Approximately Optimal Approximate Reinforcement Learning

Sham Kakade

SHAM@GATSBY.UCL.AC.UK

Gatsby Computational Neuroscience Unit, UCL, London WC1N 3AR, UK

John Langford

JCLQCS.CMU.EDU

Computer Science Department, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15217

Abstract

In order to solve realistic reinforce-
ment learning problems, it is critical
that approximate algorithms be used.
In this paper, we present the conser-
vative policy iteration algorithm which
finds an “approximately” optimal pol-
icy, given access to a restart distri-
bution (which draws the next state
from a particular distribution) and
an approximate greedy policy chooser.
Crudely, the greedy policy chooser
outputs a policy that usually chooses
actions with the largest state-action
values of the current policy, ie it out-
puts an “approximate”’ greedy policy.
This greedy policy chooser can be im-
plemented using standard value func-
tion approximation techniques. Un-
der these assumptions, our algorithm:
(1) is guaranteed to improve a per-
formance metric (2) is guaranteed
to terminate in a “small” number of
timesteps and (3) returns an “approx-
imately” optimal policy. The quanti-
fied statements of (2) and (3) depend
on the quality of the greedy policy
chooser, but not explicitly on the the
size of the state space.

1 Introduction

The two standard approaches, greedy dynamic pro-
gramming and policy gradient methods, have enjoyed
many empirical successes on reinforcement learning
problems. Unfortunately, both methods can fail to ef-
ficiently improve the policy. Approximate value func-
tion methods suffer from a lack of strong theoretical
performance guarantees. We show how policy gradient
techniques can require an unreasonably large number

of samples in order to determine the gradient accu-
rately. This is due to policy gradient method’s fun-
damental intertwining of “exploration” and “exploita-
tion”.

In this paper, we consider a setting in which our al-
gorithm is given access to a restart distribution and
an “approximate”’ greedy policy chooser. Informally,
the restart distribution allows the agent to obtain
its next state from a fixed distribution of our choos-
ing. Through a more uniform restart distribution,
the agent can gain information about states that it
wouldn’t necessarily visit otherwise. Also informally,
the greedy policy chooser is a “black box” that outputs
a policy that on average chooses actions with large
advantages with respect to the current policy, ie it
provides an “approximate” greedy policy. This “black
box” algorithm can be implemented using one of the
well-studied regression algorithms for value functions
(see [9, 3]). The quality of the resulting greedy pol-
icy chooser is then related to the quality of this “black
box”.

Drawing upon the strengths of the standard ap-
proaches, we propose the conservative policy iteration
algorithm. The key ingredients of this algorithm are:
(1) the policy is improved in a more uniform manner
over the state-space and (2) a more conservative policy
update is performed in which the new policy is a mix-
ture distribution of the current policy and the greedy
policy. Crudely, the importance of (1) is to incorpo-
rate “exploration” and the importance of (2) is to avoid
the pitfalls of greedy dynamic programming methods
which can suffer from significant policy degradation
by directly using “approximate” greedy policies. Our
contribution is in proving that such an algorithm con-
verges in a “small” number of steps and returns an
“approximately” optimal policy, where the quantified
claims do not explicitly depend on the the size of the
state space. We first review the problems with stan-
dard approaches, then state our algorithm.

2 Preliminaries

A finite Markov decision process (MDP) is defined
by the tuple (S,D,A,R,{P(s';s,a)}) where: S is a
finite set of states, D is the starting state distribu-
tion, A is a finite set of actions, R is a reward function
R:S8xA — [0,R], and {P(s';s,a)} are the transi-
tion probabilities, with P(s'; s,a) giving the next-state
distribution upon taking action a in state s.

Although ultimately we desire an algorithm which uses
only the given MDP M, we assume access to a restart
distribution, defined as follows:

Definition 2.1. A y restart distribution draws the
next state from the distribution pu.

This restart distribution is a slightly weaker version of
the generative model in [5]. As in [5], our assumption
is considerably weaker than having knowledge of the
full transition model. However, it is a much stronger
assumption than having only “irreversible” experience,
in which the agent must follow a single trajectory, with
no ability to reset to obtain another trajectory from a
state. If p is chosen to be a relatively uniform distri-
bution (not necessarily D), then this u restart distri-
bution can obviate the need for explicit exploration.

The agent’s decision making procedure is characterized
by a stochastic policy 7(a;s), which is the probability
of taking action a in state s (where the semi-colon is
used to distinguish the parameters from the random
variables of the distribution). We only consider the
case where the goal of the agent is to maximize the -
discounted average reward from the starting state dis-
tribution D, though this has a similar solution to max-
imizing the average reward for processes that “mix” on
a reasonable timescale [4]. Given 0 <y < 1, we define
the value function for a given policy 7 as

Ve(s)=(1-9)E lz vtR(st,at)|ﬂ,s]
=0

where s; and a; are random variables for the state
and action at time ¢ upon executing the policy 7 from
the starting state s (see [7] for a formal definition of
this expectation). Note that we are using normalized
values so V. (s) € [0, R]. For a given policy 7, we define
the state-action value as

Qﬂ(saa) = (1 - ’V)R(S,a) + 'VES’NP(S’;s,a) [VW(SI)]
and as in [8] (much as in [1]), we define the advantage
as

Aﬂ(saa) = QW(Saa) - Vﬂ(s)
Again, both Q,(s,a) € [0,R] and A,(s,a) € [-R, R]
due to normalization.

It is convenient to define the -discounted future
state distribution (as in [8]) for a starting state dis-
tribution p as

dru(5) = (1 =) Y 7' Pr(s; = s;7, 1)
t=0

(2.1)

where the 1 — v is necessary for normalization. We
abuse notation and write dr, for the discounted
future-state distribution with respect to the distribu-
tion which deterministically starts from state s. Note
that Vz(s) = Ea,s')~rd,., [R(8',a')]. This distribu-
tion is analogous to the stationary distribution in the
undiscounted setting, since as v = 1, d, ; tends to the
stationary distribution for all s, if one such exists.

The goal of the agent is to maximize the discounted
reward from the start state distribution D,

1p(7) = Eonp [Va(s)] -

Note that np(m) = E(a,s)~rd,p [R(5,0)]. A well
known result is that a policy exists which simultane-
ously maximizes V(s) for all states.

3 The Problems with Current Methods

We now examine in more detail the problems with ap-
proximate value function methods and policy gradient
methods. There are three questions to which we desire
answers to:

(1) Is there some performance measure that is
guaranteed to improve at every step?

(2) How difficult is it to verify if a particular up-
date improves this measure?

(3) After a reasonable number of policy updates,
what performance level is obtained?

We now argue that both greedy dynamic programming
and policy gradient methods give unsatisfactory an-
swers to these questions. Note that we did not ask is
“What is the quality of the asymptotic policy?”. We
are only interested in policies that we can find in a rea-
sonable amount of time. Understanding the problems
with these current methods gives insight into our new
algorithm, which addresses these three questions.

3.1 Approximate Value Function Methods

Exact value function methods, such as policy iteration,
typically work in an iterative manner. Given a pol-
icy m, policy iteration calculates the state-action value
Qr(s,a), and then creates a new deterministic policy
7' (a; 8) such that 7' (a;s) = 1 iff a € argmax,Q (s, a).
This process is repeated until the state-action values
converge to their optimal values. These exact value
function methods have strong bounds showing how
fast the values converge to optimal (see [7]).

Approximate value function methods typically use ap-
proximate estimates of the state-action values in an

exact method. These methods suffer from a paucity
of theoretical results on the performance of a policy
based on the approximate values. This leads to weak
answers to all three questions.

Let us consider some function approximator V (s) with
the [-error:

€= msax|x7(s) — Vi(s)]

where 7 is some policy. Let 7' be a greedy policy
based on this approximation. We have the following
guarantee (see [3]) for all states s:

2ve

1—7

In other words, the performance is guaranteed to not
decrease by more than 1215 . Question 2 is not applica-
ble since these methods don’t guarantee improvement
and a performance measure to check isn’t well defined.

(31) V7r’ (8) > Vﬂ'(s) -

For approximate methods, the time required to obtain
some performance level is not well understood. Some
convergence and asymptotic results exist (see [3]).

3.2 Policy Gradients Methods

Direct policy gradient methods attempt to find a good
policy among some restricted class of policies, by fol-
lowing the gradient of the future reward. Given some
parameterized class {mp|6 € R™}, these methods com-
pute the gradient

(3.2) Vip = Zdﬂ,p(s)VW(a;s)Q,r(s,a)

(as shown in [8]).

For policy gradient techniques, question 1 has the ap-
pealing answer that the performance measure of inter-
est is guaranteed to improve under gradient ascent. We
now address question 2 by examining the situations in
which estimating the gradient direction is difficult. We
show that the lack of exploration in gradient methods
translates into requiring a large number of samples in
order to accurately estimate the gradient direction.

Consider the simple MDP shown in Figure 3.1
(adapted from [10]). Under a policy that gives equal
probability to all actions, the expected time to the
goal from the left most state is 3(2™ —n —1), and with
n = 50, the expected time to the goal is about 10'5.
This MDP falls in the class of MDPs in which random
actions are more likely than not to increase the dis-
tance to the goal state. For these classes of problems
(see [11]), the expected time to reach the goal state
using undirected exploration, ie random walk explo-
ration, is exponential in the size of the state space.
Thus, any "on-policy" method has to run for at least
this long before any policy improvement can occur. In

favay
¥ 1

n states

Figure 3.1. Example 1: Two actions move agent to the left
and one actions moves agent to the right.

Py
1
[
o
N

&7 X
i
o
_/m
N
average reward
=

Ly
o

0.5 1 1.5 2
time x 107

py)
1
N
o

Figure 3.2. Example 2: A two state MDP and the aver-
age reward vs. time (on a 107 scale) of a policy under
standard gradient descent in the limit of an infinitesimally
small learning rate (initial conditions stated in text).

online value function methods, this problem is seen as
a lack of exploration.

Any sensible estimate of the gradient without reaching
the goal state would be zero, and obtaining non-zero
estimates requires exponential time with "on-policy"
samples. Importance sampling methods do exist (see
[6]), but are not feasible solutions for this class of prob-
lems. The reason is that if the agent could follow some
“off-policy” trajectory to reach the goal state in a rea-
sonable amount of time, the importance weights would
have to be exponentially large.

Note that a zero estimate is a rather accurate esti-
mate of the gradient in terms of magnitude, but this
provides no information about direction, which is the
crucial quantity of interest. The analysis in [2] sug-
gests a relatively small sample size is needed to ac-
curately estimate the magnitude (within some ¢ toler-
ance), though this does not imply an accurate direction
if the gradient is small. Unfortunately, the magnitude
of the gradient can be very small when the policy is
far from optimal.

Let us give an additional example demonstrating the
problems for the simple two state MDP shown in Fig-
ure 3.2, which uses the common Gibbs table-lookup
distributions, {mp : w(a;s) x exp(fsqs)}. Increasing
the chance of a self-loop at i decreases the stationary
probability of j, which hinders the learning at state j.
Under an initial policy that has the stationary distri-
bution p(i) = .8 and p(j) = .2 (using 7(a1;7) = .8 and

0 0.5 15 2

1
time x 10”

Figure 3.3. The stationary probability (for figure 3.2) of
state j vs. time (on a 107 scale).

m(a1;j) = .9), learning at state ¢ reduces the learning
at state j leading to an an extremely flat plateau of
improvement at 1 average reward shown in Figure 3.2.
Figure 3.3 shows that this problem is so severe that
p(j) drops as low as 10~7 from it’s initial probability
of .2. As in example 1, to obtain a nonzero estimate
of the gradient it is necessary to visit state j. The
situation could be even worse with a few extra states
in a chain as in figure 3.1.

Although asymptotically a good policy might be
found, these results do not bode well for the answer
to question 3, which is concerned with how fast such a
policy can be found. These results suggest that in any
reasonable number of steps, a gradient method could
end up being trapped at plateaus where estimating the
gradient direction has an unreasonably large sample
complexity. Answering question 3 is crucial to under-
stand how well gradient methods perform, and (to our
knowledge) no such analysis exists.

4 Approximately Optimal RL

The fundamental problem with policy gradients is that
np, which is what we ultimately seek to optimize, is
insensitive to policy improvement at unlikely states
though policy improvement at these unlikely states
might be necessary in order for the agent to achieve
near optimal payoff. We desire an alternative perfor-
mance measure that does not down weight advantages
at unlikely states or unlikely actions. A natural can-
didate for a performance measure is to weight the im-
provement from all states more uniformly (rather than
by D), such as

Mu(7) = Eseop [V (5)]
where p is some “exploratory” restart distribution. Un-

der our assumption of having access to a u-restart dis-
tribution, we can obtain estimates of 7, (7).

Any optimal policy simultaneously maximizes both 7,
and np. Unfortunately, the policy that maximizes 7,
within some restricted class of policies may have poor

performance according to 7p, so we must ensure that
maximizing 7, results in a good policy under np.

Greedy policy iteration updates the policy to some 7’
based on some approximate state-action values. In-
stead, let us consider the following more conservative
update rule:

(4.1) Tnew(a; 8) = (1 — a)7w(a; s) + an’(a; s),

for some 7' and a € [0,1]. To guarantee improve-
ment with & = 1, 7' must choose a better action at
every state, or else we could suffer the penalty shown
in equation 3.1.

In the remainder of this section, we describe a more
conservative policy iteration scheme using a < 1 and
state the main theorems of this paper. In subsection
4.1, we show that 7, can improve under the much less
stringent condition in which 7' often, but not always,
chooses greedy actions. In subsection 4.2, we assume
access to a greedy policy chooser that outputs “ap-
proximately” greedy policies 7' and then bound the
performance of the policy found by our algorithm in
terms of the quality of this greedy policy chooser.

4.1 Policy Improvement

A more reasonable situation is one in which we are
able to improve the policy with some a > 0 using a '
that chooses better actions at most but not all states.
Let us define the policy advantage A, , (7') of some
policy 7' with respect to a policy 7 and a distribution
1 to be

Aﬂ,u (7TI) = EsNdﬂ',p, [Ea~7r’(a;s) [Aﬂ(s,a)]] .

The policy advantage measures the degree to which 7/
is choosing actions with large advantages, with respect
to the set of states visited under 7 starting from a state
s ~ p. Note that a policy found by one step of policy
improvement maximizes the policy advantage.

It is straightforward to show that %%leo = ﬁAﬁ,H

(using equation 3.2), so the change in 1, is:

Q
mAw,u (") +0(a?) .

Hence, for sufficiently small «, policy improvement oc-
curs if the policy advantage is positive, and at the other
extreme of @ = 1, significant degradation could occur.
We now connect these two regimes to determine how
much policy improvement is possible.

(4.2) Any, =

Theorem 4.1. Let A be the policy advantage of
w' with respect to w™ and p. and let ¢ =
maxs |Egnri(ass) [Ax(s,a)]|. For the update rule 4.1

and for all a € [0,1]:

> a (A 2arye
1—» 1-v1-a)

nu("rnew) — N (7T)) -

The proof of this theorem is given in the appendix. It
is possible to construct a two state example showing
this bound is tight for all o though we do not provide
this example here.

The first term is analogous to the first order increase
specified in equation 4.2, and the second term is a
penalty term. Note that if a = 1, the bound reduces

to A 9
ye
N (Tnew) — N () > m 1 —
and the penalty term has the same form as that of
greedy dynamic programming, where ¢, as defined

here, is analogous to the [, error in equation 3.1.

The following corollary shows that the greater the pol-
icy advantage the greater the guaranteed performance
increase.

Corollary 4.2. Let R be the maximal possible reward
and A be the policy advantage of ©' with respect to

and p. If A > 0, then using a = (IZ;)A guarantees the
following policy improvement:

A2
new/ — Z oD
Nu(Tnew) — N () SR

Proof. Using the previous theorem, it is straightfor-
ward to show the change is bounded by 12 (A-a %)
The corollary follows by choosing the a that maximizes
this bound. O

4.2 Answering question 3

We address question 3 by first addressing how fast we
converge to some policy then bounding the quality of
this policy. Naively, we expect our ability to obtain
policies with large advantages to affect the speed of im-
provement and the quality of the final policy. Instead
of explicitly suggesting algorithms that find policies
with large policy advantages, we assume access to an
e-greedy policy chooser that solves this problem. Let
us call this e-good algorithm G (,), which is defined
as:

Definition 4.3. An e-greedy policy chooser,
G.(m,u), is a function of a policy m and a state
distribution g which returns a policy 7’ such that
A, (n') > OPT(A;,) — e, where OPT(A,,) =
max, Ag , (7').

In the discussion, we show that a regression algorithm
that fits the advantages with an £ average error is

2
sufficient to construct such a G..

The “breaking point” at which policy improvement is
no longer guaranteed occurs when the greedy policy
chooser is no longer guaranteed to return a policy with
a positive policy advantage, ie when OPT (A, ,) < €.
A crude outline of the Conservative Policy Itera-
tion algorithm is:

(1) Call G.(m,) to obtain some =’

(2) Estimate the policy advantage A, (7')

(3) If the policy advantage is small (less than €),
STOP and return 7.

(4) Else, update the policy and go to (1).

where, for simplicity, we assume € is known. This algo-
rithm ceases when an e small policy advantage (with
respect to 7) is obtained. By definition of the greedy
policy chooser, it follows that the optimal policy ad-
vantage of 7 is less than 2e. The full algorithm is spec-
ified in the next section. The following theorem shows
that in polynomial time, the full algorithm finds a pol-
icy w that is close to the “break point” of the greedy
policy chooser.

Theorem 4.4. With probability at least 1 — 6, conser-
vative policy iteration: i) improves 1, with every pol-
icy update, ii) ceases in at most 72?—; calls to Ge(m,),
and i) returns a policy w such that OPT(A, ;) < 2e.

The proof is in the appendix.

To complete the answer to question 3, we need to ad-
dress the quality of the policy found by this algorithm.
Note that the bound on the time until our algorithm
ceases does not depend on the restart distribution p
though the performance of the policy « that we find
does depend on p since OPT(A, ,) < 2¢. Crudely,
for a policy to have near optimal performance then all
advantages must be small. Unfortunately, if dr,, is
highly non-uniform, then a small optimal policy ad-
vantage does not necessarily imply that all advantages
are small. The following corollary (of theorem 6.2)
bounds the performance of interest, 7p, for the policy
found by the algorithm. We use the standard defini-
tion of the lo-norm, ||f||ec = max, f(s).

Corollary 4.5. Assume that for some policy w,
OPT(Ar,,) <e. Let ™ be an optimal policy. Then

* g d7'|'*D
np(7™) —np(n) < —— :
) =m0 < T3 |2 |
<_° —d”*’DH)
TA=-* p s

The factor of dgﬁ
™

tween the distribution of states of the current pol-
icy and that of the optimal policy and elucidates the
problem of using the given start-state distribution D
instead of a more uniform distribution. FEssentially,
a more uniform d , ensures that the advantages are
small at states that an optimal policy visits (deter-
mined by d.+« p). The second inequality follows since
dru(s) > (1 —)u(s), and it shows that a uniform
measure prevents this mismatch from becoming arbi-
trarily large.

represents a mismatch be-

We now discuss and prove these theorems.

5 Conservative Policy Iteration

For simplicity, we assume knowledge of €. The conser-
vative policy iteration algorithm is:

(1) Call G¢(m,p) to obtain some =’

(2) Use O(f—;log %) p-restarts to obtain an -
accurate estimate A of A, , (1').

(3) If A < %, STOP and return .

(4) It A> %5, then update policy 7 according to

equation 4.1 using % and return to

step 1.

where ¢ is the failure probability of the algorithm.
Note that the estimation procedure of step (2) allows
us to set the learning rate a.

We now specify the estimation procedure
of step (2) to obtain £-accurate estimates

of A;(n"). It is straightforward to show
that the policy advantage can be written as
Ary(m) = Boua,, [X,(7 (6 5) — 7(a; 8))Qn (5,).
We can obtain a nearly unbiased estimate z; of
Az, (7") using one call to the p-restart distribution
(see definition 2.1). To obtain a sample s from from
dr,, We obtain a trajectory from sg ~ p and accept
the current state s, with probability (1 —) (see
equation 2.1). Then we chose an action a from the
uniform distribution, and continue the trajectory
from s to obtain a nearly unbiased estimate Q,(s,a)
of Q(s,a). Using importance sampling, the nearly
unbiased estimate of the policy advantage from the
i-th sample is z; = naQ;(s, a) (' (a; s) — w(a; s)) where
ne is the number of actions. We assume that each
trajectory is run sufficiently long such that the bias in
g

z; is less than Z.

Since Q; € [0,R], our samples satisfy z; €
[-noR,neR]. Using Hoeffding’s inequality for k inde-
pendent, identically distributed random variables, we
have:
R __ka?
(5.1) Pr(|a—Al>A) <2e" i
where A = T Zle z; (and A here is § biased). Hence,
the number of trajectories required to obtain a A ac-

2 p2
curate sample with a fixed error rate is O ("le)

The proof of theorem 4.4, which guarantees the sound-
ness of conservative policy iteration, is straightforward
and in the appendix.

6 How Good is The Policy Found?

Recall that the bound on the speed with which our
algorithm ceases does not depend on the restart dis-
tribution used. In contrast, we now show that the

quality of the resulting policy could strongly depend
on this distribution.

The following lemma is useful:
Lemma 6.1. For any policies @ and © and any start-

ing state distribution u,

T’M(ﬁ—) - Uu(W) = E(a,s)rvi’rd,-(,,u [Aw(saa)]

11—+

Proof. Let Pi(s') = P(s; = §';7@,s0 = s).
tion of Vx(s),

Vz(s)
= (1= VE(, s)~ip [R(s,00)]
t=0
= ZrytE(at,St)Nﬁ'Pt [(1 - ’)’)R(St, at)
t=0

+V7r(8t) - Vﬂ' (St)]
= Z’ytE(ahSt78t+1)~7~I'PtP(3t+1§3t,at) [(1 =7 R(ss, ar)
t=0

+7Va(s41) = Va(se))] + Va(s)

= Vﬂ' (S) + Z ’ytE(at,St)Nﬁ'Pt [Aﬂ' (8t7 Cbt)]

t=0
1
= Vﬂ—(S) + EE(OA,S')Nﬁ'di,s [Aﬂ—(S,, a)]
and the result follows by taking the expectation of this
equation with respect to u. O

This lemma elucidates a fundamental measure mis-
match. The performance measure of interest, np(m)
changes in proportion the policy advantage A; p(7')
for small a (see equation 4.2), which is the average
advantage under the state distribution d; p. How-
ever, for an optimal policy 7*, the difference between
np(7*) and np(w) is proportional to the average ad-
vantage under the state distribution d~ p. Thus, even
if the optimal policy advantage is small with respect
to m and D, the advantages may not be small under
dr~ p- This motivates the use of the more uniform
distribution p.

After termination, our algorithm returns a policy 7
which has small policy advantage with respect to u.
We now quantify how far from optimal 7 is, with re-
spect to an arbitrary measure ji.

Theorem 6.2. Assume that for a policy m,
OPT(Ar,) < €. Let m be an optimal policy. Then
for any state distribution fi,

* € dﬂ'*ﬁ
na(m*) —ma(m) < —— || ==
P«() P«() (1_7) dﬂ,p -
< g dﬂ'*,ﬂ
TA=- p s

Proof. The optimal policy advantage is OPT(A, ,) =
> s dr u(s) max, Ax(s,a). Therefore,

A, (8)
e > 3 #ﬁ(s)dw*,ﬂ(s) m;LXA,r(s,a)
dr
> msin (#ﬁ((i))) Zd,,*,ﬁ(s)mng,r(s,a)
s
dow - |11
> ﬁ . gdﬂ*,ﬂ(s)W*(GQS)Aﬂ(saa)
A
= Q=7 Oal)—nam)
™H oo
where the last step follows from lemma 6.1. The sec-
ond inequality is due to dr ,(s) < (1 —y)u(s). O
Note that | ==& is a measure of the mismatch in

oo
using p rather than the future-state distribution of an
optimal policy. The interpretation of each factor of
L In particular, one factor of ——

= 18 important. T—

is due to the fact that difference between the perfor-
mance of 7 and optimal is 12~ times the average ad-
vantage under dr- ;(s) (see lemma 6.1) and another

factor of ;= is due to the inherent non-uniformity of
e (since deu(s) < (1-7)p(s)).

7 Discussion

We have provided an algorithm that finds an “approx-
imately” optimal solution that is polynomial in the
approximation parameter ¢, but not in the size of the
state space. We discuss a few related points.

7.1 The Greedy Policy Chooser

The ability to find a policy with a large policy advan-
tage can be stated as a regression problem though we
don’t address the sample complexity of this problem.
Let us consider the error given by:

Es~d1r » maX|A,r(s,a) - fﬂ'(saa)l .
’ a

This loss is an average loss over the state space (though
it is an oco-loss over actions). It is straightforward to
see that if we can keep this error below £, then we
can construct an e-greedy policy chooser by choos-
ing a greedy policy based on these approximation f.
This I condition for the regression problem is a much
weaker constraint than minimizing an [.-error over
the state-space, which is is the relevant error for greedy

dynamic programming (see equation 3.1 and [3]).

Direct policy search methods could also be used to
implement this greedy policy chooser.

7.2 What about improving np?

Even though we ultimately seek to have good perfor-
mance measure under 1p, we show that it is important
to improve the policy under a somewhat uniform mea-
sure. An important question is “Can we improve the
policy according to both np and 7, at each update?”
In general the answer is “no”, but consider improving
the performance under i = (1 — 8)u + 8D instead of
just p. This metric only slightly changes the quality of
the asymptotic policy. However by giving weight to D,
the possibility of improving np is allowed if the optimal
policy has large advantages under D, though we do not
formalize this here. The only situation where joint im-
provement with np is not possible is when OPT(A; p)
is small. However, this is the problematic case where,
under D, the large advantages are not at states visited
frequently.

7.3 Implications of the mismatch

The bounds we have presented directly show the im-
portance of ensuring the agent starts in states where
the optimal policy tends to visit. It also suggests that
certain optimal policies are easier to learn in large state
spaces — namely those optimal policies which tend to
visit a significant fraction of the state space. An inter-
esting suggestion for how to choose u, is to use prior
knowledge of which states an optimal policy tends to
visit.

Acknowledgments

We give warm thanks to Peter Dayan for numerous
critical comments.

References

[1] L. C. Baird. Advantage updating. Technical report,
Wright Laboratory, 1993.

[2] P. Bartlett and J. Baxter. Estimation and approxima-
tion bounds for gradient-based reinforcement learn-
ing. Technical report, Australian National University,
2000.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[4] S. Kakade. Optimizing average reward using dis-
counted rewards. In Proc. of Computational Learning
Theory, 2001.

[5] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse
sampling algorithm for near-optimal planning in large
markov decision processes. IJCAI pages 1324-1231,
1999.

[6] N. Meuleau, L. Peshkin, and K. Kim. Exploration in
gradient-based reinforcement learning. Technical re-
port, Massachusetts Institute of Technology, 2001.

[7] M. Puterman. Markov decision processes : Discrete
stochastic dynamic programming. John Wiley and
Sons, 1994.

[8] R. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning

with function approximation. Neural Information Pro-
cessing Systems, 13, 2000.

[9] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

[10] S. B. Thrun. Efficient exploration in reinforcement
learning. Technical report, Carnegie Mellon Univer-
sity, 1992.

[11] S. D. Whitehead. Complexity and cooperation in g-
learning. Proc. 8th International Conf. on Machine
Learning, pages 363-367, 1991.

8 Appendix: Proofs

The intuition for the proof of theorem 4.1 is that « de-
termines the probability of choosing an action from ’.
If the current state distribution is d,, when an action
from 7' is chosen, then the performance improvement
is proportional to the policy advantage. The proof in-
volves bounding the performance decrease due to the
state distribution not being exactly d,,, when an ac-
tion from 7' is chosen.

Proof. Throughout the proof, the u dependence is not
explicitly stated. For any state s,

Z 7rnew(s; a)AW (57 a)
= Z((l — a)n(a; s) + an'(a; s))Ax(s,a)
= aZw’(a; 8)Ar(s,a).

where we have used)" 7(a;s)Ax(s,a) = 0.

For any timestep, the probability that we choose an
action according to 7' is a. Let ¢; be the random vari-
able indicating the number of actions chosen from 7’
before time t. Hence, Pr(c; = 0) = (1 —). Defin-
ing pr = Pr(ct > 1) =1— (1 —a)t and P(s;;7) to
be distribution over states at time ¢ while following 7
starting from s ~ u, it follows that

EswP(st Tnew) lz Tnew (a; S)AF (57 a)]
a
= aESNP(St;ﬂ"new) lz ﬂ-l(a; S)Aw (57 a)‘|
a

= a(l - pt)ESNP(St‘Ct:();ﬂ'neW)

ZW'(a; s)Ax(s, a)]

+aptEs~P(st |et>1;new) lz Trl(a; S)Aﬂ' (87 a)]
a

vV

a

B p(s,|ci=0;mnew) lz 7' (a;8) Ar (s, a)]

—2ape

= aESNP(St;ﬂ') lz i (a; 8)Ax (s, a)] —2ape
a

where we have used the definition of ¢ and P(s¢|¢; =
0; Tnew) = P(s¢; 7).

By substitution and lemma 6.1, we have:

um (Tnew) — um (m)

= Z 'YtEsrvP(sﬁnnew) [Z Tnew(a;) An (s, a)]
t=0 a
« Z ’YtEs~P(st;7r) [Z ﬂ-l(a; S)ATI' (S, a)]
t=0 a

—2a6i7t(1 - (1-a))

t=0

v

a

= Eswa, lz ' (a; S)Aﬂ(st;a)]
1—7v ~
1
1—y 1—7(1—a))'
The result follows from simple algebra. O

—2ag(

The proof of theorem 4.4 follows.

Proof. During step (2), we need enough samples such

that |[A—A| < 5 for every loop of the algorithm and, as

. 2
proved below, we need to consider at most 25 loops.

If we demand that the probability of failure is less than
4, then by the union bound and inequality 5.1, we have

_ kez
for k trajectories P(failure) < 725—122226 3ngR” <

where we have taken A = & since the bias in our esti-

. . 2 2
mates is at most £. Thus, we require O (?—2 log %)
trajectories.

Thus, if A > 23—5, then A > £ > 0. By corollary

4.2, step 4 guarantees improvement of 7, by at least

72 o
(As_g) > % using a = %, which proves i.
Since 0 < 7, < R, there are at most 7251;2 steps be-
fore n, becomes larger than R, so the algorithm must
cease in this time, which proves ii. In order to cease
and return m, on the penultimate loop, the G. must
have returned some 7' such that A < 2{, which im-
plies Az (7') < e. By definition of G, it follows that
OPT(A;) < 2¢, which proves . O

