
3 — | == | == ||+100
1,1)up -1

(L1) up , 1 1 00
(1,2) up -1
(1,3) right -1

1 1 S — —
(2,3) right -1
(3,3) right -1 1 2 3 4
(3,2) up -1 y=1
(4,2) exit -100
(done) T(<3,3>, right, <4,3>)=1/3

T(<2,3>, right, <3,3>) =2 /2

Example: Greedy ADP

>

Imagine we find the lower
path to the good exit first

Some states will never be
visited following this policy
from (1,1)

We'll keep re-using this policy
because following it never
collects the regions of the
model we need to learn the
optimal policy

+ 1

What Went Wrong?

> Problem with following optimal
policy for current model:

> Never learn about better regions
of the space if current policy
neglects them

» Fundamental tradeoff:
exploration vs. exploitation

> Exploration: must take actions
with suboptimal estimates to
discover new rewards and
Increase eventual utility

> Exploitation: once the true optimal
policy is learned, exploration
reduces utility

» Systems must explore in the
beginning and exploit in the limit

+ 1

Model-Free Learning

> Big idea: why bother learning T?
» Update V each time we experience a transition \
> Frequent outcomes will contribute more updates A

(over time) o
> Temporal difference learning (TD) S\’\a
> Policy still fixed! sas’\
> Move values toward value of whatever successor A& s
occurs

VT(s) — > T(s,m(s),s)[R(s,a,s) +~V"(s")]
sample = R(s,a,s’) +~V7(s")

VT(s) «— V"(s) + a(sample — V" (s))

Example: Passive TD

V7 (s) < V™(s) + o | R(s,a,8") + V7 (s) = V7 (s)]
(1,1) up -1 (1,1)up -1
(1,2) up -1 (1,2) up -1 =]
(1,2) up -1 (1,3) right -1 bl =]~
(1,3) right -1 (2,3) right -1 T 2 s

(2,3) right -1 (3,3) right -1

(3.3) right -1 (3.2) up -1 ’

(3,2) up -1 (4,2) exit -100

(3,3) right -1 (done) 2

(4,3) exit +100

(done) 1

Takey=1,a=0.5

Problems with TD Value Learning

> TD value leaning is model-free for policy
evaluation

> However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)

Q*(s,a) =) T(s,a, s {R(S, a,s’) + ny*(s’)}

> ldea: learn Q-values directly
> Makes action selection model-free too!

