Neural Fitted Q Iteration - First Experiences
with a Data Efficient Neural Reinforcement
Learning Method

Martin Riedmiller

Neuroinformatics Group,
University of Onsabriick, 49078 Osnabriick

Abstract. This paper introduces NFQ, an algorithm for efficient and ef-
fective training of a Q-value function represented by a multi-layer percep-
tron. Based on the principle of storing and reusing transition experiences,
a model-free, neural network based Reinforcement Learning algorithm is
proposed. The method is evaluated on three benchmark problems. It is
shown empirically, that reasonably few interactions with the plant are
needed to generate control policies of high quality.

1 Introduction

When addressing interesting Reinforcement Learning (RL) problems in real
world applications, one sooner or later faces the problem of an appropriate
method to represent the value function. Neural networks, in particular multi-
layer perceptrons, offer an interesting perspective due to their ability to ap-
proximate nonlinear functions. Although a lot of successful applications exist
[Tes92, Lin92, Rie00], also a lot of problems have been reported [BM95]. Many
of these problems arise, since the representation mechanism in a multi-layer per-
ceptron is not local, but global: A weight change induced by an update in a
certain part of the state space might influence the values in arbitrary other re-
gions - and therefore destroy the effort done so far in other regions. This leads
to typically very long learning times or even to the final failure of learning at
all. On the other hand, a global representation scheme can in principle have a
very positive effect: by assigning similar values to related areas, it can exploit
generalisation effects and therefore accelerate learning considerably.

Therefore the question is: how can we exploit the positive properties of a
global approximation realized in a multi-layer perceptron while avoiding the
negative ones? One key access to this question is that we need to constrain
the malificious influence of a new update of the value function in a multi-layer
perceptron. The principle idea that underlies our approach is simple: we have to
make sure, that at the same time we make an update at a new datapoint, we also
offer previous knowledge explicitly. Here, we implement this idea by storing all
previous experiences in terms of state-action transitions in memory. This data
is then reused every time the neural Q-function is updated.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 317-328, 2005.
© Springer-Verlag Berlin Heidelberg 2005

318 M. Riedmiller

The algorithm proposed belongs to the family of fitted value iteration algo-
rithms [Gor95]. They can be seen as a special form of the ’experience replay’
technique [Lin92], where value iteration is performed on all transition experiences
seen so far. Recently, several algorithms have been introduced in this spirit of
batch or off-line Reinforcement Learning, e.g. LSPI [LP03]. Our method is a
special realisation of the 'Fitted Q Iteration’, recently proposed by Ernst et.al
[EPGO5]. Whereas Ernst et.al examined tree based regression methods, we pro-
pose the use of multilayer-perceptrons with an enhanced weight update method.
Our method is therfore called 'Neural Fitted Q Iteration’ (NFQ). In particular,
we want to stress the following important properties of NFQ:

— the method is model-free. The only information required from the plant are
transition triples of the form (state, action, successor state).

— learning of successful policies is possible with relatively few training examples
(data efficiency). This enables the learning algorithm to directly learn from
real world interactions.

— although requiring much less knowledge about the plant than analytical con-
trollers, the method is able to find control policies, that are able to compare
well to analytically designed controllers (see cart-pole regulator benchmark).

2 Main Idea

2.1 Markovian Decision Processes

The control problems considered in this paper can be described as Markovian De-
cision Processes (MDPs). An MDP is described by a set S of states, a set A of ac-
tions, a stochastic transition function p(s, a, s") describing the (stochastic) system
behavior and an immediate reward or cost function ¢ : S x A — R. The goal is to
find an optimal policy 7* : S — A, that minimizes the expected cumulated costs
for each state. In particular, we allow S to be continuous, assume A to be finite
for our learning system, and p to be unknown to our learning system (model-free
approach). Decisions are taken in regular time steps with a constant cycle time.

2.2 Classical Q-Learning

In classical Q-learning, the update rule is given by
Qrt1(s,a) := (1 — a)Q(s,a) + a(c(s,a) + Vmbin Qr(s',b))

where s denotes the state where the transition starts, a is the action that is ap-
plied, and s’ is the resulting state. « is a learning rate that has to be decreased
in the course of learning in order to fulfill the conditions of stochastic approx-
imation and v is a discounting factor (see e.g. [SB98]). It can be shown, that
under mild assumptions Q-learning converges for finite state and action spaces,
as long as every state action pair is updated infinitely often. Then, in the limit,
the optimal Q-function is reached.

Typically, the update is performed on-line in a sample-by-sample manner,
that is, every time a new transition is made, the value function is updated.

NFQ-First Experiences with a Data Efficient Neural RL Method 319

2.3 Q-Learning for Neural Networks

In principle, the above Q-learning rule can be directly implemented in a neural
network. Since no direct assignment of Q-values like in a table based representa-
tion can be made, instead, an error function is introduced, that aims to measure
the difference between the current Q-value and the new value that should be
assigned. For example, a squared-error measure like the following can be used:
error = (Q(s,a) — (c(s,a) +~ min, Q(s',b)))?. At this point, common gradient
descent techniques (like the 'backpropagation’ learning rule) can be applied to
adjust the weights of a neural network in order to minimize the error. Like above,
this update rule is typically applied after each new sample.

The problem with this on-line update rule is, that typically, several ten thou-
sands of episodes have to be done until an optimal or near optimal policy has
been found [Rie00]. One reason for this is, that if weights are adjusted for one
certain state action pair, then unpredictable changes also occur at other places
in the state-action space. Although in principle this could also have a positive
effect (generalisation) in many cases, in our experiences this seems to be the
main reason for unreliable and slow learning.

3 Neural Fitted Q Iteration (NFQ)

3.1 Basic Idea

The basic idea underlying NFQ is the following: Instead of updating the neural
value function on-line (which leads to the problems described in the previous
section), the update is performed off-line considering an entire set of transition
experiences. Experiences are collected in triples of the form (s, a, s’) by interact-
ing with the (real or simulated) system!. Here, s is the original state, a is the
chosen action and s’ is the resulting state. The set of experiences is called the
sample set D.

The consideration of the entire training information instead of on-line sam-
ples, has an important further consequence: It allows the application of advanced
supervised learning methods, that converge faster and more reliably than online
gradient descent methods. Here we use Rprop [RB93], a supervised learning
method for batch learning, which is known to be very fast and very insensitive
with respect to the choice of its learning parameters. The latter fact has the
advantage, that we do not have to care about tuning the parameters for the
supervised learning part of the overall (RL) learning problem.

! Note that often experiences are collected in four-tuples with the additional entry
denoting the immediate costs or reward from the environment. Since we take an en-
gineering view of the learning problem, we think of the immediate costs as something
being specified by the designer of the learning system rather than something that
occurs naturally in the environment and can only be observed. Therefore, costs come
in at a later point and also potentially can be changed without collecting further
experiences. However, the basic working of the algorithm is not touched by this.

320 M. Riedmiller

3.2 The NFQ -Algorithm

NFQ is an instance of the Fitted Q Iteration family of algorithms [EPGO05], where
the regression algorithm is realized by a multi-layer perceptron. The algorithm
is displayed in figure 1. It consists of two major steps: The generation of the
training set P and the training of these patterns within a multi-layer perceptron.
The input part of each training pattern consists of the state s’ and action a' of
training experience [. The target value is computed by the sum of the transition
costs c(s!,al, s1*1) and the expected minimal path costs for the successor state
st computed on the basis of the current estimate of the Q—function, Q.

NFQ-main() {
input: a set of transition samples D; output: Q-value function Qn
k=0
init-MLP() — Qo;
Do {
generate_pattern_set P = {(input’, target'),l = 1,...,#D} where:

input! = s*, !,

target' = c(s',u', s") + v min, Qi (s", b)
Rprop_training(P) — Qr+1
k:=k+1

} WHILE (k < N)

Fig. 1. Main loop of NFQ

Since at this point, training the Q-function can be done as batch learning of
a fixed pattern set, we can use more advanced supervised learning techniques,
that converge more quickly and more reliably than ordinary gradient descent
techniques. In our implementation, we use the Rprop algorithm for fast super-
vised learning [RB93]. The training of the pattern set is repeated for several
epochs (=complete sweeps through the pattern set), until the pattern set is
learned succesfully.

3.3 Sample Setting of Costs

Here, we will give an example setting of the immediate cost structure, which
can be used in many typical reinforcement learning settings. We find it useful
to use a more or less standardized procedure to setup the learning problem, but
we want to stress that NFQ is by no means tailored this type of cost function,
but works with arbitrary cost structures.

In the following, we denote the set of goal states ST, the set of forbidden
states are denoted by S~. ST therefore denotes the region, where the system

NFQ-First Experiences with a Data Efficient Neural RL Method 321

should finally be controlled to (and in case of a regulator problem, should be kept
in), and S~ denotes regions in state space, that must be avoided by a correct
control policy.

Within this setting, the generation of training patterns is modified as follows:

c(st,ul, sy, if st e ST
target! = c- , ifshes™ (1)
c(st,ul, 8" + yminyQr(s,b) , else (standard case)

Setting c(sl,ul,s’l) to a positive constant value crqns means to aim for a
minimum-time controller. In technical process control, this is often desirable,
and therefore we choose this setting in the following. C'~ is set to 1.0, since
this is the maximum output value of the multi-layer perceptron that we use.
In regulator problems (see section 4), reaching a goal state does not terminate
the episode. Therefore, the first line in the above equation must not be applied.
Instead, only line 2 and 3 are executed and c(s',u!,s") = 0, if s* € ST and
c(st,ul, 8") = cirans, otherwise.

Note that due to its purity, this setting is widely applicable and no prior
knowledge about the environment (like for example the distance to the goal) is
incorporated.

3.4 Variants

Several variants can be applied to the basic algorithm. In particular, for the
experiments in section 5.2 and 5.3 we used a version, where we incrementally
add transitions to the experience set. This is especially useful in situations, where
a reasonable set of experiences can not be collected by controlling the system
with purely random actions. Instead, training samples are collected by greedily
exploiting the current Q; function and added to the sample set D.

Another heuristic that we found helpful, is to add ’artificial’ training pat-
terns from the goal region, which have a known target value of 0. This technique
‘clamps’ the neural value function to zero in the goal region, and we therefore
call it the hint-to-goal-heuristic. Note that no additional prior knowledge is re-
quired to generate the patterns, since the goal region is already known in the
task specification.

4 Benchmarking

The following gives a short overview of the intention of the benchmarks done in
the empirical section.
4.1 Types of Tasks

In control problems, three basic types of task specification might be distinguished
(there might be more, but for our purposes, this categorisation is sufficient):

322 M. Riedmiller

— avoidance control task - keep the system somewhere within the ’valid’ region
of state space. Pole balancing is typically defined as such a problem, where
the task is to avoid that the pole crashes or the cart hits the boundary of
the track.

— reaching a goal - the system has to reach a certain area in state space. As soon
as it gets there, the task is immediately finished. Mountaincar is typically
defined as getting the cart to a certain position up the hill.

— regulator problem - the system has to reach a certain region in state space
and has to be actively kept there by the controller. This corresponds to the
problems typically tackled with methods of classical control theory.

The problem types show different levels of difficulty, even when the under-
lying plant to be controlled is the same. In the following, we consider three
benchmark problems, where each belongs to one of the above categories.

4.2 Evaluating Learning Performance

Each learning experiment consists of a number of episodes. An episode is a
sequence of control cycles, that starts with an initial state and ends if the current
state fulfills some termination condition (e.g. the system reached its goal state
or a failure occured) or some maximum number of cycles has been reached.

Learning time in principle can be measured in many different ways: number
of episodes needed, number of cycles needed, number of updates performed,
absolute computation time, etc.

Since we are interested in methods that can directly learn on real systems, our
preferred measure of learning effort is the number of cycles needed to achieve a
certain performance. This number is directly related to the amount of interaction
with the plant to be controlled. By multiplying the number of cycles with the
length of the control interval, we get the absolute real time that we would have
to spend on a real system to achieve a certain performance.

We also give the number of episodes that is needed to learn a task. Although
this is not as expressive as the number of cycles (since this figure drastically
depends on the maximum allowed length of a training episode), it is a commonly
used measure and gives at least a rough intuition about the learning effort.

4.3 Evaluating Controller Performance

Controller performance is evaluated with respect to some cost-measure, that
evaluates the average performance over a certain amount of control episodes. In
principle this cost measure can be chosen arbitrary. Due to its practical relevance,
we use the average time to the goal as a performance measure for the controller.
In the regulator problem case, we measure the overall time outside the target
region. This takes the fact into account, that a controlled system might leave the
target region again. Note that the learning controller might have an internal goal
formulation that differs from the performance measure (i.e. by using discounting
or shaping rewards).

NFQ-First Experiences with a Data Efficient Neural RL Method 323

Another important aspect when evaluating controller performance is to spec-
ify the 'working region’ of the controller, that means the set of starting states,
for which the controller should work. We distinguish between the following types
of working regions:

— always start from a single starting state
— start from one of a finite set of starting states
— start from an arbitrary random state within a starting region

In the following experiments, we use the third case, which is the most general
and (typically) the most challenging one.

5 Empirical Results

All experiments are done using CLS? (Closed Loop System Simulator)?, a soft-
ware system designed to benchmark (not only) RL controllers on a wide variety
of plants.

5.1 The Pole Balancing Task

The task is to balance a pole at the upright position by applying appropriate
forces to the system. System equations and parameters are the same as in [LP03].
Three actions are available, left force (-50 N), right force (+50 N) and no force.
Uniform noise in [—10, 10] is added to the system. Cycle length is 0.1 s. The state
space is continuous and consists of the angle and the angular velocity. An episode
was counted as a failure, if the angle of the pole exceeded +7/2 respectively.

Learning System Setup. For comparison, we choose the same cost structure
as in [LP03]: Immediate costs of 0 arise, if the angle remains within [—7/2, 7/2]
(’S*), if the angle gets outside this region, the episode is stopped and costs of +1
are given. A discount factor of v = 0.95 is used. Transition samples were gener-
ated by starting the pole in an upright position and then applying random control
signals until failure. The average length of a training episode was about 6 cycles.
NFQ uses a multilayer-perceptron with 3 inputs (2 for the state, 1 for the
action), two hidden layers with 5 neurons each and 1 output. For all neurons,
sigmoidal activation functions with outputs between 0 and 1 were used.

Results. Lagoudakis and Parr reported very good results both for their LSPI
approach and Q-learning with experience replay using a linear function approx-
imator with reasonably selected basis functions [LP03]. The learned controllers
were tested on 1000 test episodes with a maximum length of 300 seconds each.
LSPI reached an average balancing time of 285 seconds after 1000 training
episodes. This means, that most but not all of the training trials generated
totally successful policies. For Q-learning with experience replay they report a
balancing time of ’about 300’ seconds after 750 episodes of training [LP03].

2 available at clss.sf.net

324 M. Riedmiller

Table 1. Results of NFQ on the pole balancing benchmark. Left column reports the
number of random episodes that were used for training. The length of each episode
was about 6 cycles. Altogether, 50 repetitions of the experiment were done. For each
experiment, a new set of random episodes was produced. Using 200 or more training
episodes (about 1200 cycles, corresponding to 2 minutes real time), all experiments
generated successful policies, i.e. the controller balanced the pole for all the test cases

for the maximum time 300 s.

random episodes|successful learning trials
50 23/50 (46%)
100 44/50 (88 %)
150 48/50 (96 %)
200 50/50 (100 %)
300 50/50 (100 %)
400 50/50 (100 %)

Results of the NFQ method are shown in table 1. The experiments were
repeated for 50 times. Each experiment had a different set of training samples
and a different initialisation of the neural network weights. With only 50 train-
ing episodes (corresponding to about 300 transition samples), NFQ was able to
find totally successful policies (policies that balanced the pole for the full 300
seconds for all the test episodes) in 23 out of 50 experiments. Using more train-
ing episodes, the result improves. Using only 200 training episodes, a successful
policy could be found reliably in all of the 50 experiments. This is a remarkable
result with respect to training data efficiency and gives some hint to the benefit
of generalisation ability of a multilayer-perceptron.

5.2 The Mountain Car Benchmark

The mountain car benchmark is about accelerating a car up to the top of the
hill, where for many situations the acceleration of the car is too weak to directly
go to the top, but instead the car has to move to the other direction to get
enough energy [SB98]. The control interval is A; = 0.05s. Actions are restricted
within the interval [—4,4]. The road ends at -1m, i.e. the position must fulfill
the constraint position > —1m. The task is to reach the top, which means that
then, the position must be larger or equal to 0.7m. For testing performance,
1000 starting states are drawn randomly from the interval (—1,0.7). The initial
velocity of the cart is set to 0. Performance is measured by the average number
of cycles to the goal.

Learning System Setup. Two actions are provided to the learning controller,
-4 and +4. For training, initial starting positions are drawn randomly from
(=1,0.7), the initial velocity of the car was always set to zero. Training trajecto-
ries had a maximum length of 50 cycles. An episode was stopped, if the system
entered S~ (failure by constraint violation) or entered ST (success). Each train-
ing trajectory was generated by a controller, that greedily exploited the current

NFQ-First Experiences with a Data Efficient Neural RL Method 325

Q-value function. The Q-value function was represented by a multi-layer percep-
tron with 3 input neurons (2 state variables and 1 action), 2 layers of 5 hidden
neurons each and 1 output neuron, all equiped with sigmoidal activation func-
tions. The weights of the network were randomly initialized within [—0.5,0.5].
After each episode, one iteration of the inner NFQ loop was performed. The
hint-to-goal heuristic was used with a factor of 100. For each transition, costs of
Ctrans = 0.01 were given.

Results. Results of the NFQ approach on the mountain car benchmark are
shown in table 2. The results are averaged over 20 experiments. Experiments
differ in the randomly drawn starting states for training and the randomly ini-
tialized neural Q-function. Each trial was stopped after 500 training episodes.
All 20 experiments produced a successful policy, i.e. a policy that was able to
reach the goal state for all of the 1000 randomly drawn starting positions.

To generate a successful policy, only about 71 episodes or 2777 cycles were
needed in average over all experiments. This corresponds to less than 2 and
a half minutes of training in real time. In the best case, a successful policy
could be found in only 356 cycles, but even in worst case, only 10054 cycles
were needed, which corresponds to about 8 and a half minutes in real time and
therefore still is a very realistic number for an assumed interaction with a real
system. Finding a fast policy to the goal can be done in about 296 episodes or
about 11000 cycles respectively, corresponding to about 9 minutes in real time.
Again, this is a very reasonable number for direct interaction with a real system.

Table 2. Results of NFQ on the mountain car benchmark. The upper part reports on
the training effort to reach a succesful policy. A policy is successful, if all test situations
are controlled to the goal state. The table shows the figures for the average (best,/ worst)
number of episodes, the average (best/ worst) number of cycles and the corresponding
time for interacting with a real system. The lower part reports on the learning effort to
reach an optimized policy. In average over all training trials, the average best costs are
28.7. This value is slightly better than the performance achieved with a fine granulated
Q-table (29.0).

| Mountain Car

First successful policy
episodes| cycles |interaction time|costs
average| 70.95 |2777.0 2m19s 41.05
best 10 356
worst 243 10054

Best policy found (within 500 episodes)
episodes| cycles |interaction time|costs
average| 296.6 [10922.8 9mO6s 28.7

best 101 3660
worst 444 16081

326 M. Riedmiller

The best policies found needed only an average of 28.7 cycles to reach the goal.
This figure compares well to a table-based Q-learning approach, which yielded
an average of 29.0 cycles to reach the goal. This means that we can expect the
NFQ controllers to be pretty close to the optimum. As a side remark (not meant
as a true comparison): to get to this result, table based Q-learning required
300,000 episodes (with a maximum length of 300 cycles), and the Q-table had a
resolution of 250 x 250 x 2 entries.

5.3 The Cartpole Regulator Benchmark

System dynamics of the cartpole system are described in [SB98]. The control
interval is Ay = 0.02s. Actions are restricted within the interval [—10,10]. The
position is restricted by the constraint —2.4 < pos < 2.4. For testing perfor-
mance, 1000 starting states are drawn randomly. Results on the cartpole system
are typically reported with respect to maximum balancing time. Here, we re-
port results on a more difficult task that comprises balancing, namely cartpole
regulation. The task is to move the cart to a certain position and keep it there
while preventing the pole from falling. The target position of the cart is the
middle of the track, with a tolerance of £0.05m. As a further complication, we
allow initial starting states deviating a lot from the ’all-zero’ position: for testing
performance, initial pole angles are randomly drawn from [—0.3,0.3] (in rad),
positions are drawn from [—1.,1.] (in m), initial velocities are set to 0.

This more complicated formulation of the cartpole benchmark is closer to
realistic control tasks and the resulting controllers can be compared to control
policies derived by classical controller design methods.

Learning System Setup. Two actions are available to the learning controller,
-10N and +10N. For training, initial starting positions for the cart are drawn
randomly from [—2.3,2.3], initial pole angles are drawn from [—0.3,0.3] (in rad),
cart velocity and angular velocity are initially set to zero. Training episodes
had a maximum length of 100 cycles. Each training episode was generated by
a controller, that greedily exploited the current Q-value function. The Q-value
function was represented by a multi-layer perceptron with 5 inputs, 2 hidden
layers with 5 neurons each, and one output neuron, all equiped with sigmoidal
activation functions. The weights of the network were randomly initialized within
[-0.5,0.5]. After each episode, one loop of the NFQ algorithm was performed.
The hint-to-goal heuristic was used with a factor of 100. For each transition,
costs of ¢irans = 0.01 were given.

Results. Results for the cart-pole benchmark are shown in table 3. Performance
is tested on 1000 testing episodes starting from randomly drawn initial states and
having a maximum length of 3000 cycles. In the cartpole regulator benchmark,
a controller is successful, if at the end of the episode, the pole is still upright
and the cart is at its target position 0 within £0.05m tolerance. Note that all
the controllers that solve the regulator problem also solve the balancing prob-
lem. Typically, the balancing problem is solved much earlier than the regulator
problem (figures not shown here).

NFQ-First Experiences with a Data Efficient Neural RL Method 327

Table 3. Results of NFQ on the cart-pole regulator benchmark. Training time was
restricted to 500 episodes per trial. For an interpretation of the figures, see explanation
at table for the mountain car benchmark.

| Cart Pole Regulator |
First successful policy
episodes| cycles |interaction time|costs
average| 197.3 [14439.8 4m49s 319.1
best 75 4016
worst 309 24132

Best policy found (within 500 episodes)
episodes| cycles |interaction time|costs
average| 354.0 |28821.1 9m 36s 132.9

best 119 8044
worst 489 43234

Again, training is done very efficiently. Although the control problem is chal-
lenging, a moderate amount of sample transitions - an average of 14439.8 cycles
to find a successful policy and an average of 28821.1 cycles to find the best con-
troller - are sufficient. This corresponds to an average real time of 5 minutes (or
10 minutes respectively for the best controller) that would be needed to do the
collection of transition samples on a corresponding real system.

To have a better feeling for the control performance of the learned controller,
we analytically designed a linear controller for the cartpole regulator benchmark.
We used a pole assignment method where we placed the poles of the closed loop
system such that it was stable. Additionally, we tried to find parameters that pro-
duced control actions within the interval [—10, +10] according to the above spec-
ification. The control law used was u = — Rz, where R = (30.61,7.77,0.45,1.72)
and z is the state vector. For the linear controller, the average number of cycles
outside the goal region was 402.1 over the 1000 test starting positions. The neu-
ral controllers that were learned had an average cost of 132.9, which means that
they are about 3 times as fast as the linear controller. This is an even more re-
markable result, if one considers, that no prior knowledge about plant behaviour
was available to develop the neural policy.

6 Conclusion

The paper proposes NFQ, a memory based method to train Q-value functions
based on multi-layer perceptrons. By storing and reusing all transition experi-
ences, the neural learning process can be made very data efficient and reliable.
Additionally, by allowing for batch supervised learning in the core of adaptation,
advanced supervised learning techniques can be applied that provide reliable and
quick convergence of the supervised learning part of the problem. NFQ allows
to exploit the positive effects of generalisation in multi-layer perceptrons while
avoiding their negative effects of disturbing previously learned experiences.

328 M. Riedmiller

The exploitation of generalisation leads to highly data efficient learning. This
is shown in the three benchmarks performed. The amount of training experience
required for learning successful policies is considerably low. The corresponding
time for acquisition of the training data on a hypothetic real plant lies in the
range of a few minutes for all three benchmarks performed.

For all three benchmarks, the same neural network structure was successfully
used. Of course, this does not mean, that we have found the one neural network
that solves all control problems, but it is a positive hint with respect to the
robustness of NFQ with respect to the choice of the underlying neural network.
Robustness against the parametrisation of a method is of special importance for
practical applications, since the search for sensitive parameters can be a resource
consuming issue.

References

[BM95] Boyan and Moore. Generalization in reinforcement learning: Safely approx-
imating the value function. In Advances in Neural Information Processing
Systems 7. Morgan Kaufmann, 1995.

[EPGO5] D. Ernst and and L. Wehenkel P. Geurts. Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6:503-556, 2005.

[Gor95] G. J. Gordon. Stable function approximation in dynamic programming. In
A. Prieditis and S. Russell, editors, Proceedings of the ICML, San Francisco,
CA, 1995.

[Lin92] L.-J. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293-321, 1992.

[LPO3] M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of
Machine Learning Research, 4:1107-1149, 2003.

[RB93] M. Riedmiller and H. Braun. A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. In H. Ruspini, editor, Proceedings
of the IEEE International Conference on Neural Networks (ICNN), pages
586 — 591, San Francisco, 1993.

[Rie00] M. Riedmiller. Concepts and facilities of a neural reinforcement learning con-
trol architecture for technical process control. Journal of Neural Computing
and Application, 8:323-338, 2000.

[SB9g] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cam-
bridge, MA, 1998.

[Tes92] G. Tesauro. Practical issues in temporal difference learning. Machine Learn-
ing, (8):257-277, 1992.

	Introduction
	Main Idea
	Markovian Decision Processes
	Classical Q-Learning
	Q-Learning for Neural Networks

	Neural Fitted Q Iteration (NFQ)
	Basic Idea
	The NFQ -Algorithm
	Sample Setting of Costs
	Variants

	Benchmarking
	Types of Tasks
	Evaluating Learning Performance
	Evaluating Controller Performance

	Empirical Results
	The Pole Balancing Task
	The Mountain Car Benchmark
	The Cartpole Regulator Benchmark

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

