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to Inverse Reinforcement Learning
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NLP as transduction % Structured prediction 101

Task Input Output Learn a function mapping inputs to complex outputs:
Machine Ces deux principes se tiennent & Both principles lie at the X =Y
Translation la croisée de la philosophie, de  crossroads of philosophy, g
la politique, de I'économie, de la  politics, economics, Input Spaﬁecodﬁg‘ﬂﬁﬂput Spac
sociologie et du droit. sociology, and law. EEEer
Document - e ) Ma th [ \Mlth |
Summarization [ g e ol s B
ygarsa gfte?nftlg d%%\gqrmhe 74-day wa fought between Obama Nn 3 € rresiaen
e e Britain and Argentina. Mar)rgﬂﬁl.)“ Yo Eta Ga verda .
winning sovereignty over the islands. ro M“d 2
Svntact T e a bi McCaink Mt D —B
yntactic e man ate a big /\ Tt
Analysis sandwich. YA /f\ . | wid LB *
The man ate a big sandwich Pro John
...many more... ‘ | H can H can H a H can ‘
BegianeddcaRbiingntion
- n @ [ ] n
Structured prediction 101 Why is structure important?

> Correlations among outputs
> Determiners often precede nouns
> Sentences usually have verbs

Learn a function mapping inputs to complex outputs:
X —Y

Input Space|| Decoding | Output Spac§
> Global coherence
//Q > Itjust doesn't make sense to have three determiners next to
each other

/>\ > My objective (aka “loss function”) forces it

> Translations should have good sequences of words

% > Summaries should be coherent

\ I \\can\\can\\ a \\can\




Outline: Part | % Outline: Part Il

> What is Structured Prediction? > Learning to Search
> Refresher on Binary Classification > Incremental parsing
> What does it mean to learn? > Learning to queue
> Linear models for classification > Refresher on Markov Decision Processes
> Batch versus stochastic optimization > Inverse Reinforcement Learning
> From Perceptron to Structured Perceptron > Determining rewards given policies
> Linear models for Structured Prediction > Maximum margin planning
> The "argmax” problem > Learning by Demonstration
> From Perceptron to margins > Searn
> Structure without Structure > Dagger
> Stacking
> Structure compilation > Discussion

® What does it mean to learn?

> Informally:

Refres he r o n > to predict the future based on the past

. " gum . > Slightly-less-informally:
B I n a ry C Iass Ifl catlo n > to take labeled examples and construct a function that will

label them as a human would

> Formally:
> Given:
> A fixed unknown distribution D over X*Y
> Aloss function over Y*Y
> A finite sample of (x,y) pairs drawn i.i.d. from D

> Construct a function f that has low expected loss with
respect to D



Feature extractors ~ Linear models for binary classification
> A feature extractor ® maps examples to vectors > Decision boundary
is the set of \
Dear Sir. W=dear : 1 “Uncertaln”pomts
First, I must solicit W:Sil.r : !
your confidence in W=this ; 2 . -
th%s ‘vcransac‘.cion, U . > Llnear deCISIOn
this is by virture of W=wish 0 .
its nature a§ beirllg e boundarleS are f.’ f—
utterly confidencial MISSPELLED : 2 .
and top secret. .. ¢ NAMELESS . 1 CharaCterlzed by
ALL_CAPS 0 weight vectors
NUM_URLS 0

X O(x) w 2 wi Oi(x)
B BIAS 1 BIAS : -3 (1)(=3) +
> Feature vectors in NLP are frequently sparse free free bl | (e i ] EBE;% H
money” |27 o | e b o ) +
o .. :3
® ) ®
The perceptron Why does that update work?

> Inputs = feature values > When yw®-¢p(x)<0 updatee"™ =w""+y ¢ (x)
> Params = weights

> Sum is the response

> If the response is:
> Positive, output +1
> Negative, output -1

W1
D,
Y 07—
> When training, W, . new 0
update on er?ors: yw ™ d(x)=ylw Id+)’¢(x))q5(x)
W:W+y(l)<x> ‘ “Error”’ when: :ywomd)<x)+yy¢(x)¢(x)
o < ~ s . ~ J
yw-p(x)<0 <0 >
N



Support vector machines

> Explicitly optimize T
the margin \

> Enforce that T~
all training points

are correctly f, -
classified
maX harein st all points are
w correctly classified
Max margin  s.t. YW (x,)=1 , Vn
wW
min 2
wl" st y.wo(x,)=1, Vn
17 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

= Support vector machines with slack -

18

> Explicitly optimize h \f\
the margin \ 2o+

> Allow some “noisy” ~
points to be -
misclassified f,

min 1 )
we SIwf+cY g,
st. Yawb(x,)+ |5, |=1, Vn
£,20 , Vn
Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

Batch versus stochastic optimization . Stochastically optimized SVMs

> Batch = read in all the data, then process it
> Stochastic = (roughly) process a bit at a time

min 1 2 > For n=1..N:
—(w| +C
wg oML T =0
st y.wp(x)+E >1 > w=wty, b(x,)
, Vn
£,20 , Vn

Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

Implementation Note:

Weight shrinkage is SLOW.
Implement it lazily, at the
cost of double storage.

smonae
R

> Forn=1..N: For n=1..N:
> If y,wd(x,)<1 > If y wop(x,)<0
> w=wty, b(x,) > w=wty,¢(x,)
> w:(l—L w
CN

20
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= Perceptron with multiple classes -

> Store separate weight wi*d(x)
vector for each class biggest

From Perceptron Wy, Wp, oy Wi
to Structured Perceptron \/

> For n=1..N:
> Predict: V‘E,°¢gf)
1gge

y=argmax,w,:$(x,)

\ Wsre q)(X)
biggest

2 E gy,

Wy=wy = blx,) ?' Why does this

Wyn:Wyn+q5(Xn) = = do the right thing?

21 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 22 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
: . & “
Perceptron with multiple classes v2 Perceptro X D(x,1) d(x,2)
> Originally: > Originally: “ffee  |spam eree . 1| |namtree i 1
_ money” ZgZE:rgizey | é iZE:Isizey | é
> For n=1..N: > For n=1..N: > Forn=1..N: > Forn=1..N:
> Predict: > Predict: > Predict: > Predict:
y=argmax,w,-$(x,) y=argmax,w-¢(x,,k) y=argmax,w,-$(x,) y=argmax,w-¢(x,,k)
- I 5y, - Iy, P I 5y, - I yy,
wy=wi = (x,) w=w-g(x,.7) wy=wi = (x,) w=w-g(x,,7)
W, =w, +o(x,) (%07, W, =w, +b(x, (x5,

23 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 24 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011



Features for structured prediction % Structured perceptron

> Allowed to encode anything you want
| Pro |/ Md || Vb || Dt || Nn |

1 |lcan| can| a ||can]|

Enumeration
over all outputs

Enumeration
over 1..K

> For n=1..N: > For n=1..N:

2

¢ ( ) > Predict: > Predict:
X,y)= . -
I Pro 1 <s>-Pro 1 has verb 1 y—argmaka (b(Xn,k) y=dargmax,w ¢(X”’k)
Pro-Md 1 h nn 1ft : O > % . > A~ .
EZE%S 1 MA-Vb 1 hziinjft 1 Ty#y; UNENE
n Vb-Dt 1 h t: 1 A A
igith 1 Dt-Nn 1 hi?ii;g? 1 W:W_CI)(XH,}’) W=W—¢)(xn,y) S
- n-</ 1 =
Nn-</s> —}-([)(xn,yn) +¢(xn,yn) @
> Output features, Markov features, other features §
© .
Argmax for sequences Structured perceptron as ranking
> If we only have output and Markov features, we can use > Forn=1..N:

Viterbi algorithm: > Run Viterbi: y=argmax,w-¢(x,, k)

we[Pro-Pro] > If y#y; w=w—<l>(><n,3’)+¢(xn’yn)

we[can_Pro]

> When does this make an update?
| Pro| Md || Vb || Dt || Nn |
we[can_Md] | Pro || Md || Md || Dt || Vb |
| Pro| Md | Md || Dt || Nn |
| Pro| Md || Nn || Dt || Md |
B 'we[can_Vb] [Pro ][ Md |[[Nn |[ Dt |[ Nn]
| Pro| Md || Vb || Dt || Md |
L] e "Pro || Md |[ Vb ]| Dt |[Vb_
(plus some work to account for boundary conditions)
| 1 |lcan]|/can]|| a ||can]|




From perceptron to margins

Maximize
Margin

Minimize
Errors

min 2

~|lw|’+C
S P e I S
s.t. y,w(x,)+E,>1

, Vn

Each point is correctly
classified, modulo §

29 Hal Daumé Ill (me@hal3.name)

Ranking margins

min 1 2
e SIwFcY g,

Response
for truth

s.t. w-p(x,,y,)
_W.d)<xn’5/)
+& >1,Vn,y#y,

Response

for other

Each true output is more
highly ranked, modulo &

> Some errors are worse than others...

| Pro || Md || Vb || Dt || Nn |
Margin
f one
| Pro || Md || Md || Dt || Vb |
| Pro || Md || Md || Dt || Nn |
| Pro || Md || Nn || Dt || Md |
| Pro || Md || Nn || Dt || Nn |
| Pro| Md || Vb || Dt || Md |
| Pro || Md || Vb || Dt || Vb |
| 1 |lcan]|/can]|| a ||can]
31 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

SPIRL @ AAAI 2011

% From perceptron to margins

[SoYTNIr ‘stiepueyOOyS | (GOYTINF ‘[e+ieyse]]

@

[SOYTNIr ‘siiepueyOOyS | ‘GOYTINF ‘[e+ieyse]]

30

min 1
w,E§ 2

Response
for truth

s.t. w-p(x,,y,)
_W.d)<xn’5/)
+&>1,Vn,y#y,

Each true output is more
highly ranked, modulo &

SIwlP+c 2. €.

Response

for other

Hal Daumé Ill (me@hal3.name)

SPIRL @ AAAI 2011

Accounting for a loss function

> Some errors are worse than others...

| Pro || Md || Vb || Dt |[ Nn |

B, R
T

lcan||can]|| a || can|

32
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Margin
fl(y,y")

SPIRL @ AAAI 2011
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&

Accounting for a loss function = Augmented argmax for sequences
$(x, y,)

> Add “loss” to each wrong node!

we[Pro-Pro]

we[can_Pro]

Vi, wolx,y,)—wo(x,y)+&=1y,,y)
is equivalent to

maxf’ w.¢(xn:yn)_w'd)(xn’y)—i_EnZl(yn’y)

W'¢(Xn,yn)_w'¢(xn,5/)+§n W'(l)(Xn,yn)—W'(b(Xn,)A/)‘FEn

>1 >1(y,,y)

Stochastically optimizing Markov nets” Stacking

> Structured models: accurate but slow
g i Output Labels
g g Input Features
> Independent models: less accurate but fast

L o« ’? ' What are we

= = assuming here?

[SoYTNIr ‘stiepueyOOyS | (GOYTINF ‘[e+ieyse]]
[SoYTNIr ‘siiepueyOOyS | (GOYTINF ‘[e+ieyse]]

> Forn=1..N: > For n=1..N: Output Labels
> Augmented Viterbi: > Viterbi: Input Features
y=argmax,w-¢(x,,k) y=argmax,w-¢(x,,k)
+(y, k) > If y#y: > Stacking: multiple independent models
I oy o o B Label
)’Z’&yn ) w=w—¢(x_,¥) % Output Labels 2
W—W—¢(Xn,Y) +q§(xn,yn) f:—> Output Labels
+ =
> 1(15 (X”’y”) g Input Features
w={1l-—|w S

CN



Training a stacked model ® Do we really need structure?

> Train independent Output Labels 2 > Structured models: accurate but slow
classifier f; on Output Labels
input features Output Labels g g
Input Features

Input Features > .
> Train independent Independent models: less accurate but fast

classifier f, on Output Labels
input features + f;'s output

Input Features
> Goal: transfer power to get fast+accurate

> Solution: cross-validation Input Features
> Questions: are independent models...

> ... expressive enough? (approximation error)
> ... easy tolearn? (estimation error)

%

“Compiling” structure out “Compiling” structure out

Labeled Labeled

STy Lol LT | MR — oo

POS: 95.0% POS:91.7% POS:95.0% POS:91.7%
CRF(f7) NER:75.3% IRL(f1) NER:69.1% CRF(f7) NER:75.3% IRL(f1) NER:69.1%

POS:94.4%
f, = words/prefixes/suffixes/forms IRL(f) NER: 66.2%
f, = f; applied to a larger window

f; = words/prefixes/suffixes/forms

POS: 95.0%
ComplRL(f;) \eR 7279

[80TNDI ‘UBIM+a+buer]

[80TWDI ‘UBIM+a+buer]

[80TNDI ‘UBIM+a+buer]



Decomposition of errors

Sum of Ml on edges
= (o) N )
i i g i CRF(f1): POS=.003 (95.0% — 95.0%)
coherence
nonlinearities

Pc NER=.009 (76.3% — 76.0%)
O O O
@/im RLUco): Pa-

global information

O O O

Theorem:
KL(pc Il p1+) = KL(pc Il Pmc) + KL(ppc Il pa+) + KL(pa+ || p1+)

. . Train a truncated CRF
marginalized CR  \er: 76.0% — 72.7%

Train a marginalized CRF
NER: 76.0% — 76.0%

[80INDI ‘wiBy+Q+buer,

® Structure compilation results
Part of speech Named Entity Parsing

96 78 88

76 86

95 74 84

: 72 82

94 70 80

68 78

3 66 76
2 4 8 16 32 64 2 4 8 16 32 64 4 14 24 44 84 164

“® Structured

*** Independent

® Outline: Part |

Coffee Break!!!

> What is Structured Prediction?

> Refresher on Binary Classification
> What does it mean to learn?
> Linear models for classification
> Batch versus stochastic optimization
> From Perceptron to Structured Perceptron
> Linear models for Structured Prediction
> The “argmax” problem
> From Perceptron to margins
> Structure without Structure
> Stacking
> Structure compilation

[80TWDI ‘UBIM+a+buer]



Outline: Part Il

> Learning to Search

> Incremental parsing

> Learning to queue
> Refresher on Markov Decision Processes
Inverse Reinforcement Learning
Determining rewards given policies
Maximum margin planning

Y

>
>

Y

Learning by Demonstration
> Searn
> Dagger

Y

Discussion

Argmax is hard!

> Classic formulation of structured prediction:
something we learn

score(x,y) = tomake “‘good”x,y pairs
score highly

> At test time:

f(x) = argmax, ., score (x,v)

> Combinatorial optimization problem
> Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search

Learning to Search

. Argmax is hard!

> Classiq@ef these words: bart better | madonna say than \

sC

> At test

f

[Soricut, PhD Thesis, USC 2007]
» Combinato

> Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search



Argmax is hard! Argmax is hard!
> Classio’ Order these words: bart better | madonna say than , > Classio’ Order these words: bart better | madonna say than ,
Best search (32.3): | say better than bart madonna , Best search (32.3): | say better than bart madonna,,
Original (41.6): better bart than madonna , | say Original (41.6): better bart than madonna , | say
SC SC

Best search (51.6): and so could really be a neural
apparently thought things as

dissimilar firing two identical
> At test > At test

f f

[Soricut, PhD Thesis, USC 2007] [Soricut, PhD Thesis, USC 2007]
> Combinato > Combinato

> Efficient only in very limiting cases > Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search > Solved by heuristic search: beam + A* + local search
: / 7 . &
Argmax is hard! Incremental parsing, early 90s style

> Classiq@er these words: bart better | madonna say than \
Best search (32.3): | say better than bart madonna ,
Original (41.6): better bart than madonna , | say

Train a classifier
to make decisions

s¢ Best search (51.6): and so could really be a neural

apparently thought things as
dissimilar firing two identical

> Attest original (64.3): could two things so apparently
dissimilar as a thought and neural
f firing really be identical

[Soricut, PhD Thesis, USC 2007]

» Combinato
> Efficient only in very limiting cases Right
> Solved by heuristic search: beam + A* + local search

\ |/ Pro Hcan/MdHcan/VbH a /Dt \ can/Nn

[S6T10V ‘uewiabely]



Incremental parsing, mid 2000s style = Learning to beam-search

) > For n=1..N: seafc“
S S > Maﬂ“
y=argmaxkyw-¢(x,,k)
Train a classifier > If y#y
to make decisions ! X
w=w—¢(x,,9)
+o(x,,y,)
5
NP z NP
o
8
>
“i7pro | [can/md | [can/Vb | a/Dt |l can/tin| £ [ i/pro | [can/Md | [can/Vb | a/Dt || can/Nn |
53 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 - 54 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
Learning to beam-search Learning to beam-search
NN ch NN ch

E > For n=1..N: E > Forn=1..N:

ARRunibeamisearcantl > Run beam search until
truth falls out of beam truth falls out of beam

g U pdate_ Wi > Update weights

T immediately!

> Restart at truth

[¥010V “eoy+suljo)]

| I/Pro | | can/Md || can/Vb |

55 Hal Daumé Ill (me@hal3.name)

" i/Pro | [can/md | [can/vb | a/ot |

SPIRL @ AAAI 2011 56 Hal Daumé Il (me@hal3.name)

SPIRL @ AAAI 2011

[¥010V “Meoy+suljo)]

&

[60HTNIM ‘le+nX :SOTNDI ‘NoIeN+A]



Incremental parsing results

F-measure parsing accuracy
o
a

88 T I T T
--8- No early update, no repeated use of examples
- Early update, no repeated use of examples
87 —4— Early update, repeated use of examples

(o]
[*2]

84
8 - S . 4
’,E— .......... g - " T — e — = [i
82T I 1 I I
1 2 3 4 5 6

Number of passes over training data

% Generic Search Formulation

[¥070V “Weoy+suljjo)]

> Search Problem: > nodes =
> Search space MakeQueue(S0)
> Operators
> Goal-test function > while nodes is not empty
> Path-cost function > node :=
RemoveFront(nodes)
> Search Variable: > if node is a goal state

return node
next := Operators(node)

nodes := Enqueue(nodes,
next)

> Enqueue function

Varying the Enqueue

function can give us DFS, > fail
BFS, beam search, A*

search, etc...

Online Learning Framework (LaSO) ® Search-based Margin

> nodes := MakeQueue(S0)

> while nodes is not empty
> node := RemoveFront(nodes)
if none of {node} u nodes is y-good ornode is a goal & not y-

>

>
>

»

>
>
>

>

good

Monotonicity: for any

node, we can tell if it

can lead to the correct
solution or not

m Where should we have gone?
node,y

= update(w, x, sibs, {node} U nodes)
nodes = MakeQueue(sibs)

sibs := siblings(

else
if node is a goa

Update our weights based on
the good and the bad choices
Continue search...

next := Operators(node)
nodes := Enqueue(nodes, next)

INDI ‘noseN+A]

[604TAIM ‘[e+n

» The margin is the amount by which we are correct:

> Note that the margin and hence linear separability is
also a function of the search algorithm!

[60HTIAIP ‘[e+nX :GOTNDI ‘naJe+d]

[604TIAIP ‘[e+nX :GOTNDI ‘naJe+d]



M5

Syntactic chunking Results = Tagging+chunking results

et g Mgy S T LIS NI RN : SemicrF
fbeam 25) A s ar tron ge in
\ = » * LaSOp-5
o4 / \ = LaSOp-25 985 - -
- \Ma = Peu:ep:mn o LaSOp—axac-. /
hgfn 5 - Search (Exac) \ Bes: prior ﬁg:; 5 ‘\ Large Margin
[Zhar:::gle;%erauﬂohnson ﬁgzzfa: % Lram 191 S":[‘;Etgj\ﬂaécauum 2004]
o WB5- 2002]; timing unknown ? % 98 -
8 . ‘-—__7__‘__ Standard ; = g’ o
otz [ 22min
. [Collins 2002] = 5 L
@3 6 g) - ® Suton
< D « LasOp-1
= 3 g
. oz e
‘ Semi-C RF model >< % Qa5 - - Lasq:,_m
w3 K c = » O LaSQa-1
+ LaSQa-5
k=B LaSQa-10
P LaSQa-25
g LaSCa-50
92| ; y 4 ; " ,_ 945_ ..n e . - .....;| - - ......l= - re— .,‘...13
0 500 1000 1500 2000 2500 3000 3500 g e . b 0 v
Training Time (minutes) © Training Time (hours) [log scale]
Variations on a beam ~ What if our model sucks?
> Observation: > Sometimes our model cannot produce the “correct”
. output
> We needn't use the same beam size for i P cal | Hine translati
. . canonical exampie: macnine transiation
training and decoding P Bod’ 1o
- . . ) old” update
> Varying these values independently yields: P
Decoding Current Reference
Beam Hypothesis

1 5 10 25 50 N-best list

o 1 939 928 919 913 909 or“opt!mal
S e 5 905 943 944 941 94.1 M decoding”
S 3§10 895 943 944 942 942 Outputs
l‘_Em 25 88.7 942 945 943 943
50 884 942 944 942 944 “Local” update achievable
output

[604TIAIP ‘[e+nX :GOTNDI ‘NaJe+d]

[60HTIAIP ‘[e+nX :GOTNDI ‘naJe+d]
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Local versus bold updating...

Machine Translation Performance (Bleu)
35.5

35
34.5 W Bold
34 B Local
[l Pharoah
33.5
33
32.5

Monotonic Distortion

Reinforcement learning

> Basic idea:
> Receive feedback in the form of rewards
> Agent’s utility is defined by the reward function
> Must learn to act to maximize expected rewards
> Change the rewards, change the learned behavior

> Examples:
> Playing a game, reward at the end for outcome
> Vacuuming, reward for each piece of dirt picked up
> Driving a taxi, reward for each passenger delivered

Refresher on
Markov Decision
Processes

® Markov decision processes

What are the values (expected future rewards) of
states and actions? .




Markov Decision Processes

> An MDP is defined by:

> Asetofstatesse S

> Asetofactionsae A

> A transition function T(s,a,s’)
> Prob that a from s leads to s’
> i.e., P(s’|s,a)
> Also called the model

> Areward function R(s, a, s’)
> Sometimes just R(s) or R(s’)

> A start state (or distribution)

> Maybe a terminal state

> MDPs are a family of non-
deterministic search problems

> Total utility is one of:

t
2ror 2y,
t t

69 Hal Daumé Ill (me@hal3.name)

Solving MDPs
> In deterministic single-agent search problem, want an
optimal plan, or sequence of actions, from start to a
goal
> In an MDP, we want an optimal policy n(s)
] 1] > A policy gives an action for each state
> Optimal policy maximizes expected if followed
START > Defines a reflex agent
1 2 3 4 3 - - -
08 Optimal policy 2 | 4 S
0.14 > 0.1 when R(s, a, s’) =
-0.04 for all non- 1 f — | - | =
terminals s
1 2 3 4
SPIRL @ AAAI 2011 70 Hal Daumé Il (me@hal3.name) SPIRL @ AAAI 2011
%

Example Optimal Policies

| | » | |
0 BEEEN OE
R(s) = -0.01 R(s) = -0.03
| | = ]
1 nEn EE
b= ]|= -]
71 REV=04 o baumé i rograsnamey R SPIRL @ AAAI 2011

Optimal Utilities

> Fundamental operation: compute
the optimal utilities of states s (all
at once)

> Why? Optimal values define
optimal policies!

> Define the utility of a state s:
V'(s) = expected return starting in  *|*™ . v |
s and acting optimally B IV D I
> Define the utility of a g-state (s,a): L
Q’(s,a) = expected return starting
in s, taking action a and T -
thereafter acting optimally | =

> Define the optimal policy:
1 (s) = optimal action from state s o
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The Bellman Equations = Solving MDPs / memoized recursion ~
> Definition of utility leads to a simple > Recurrences:
one-step lookahead relationship
amongst optimal utility values: Vo(s) =0

Optimal rewards = maximize over
first action and then follow optimal

policy

Vi*(s) = max Qf(s,a)

Qi (s,a) = Y T(s,a,s) |R(s,a,5') +7V;"1(s))]

> : '
Formally: m;(s) = argmax Q; (s, a)
a

V*(s) = maxQ*(s,a)
“ > Cache all function call results so you never repeat
Q*(s,a) =Y T(s,a,8) [R(s,a,8") + vV (5] work
s/ > What happened to the evaluation function?
V*(s) = max Z T(s,a,s’) [R(S, a,s') 4+~ V*(s/)}

S

Q-Value lteration RL = Unknown MDPs
> Value iteration: iterate approx optimal values > If we knew the MDP (i.e., the reward function and
> Start with V,'(s) = 0, which we know is right (why?) transition function):
> Given V/', calculate the values for all states for depth > Value iteration leads to optimal values
i+1: > Will always converge to the truth
Vit1(s) « mc?xz;T(s’ a,s') {R(S’ a,s") + 7 %(3/)} > Reinforcement learning is what we do when we do not

know the MDP

S
> But Q-values are more useful! . )
> All we observe is a trajectory

» Start with Q,(s,a) = 0, which we know is right (why?)
> Given Q/, calculate the g-values for all g-states for > (Spagry,  Spaxry Szaslz ...
depth i+1:
/ / o > Many algorithms exist for this problem; see
Qit1(s,a) — > T(s,a,s) {R(S, a,s’) +v max Qi(s',a") Sutton+Barto's excellent book!

S



Q-Learning = Exploration / Exploitation

> Learn Q*(s,a) values
> Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
> Consider your new sample estimate:

> Several schemes for forcing exploration
» Simplest: random actions (e greedy)

> Every time step, flip a coin

> With probability €, act randomly

. . —— : .

O*(s.a) = ZT(S, a,s') [R(s, a,s) + ma?x Q% (s, d") With probability 1-¢, act according to current policy
S/

> Problems with random actions?

> Incorporate the new estimate into a running average: ~ You do explore the space, but keep thrashing around once
learning is done

> One solution: lower € over time

. / / / . . .
sample = (s, a,s') +ymaxQ(s’, a’) > Another solution: exploration functions

Q(s,;a) — (1 —a)Q(s,a) + () [sample]

Q-Learning e

> In realistic situations, we cannot possibly learn about

every single state! I nve rse

> Too many states to visit them all in training

> Too many states to hold the g-tables in memory Re i nfo rce m e nt
> Instead, we want to generalize:

> Learn about some small number of training states from Lea rn I n g

experience

> Generalize that experience to new, similar states: (aka Inverse Optimal Control)

Q(s,a) = wif1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

> Very simple stochastic updates:
Q(s,a) — Q(s,a) + aferror]

w; «— w; + «a[error] f;(s,a)



Inverse RL: Task

>

Y

Y

Y

Given:

> measurements of an agent's behavior over time, in
a variety of circumstances

> if needed, measurements of the sensory inputs to
that agent

> if available, a model of the environment.

Determine: the reward function being optimized

Proposed by [Kalman68]
First solution, by [Boyd94]

= Why inverse RL?

> Computational models for animal learning

> “In examining animal and human behavior we must consider
the reward function as an unknown to be ascertained
through empirical investigation.”

> Agent construction

> “An agent designer [...] may only have a very rough idea of
the reward function whose optimization would generate
'desirable' behavior.”

> eg., “Driving well”

> Multi-agent systems and mechanism design

> learning opponents’ reward functions that guide their actions
to devise strategies against them

IRL from Sample Traject(warning: need to be i Apprenticeship Learning via IRL

>

>

>

careful to avoid
trivial solutions!

Optimal policy available through s
(eg., driving a car)

Want to find Reward function that makes this policy look
as good as possible

Write RW(S)ZWd)(S) so the reward is linear

and V;(So) be the value of the starting state

max ;f(va*<so>—vak<so>)

How good does the How good does the
“optimal policy” look? some other policy look?

[00TNDI ‘lleSSNY+6N]

> For t=1,2,...

> Inverse RL step:
Estimate expert’s reward function R(s)= w'¢(s) such
that under R(s) the expert performs better than all
previously found policies {r}.

> RL step:
Compute optimal policy =, for the estimated reward w

[¥0TNDI ‘BN+880ay]



Car Driving Experiment

> No explicit reward function at all!

> Expert demonstrates proper policy via 2 min. of driving
time on simulator (1200 data points).

> & different “driver types” tried.

> Features: which lane the car is in, distance to closest
car in current lane.

> Algorithm run for 30 iterations, policy hand-picked.
> Movie Time! (Expert left, IRL right)

“Evil” driver

% “Nice” driver

[¥0TNDI ‘BN+880ay]

® Maxent IRL

Distribution over trajectories:

P(O

Match the reward of observed behavior:

PO faem D

Maximizing the causal entropy over trajectories given
stochastic outcomes:

(Condition on random -
uncontrolled outcomes, but As uniform
only after they happen) as possible

[80IVVY ‘[e+leqaiZ]



Data collection

S d Accidents
'f:ae d Construction
T Congestion

ype Time of day

Lanes

Planning as structured prediction

mace | - friinng o - e tast oo ave o regen

e 2 - e enat ma o vl e

25 Taxi

= Predicting destinations....

Drivers

Over 100,000 miles

[80IVVY ‘e+HeadlZ

ot 1 - ienred path over ravel region

A © - e ek oy e egon

[SOSdIN ‘le+yipey]

Maximum margin planning

> Let U(s,a) denote the probability of reaching g-state
(s,a) under current model w

max margin ~ s.t. planner run with w
w yields human output

Q-state visitation
frequency by human

min 1 b u(s,a)w-(b(xn,s,a)
Iwl[”  s.t. A ,
2 i(s,a)w-p(x,,s,a)>1
Q-state visitation , Vn,s,a
frequency by planner

All trajectories,
and all g-states

[SOSdIN ‘let+iiped]



Optimizing MMP

> For n=1..N:

R

> Augmented planning:
Run A* on current (augmented) cost map
to get g-state visitation frequencies u (s,a)

> Update:w=w+z Z [/fl(s,a)—u(s,a)]cl)(xn,s,a

N a

> Shrink: w= 1—L w
' CN

Parsing via inverse optimal control

>

>

State space = all partial parse trees over the full
sentence labeled “S”

Actions: take a partial parse and split it anywhere in the
middle

Transitions: obvious
Terminal states: when there are no actions left
Reward: parse score at completion

)

® Maximum margin planning movies

[SOSdIN ‘le+iiped]

e Parsing via inverse optimal control

[60r1N ‘ueArsdezs+naN]

90
85
80
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65
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R

Small

Medium

Large

B Maximum B Projection [l Perceptron B Appren-

Likelihood

B Maximum B Maximum [ Policy

Margin

Entropy

Matching

ticeship
Learning

[SOSdIN ‘le+yiped]
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Learning by
Demonstration

Reducing search to classification

> Natural chicken and egg problem:
> Want h to get low expected future loss
> ... on future decisions made by h
> ... and starting from states visited by h

> |terative solution

\ h(t-1)

Hyp: The man ate
Cov:
I' croissant.

h®

Input: Le homme mange I' croissant.
Output: The man ate a croissant.

Cov: —» Loss =0

Hyp: The man ate a croissant

Hyp: The man ate a fox

Cov: —» Loss=1.8

croissant.

Hyp: The man ate happy

Cov: |- —» Loss =1.2

Hyp: The manaea Hyp: The man ate a
Cov: Cov: —» Loss =0.5

. I
croissant.

—» Loss =0

% Integrating search and learning

% Reduction for Structured Prediction

[60r TN ‘nose+piojbue+Q]

Input:

Output:

Le homme mange ' croissant.

The man ate a croissant.

\

Hyp: The man ate
Cov:
I' croissant.

Hyp: The man ate a
Cov:
croissant.

}

Cov:

Hyp: The man ate a croissant

Hyp: The man ate a fox
Cov:
croissant.

Hyp: The man ate happy
Cov:
Il

Cov:
Il

Hyp: The man ate a

> ldea: view structured prediction in light of search

Each step here
looks like it
could be
represented as
a weighted
multi-class
problem.

N)
A)
®
V)
1 sig)

[merrilﬁ

Can we

Loss function:

LUNVR],[NVR])=0

L(N VR], [NV V]

)=1/3

formalize this
idea?

[60r 1N ‘noJepy+paojBuBT+Q ‘SOTINDI ‘NoIBN+A]

[60r TN ‘Nose+piojbue+A]



Reducing Structured Prediction

[ I ] [sing] [merrilya

Desired: good policy on test data

(i.e., given only input string)

Key Assumption: Optimal Policy for training data

101

Given: input, true output and state;
Return: best successor state

Weak!

Hal Daumé Ill (me@hal3.name)

How to Learn in Search

103

O =0
c=2 O
O O
O
O O
1 [sing]

> Translating DSP into Searn(DSP, loss, n):
> Draw x ~ DSP
> Run 7 on x, to get a path
> Pick position uniformly on path

SPIRL @ AAAI 2011

> Generate example with costs given by expected

(wrt ) completion costs for “loss”

Hal Daumé Ill (me@hal3.name)

SPIRL @ AAAI 2011

[60r TN ‘nose+piojbue+A]

£

[60r TN ‘nose+piojbue+d]

i

How to Learn in Search

O
O O
O O
O

Idea: Train based only on optimal path (ala MEMM)

Better Idea: Train based only on optimal policy,
then train based on optimal policy + a little learned policy
then train based on optimal policy + a little more learned policy
then ...
eventually only use learned policy

[60r TN ‘nose+piojbue+A]
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@

Searn

Algorithm: Searn-Learn(A, DSP, loss, n*, B)
1: Initialize: n = n*

2: while not converged do

3: Sample:D ~ Searn(DSP, loss, =)

4: Learn: h <« A(D)

5 Update: n «— (1-B)n+B h

6: end while

7: return & without n*

Ingredients for Searn:
Input space (X) and output space (), data from X
Loss function (loss(y, y')) and features
“Optimal” policy n*(x, Yq)

TN noJe+plojBue+q]
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But what about demonstrations? %

> What did we assume before?

3d racing game (TuxKart)

Input: Output:

- ®

Steering in [-1,1]

Key Assumption: e
httemst: 1 of

Optimal Policy for S tinene
training data

Given: input,
true output
and state;
Return: best
successor state

> We can have a human (or system) demonstrate, thus

giving us an optimal policy Resized to 25x19
pixels (1425
features)
105 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 106 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
DAgger: Dataset Aggregation Experiments: Racing Game
> Collect trajectories from expert 1t* IfN=TlogT,

> Dataset Do ={ (s, *(s) ) | s~ *}|L(m,) < T ey + O(1)
> Train 1ty on Dy
>

for some n

Collect new trajectories from 1ty

> But let the expert steer!
Dataset Dy ={ (s, t*(s) ) | s~ T, }

Y

> Train Tty on Dy U Dy

> In general:
> Dp={(s,ms))|s~m,}
> Train M, on U, D;

Steering in [-1,1]

Resized to 25x19
pixels (1425

features)
108 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
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Average falls per lap

45

N

o
wn
T

o
T

5
5
T

N
T

Average Falls/Lap

—*—DAgger
i ~—-SMiLe(0.1) ||
"""" Supervised
0 1
0 0.5 1 1.5 2 2.5
Number of Training Data i

Training (expert)

= Super Mario Bros.

From Mario Al competition 2009

:
Input:
LAY | ML)
7 =

LAV )
HUNHIULY 21

1181161101 (1 1¢R0

Extracted 27K+ binary features
from last 4 observations
(14 binary features for every cell)

& [1i1smIgly ‘leubeg+uopion+ssoy]

[1IsreIg|Y ‘|leubeg+uopion+ssoy]

Output:

Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Test-time execution (classifier)

& [1i1smisly ‘leubeg+uopion+ssoy]

[11sreIg|Y ‘|leubeg+uopion+ssoy]



Test-time execution (Dagger) = Average distance per stage

Perceptron vs. LaSO vs. Searn

. Incremental perceptron
LaSO

. Searn / DAgger

X Un-learnable decision

Discussion
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Relationship between SP and IRL

> Formally, they're (nearly) the same problem
> See humans performing some task
> Define some loss function
> Try to mimic the humans

> Difference is in philosophy:
> (DRL has little notion of beam search or dynamic
programming
> SP doesn't think about separating reward estimation from
solving the prediction problem

> (DRL has to deal with stochastiticity in MDPs

Hal's Wager

> Give me a structured prediction problem where:
> Annotations are at the lexical level
> Humans can do the annotation with reasonable agreement
> You give me a few thousand labeled sentences

> Then | can learn reasonably well...
> ...using one of the algorithms we talked about

> Why do | say this?
> Lots of positive experience
> I'm an optimist
> | want your counter-examples!

= Important Concepts

> Search and loss-augmented search for margin-based
methods

> Bold versus local updates for approximate search
> Training on-path versus off-path

> Stochastic versus deterministic worlds

> Q-states / values

> Learning reward functions vs. matching behavior

. Open problems

> How to do SP when argmax is intractable....
> Bad: simple algorithms diverge [Kulesza+Pereira, NIPS07]
> Good: some work well [Finley+Joachims, ICML08]
> And you can make it fast! [Meshi+al, ICML10]
> How to do SP with delayed feedback (credit assignment)
> Kinda just works sometimes [D, ICML09; Chang-+al, ICML10]
> Generic RL also works [Branavan+al, ACL09; Liang+al, ACL09]
> What role does structure actually play?
> Little: only constraints outputs  [Punyakanok+al, IJCAI05]
> Little: only introduces non-linearities  [Liang+al, ICML08]
> Role of experts?
> what if your expert isn't actually optimal?
> what if you have more than one expert?
> what if you only have trajectories, not the expert?



Things | have no idea how to solve... = Things | have no idea how to solve...

all (a - Bool) - - Bool

[a]

of the list satisfy the predicate, and 'False' otherwise.

Applied to a predicate and a list, returns "True' if all elements

"

$module main:MyPrelude
%data main:MyPrelude.MyList aadj =
{main:MyPrelude.Nil;
main:MyPrelude.Cons aadj
%rec
{main:MyPrelude.myzuall ::

((main:MyPrelude.MyList aadj))};
$forall tadA . (tadA ->

->

\ @ tadA
(padk::tadA -> ghczmprim:GHCziBool.Bool)
(dsddE: : (main:MyPrelude.MyList tadA)) ->
%case ghczmprim:GHCziBool.Bool dsddE
%0of (wildBl:: (main:MyPrelude.MyList tadA))
{main:MyPrelude.Nil ->
ghczmprim:GHCziBool.True;
main:MyPrelude.Cons
(xadm: :tadA) (xsadn:: (main:MyPrelude.MyList tadAa))
%$case ghczmprim:GHCziBool.Bool (padk xadm)
%$of (wildlXc::ghczmprim:GHCziBool.Bool)
{ghczmprim:GHCziBool.False ->
ghczmprim:GHCziBool.False;
ghczmprim:GHCziBool.True —>
main:MyPrelude.myzuall @ tadA padk xsadn}}};

all p
all p
if g
th

el

ghczmprim:GHCziBool.Bool)

(main:MyPrelude.MyList tadA)
ghczmprim:GHCziBool.Bool =

->

—>

(s1) A father had a family of sons who were perpetually
quarreling among themselves. (s2) When he failed to heal
their disputes by his exhortations, he determined to give
them a practical illustration of the evils of disunion; and for
this purpose he one day told them to bring him a bundle of

sticks_ (33) Wher\ thav had Annea en ha nlarad tha fannnt

Software

> Sequence labeling

> Mallet
> CRF++

http://mallet.cs.umass.edu
http://crfpp.sourceforge.net

> Search-based structured prediction

> LaSO
> Searn

http://hal3.name/TagChunk
http://hal3.name/searn

> Higher-level “feature template” approaches

> Alchemy
> Factorie

http://alchemy.cs.washington.edu
http://code.google.com/p/factorie

into the hands of _kather _Sons
them to break it i - (annoyed) o _Shared...oonn —(quarreling),
strength, and we m s —
the faggot, took { m( My, (stop quarreling)as
again put_them ir o M, (exhortations),,
‘t‘rlc/?msgﬁgllyf. (gg) m‘: = (exhortations fail),s
) | ) "
Othyer you W?/” be = Mea (teach lesson),g
3 . "k &
of your enemies; 7 M,y (get sticks & break)as .., request :
you will be broke &/ a ( "7 Molget sticks & break)as
[\ I shared ...-- — (cannot break sticks) a0
a| \ +,4 (cannot break sticks),g " #
| B ™M . (bundle & break)q1:... request :
\ 5 ( W, L e 5 ( ’\/‘,ss(bundle & break)ai2
N ! shared . ....;as< -+ 5(break sticks),13
\ —+.5 (break sticks)gyqg - " *
“s 4.5 (lesson succeeds),15

&
¥ Summary

>

YV V VYV V

Y

Structured prediction is easy if you can do argmax
search (esp. loss-augmented!)

Label-bias can kill you, so iterate (Searn/Dagger)
Stochastic worlds modeled by MDPs
IRL is all about learning reward functions

IRL has fewer assumptions
> More general
> Less likely to work on easy problems

We're a long way from a complete solution
Hal's wager: we can learn pretty much anything

Thanks! Questions?
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