Slides at http://hal3.name/11-08-spirl.{pdf,odp} % Examples of structured problems %

From Structured Prediction Google s
to Inverse Reinforcement Learning

e
te fully with the IAEA.

Hal Daumé III Acknowledgements
coasidl Leslip ol uism] a6 Loiag sSwgpn Susi
. Slabs A1 | 0lask pmaad] L UHl gy ooy
Computer Science Some slides: e i p b
University of Maryland Stuart Russell il g L o g R
Dan Klein frorn| Arabic to English BETA >]_Transiate
me@hal3.name
_ J. Drew Bagnell
A Tutorial at AAAI 2011 Nathan Ratliff i -
San Francisco, California Stephane Ross e f‘*
e '\,l E
Monday, 8 August 2011 . . N /) wian
e y, 8 Discussions/Feedback: 7 AW
\\-‘\.'r‘--\:{‘r}‘ MLRG S . 2010 I":I NN \IHII I'II S .\I.\
CJ% o3 % prlng The man ate a tasty sandwich
18 56
% Q
ARYLAS

Examples of demonstrations e Examples of demonstrations

NLP as transduction % Structured prediction 101

Task Input Output Learn a function mapping inputs to complex outputs:
Machine Ces deux principes se tiennent & Both principles lie at the X =Y
Translation la croisée de la philosophie, de crossroads of philosophy, g
la politique, de I'économie, de la politics, economics, Input Spaﬁecodﬁg‘ﬂﬁﬂput Spac
sociologie et du droit. sociology, and law. EEEer
Document - e) Ma th [\Mlth |
Summarization [g e ol s B
ygarsa gfte?nftlg d%%\gqrmhe 74-day wa fought between Obama Nn 3 € rresiaen
e e Britain and Argentina. Mar)rgﬂﬁl.)“ Yo Eta Ga verda .
winning sovereignty over the islands. ro M“d 2
Svntact T e a bi McCaink Mt D —B
yntactic e man ate a big /\ Tt
Analysis sandwich. YA /f\ . | wid LB *
The man ate a big sandwich Pro John
...many more... ‘ | H can H can H a H can ‘
BegianeddcaRbiingntion
- n @ [] n
Structured prediction 101 Why is structure important?

> Correlations among outputs
> Determiners often precede nouns
> Sentences usually have verbs

Learn a function mapping inputs to complex outputs:
X —Y

Input Space|| Decoding | Output Spac§
> Global coherence
//Q > Itjust doesn't make sense to have three determiners next to
each other

/>\ > My objective (aka “loss function”) forces it

> Translations should have good sequences of words

% > Summaries should be coherent

\ I \\can\\can\\ a \\can\

Outline: Part | % Outline: Part Il

> What is Structured Prediction? > Learning to Search
> Refresher on Binary Classification > Incremental parsing
> What does it mean to learn? > Learning to queue
> Linear models for classification > Refresher on Markov Decision Processes
> Batch versus stochastic optimization > Inverse Reinforcement Learning
> From Perceptron to Structured Perceptron > Determining rewards given policies
> Linear models for Structured Prediction > Maximum margin planning
> The "argmax” problem > Learning by Demonstration
> From Perceptron to margins > Searn
> Structure without Structure > Dagger
> Stacking
> Structure compilation > Discussion

® What does it mean to learn?

> Informally:

Refres he r o n > to predict the future based on the past

. " gum . > Slightly-less-informally:
B I n a ry C Iass Ifl catlo n > to take labeled examples and construct a function that will

label them as a human would

> Formally:
> Given:
> A fixed unknown distribution D over X*Y
> Aloss function over Y*Y
> A finite sample of (x,y) pairs drawn i.i.d. from D

> Construct a function f that has low expected loss with
respect to D

Feature extractors ~ Linear models for binary classification
> A feature extractor ® maps examples to vectors > Decision boundary
is the set of \
Dear Sir. W=dear : 1 “Uncertaln”pomts
First, I must solicit W:Sil.r : !
your confidence in W=this ; 2 . -
th%s ‘vcransac‘.cion, U . > Llnear deCISIOn
this is by virture of W=wish 0 .
its nature a§ beirllg e boundarleS are f.’ f—
utterly confidencial MISSPELLED : 2 .
and top secret. .. ¢ NAMELESS . 1 CharaCterlzed by
ALL_CAPS 0 weight vectors
NUM_URLS 0

X O(x) w 2 wi Oi(x)
B BIAS 1 BIAS : -3 (1)(=3) +
> Feature vectors in NLP are frequently sparse free free bl | (e i] EBE;% H
money” |27 o | e b o) +
o .. :3
®) ®
The perceptron Why does that update work?

> Inputs = feature values > When yw®-¢p(x)<0 updatee"™ =w""+y ¢ (x)
> Params = weights

> Sum is the response

> If the response is:
> Positive, output +1
> Negative, output -1

W1
D,
Y 07—
> When training, W, . new 0
update on er?ors: yw ™ d(x)=ylw Id+)’¢(x))q5(x)
W:W+y(l)<x> ‘ “Error”’ when: :ywomd)<x)+yy¢(x)¢(x)
o < ~ s . ~ J
yw-p(x)<0 <0 >
N

Support vector machines

> Explicitly optimize T
the margin \

> Enforce that T~
all training points

are correctly f, -
classified
maX harein st all points are
w correctly classified
Max margin s.t. YW (x,)=1 , Vn
wW
min 2
wl" st y.wo(x,)=1, Vn
17 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

= Support vector machines with slack -

18

> Explicitly optimize h \f\
the margin \ 2o+

> Allow some “noisy” ~
points to be -
misclassified f,

min 1)
we SIwf+cY g,
st. Yawb(x,)+ |5, |=1, Vn
£,20 , Vn
Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

Batch versus stochastic optimization . Stochastically optimized SVMs

> Batch = read in all the data, then process it
> Stochastic = (roughly) process a bit at a time

min 1 2 > For n=1..N:
—(w| +C
wg oML T =0
st y.wp(x)+E >1 > w=wty, b(x,)
, Vn
£,20 , Vn

Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

Implementation Note:

Weight shrinkage is SLOW.
Implement it lazily, at the
cost of double storage.

smonae
R

> Forn=1..N: For n=1..N:
> If y,wd(x,)<1 > If y wop(x,)<0
> w=wty, b(x,) > w=wty,¢(x,)
> w:(l—L w
CN

20

Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

£

= Perceptron with multiple classes -

> Store separate weight wi*d(x)
vector for each class biggest

From Perceptron Wy, Wp, oy Wi
to Structured Perceptron \/

> For n=1..N:
> Predict: V‘E,°¢gf)
1gge

y=argmax,w,:$(x,)

\ Wsre q)(X)
biggest

2 E gy,

Wy=wy = blx,) ?' Why does this

Wyn:Wyn+q5(Xn) = = do the right thing?

21 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 22 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
: . & “
Perceptron with multiple classes v2 Perceptro X D(x,1) d(x,2)
> Originally: > Originally: “ffee |spam eree . 1| |namtree i 1
_ money” ZgZE:rgizey | é iZE:Isizey | é
> For n=1..N: > For n=1..N: > Forn=1..N: > Forn=1..N:
> Predict: > Predict: > Predict: > Predict:
y=argmax,w,-$(x,) y=argmax,w-¢(x,,k) y=argmax,w,-$(x,) y=argmax,w-¢(x,,k)
- I 5y, - Iy, P I 5y, - I yy,
wy=wi = (x,) w=w-g(x,.7) wy=wi = (x,) w=w-g(x,,7)
W, =w, +o(x,) (%07, W, =w, +b(x, (x5,

23 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 24 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

Features for structured prediction % Structured perceptron

> Allowed to encode anything you want
| Pro |/ Md || Vb || Dt || Nn |

1 |lcan| can| a ||can]|

Enumeration
over all outputs

Enumeration
over 1..K

> For n=1..N: > For n=1..N:

2

¢ () > Predict: > Predict:
X,y)= . -
I Pro 1 <s>-Pro 1 has verb 1 y—argmaka (b(Xn,k) y=dargmax,w ¢(X”’k)
Pro-Md 1 h nn 1ft : O > % . > A~ .
EZE%S 1 MA-Vb 1 hziinjft 1 Ty#y; UNENE
n Vb-Dt 1 h t: 1 A A
igith 1 Dt-Nn 1 hi?ii;g? 1 W:W_CI)(XH,}’) W=W—¢)(xn,y) S
- n-</ 1 =
Nn-</s> —}-([)(xn,yn) +¢(xn,yn) @
> Output features, Markov features, other features §
© .
Argmax for sequences Structured perceptron as ranking
> If we only have output and Markov features, we can use > Forn=1..N:

Viterbi algorithm: > Run Viterbi: y=argmax,w-¢(x,, k)

we[Pro-Pro] > If y#y; w=w—<l>(><n,3’)+¢(xn’yn)

we[can_Pro]

> When does this make an update?
| Pro| Md || Vb || Dt || Nn |
we[can_Md] | Pro || Md || Md || Dt || Vb |
| Pro| Md | Md || Dt || Nn |
| Pro| Md || Nn || Dt || Md |
B 'we[can_Vb] [Pro][Md |[[Nn |[Dt |[Nn]
| Pro| Md || Vb || Dt || Md |
L] e "Pro || Md |[Vb]| Dt |[Vb_
(plus some work to account for boundary conditions)
| 1 |lcan]|/can]|| a ||can]|

From perceptron to margins

Maximize
Margin

Minimize
Errors

min 2

~|lw|’+C
S P e I S
s.t. y,w(x,)+E,>1

, Vn

Each point is correctly
classified, modulo §

29 Hal Daumé Ill (me@hal3.name)

Ranking margins

min 1 2
e SIwFcY g,

Response
for truth

s.t. w-p(x,,y,)
_W.d)<xn’5/)
+& >1,Vn,y#y,

Response

for other

Each true output is more
highly ranked, modulo &

> Some errors are worse than others...

| Pro || Md || Vb || Dt || Nn |
Margin
f one
Pro		Md		Md		Dt		Vb
Pro		Md		Md		Dt		Nn
Pro		Md		Nn		Dt		Md
Pro		Md		Nn		Dt		Nn
Pro	Md		Vb		Dt		Md	
Pro		Md		Vb		Dt		Vb
1	lcan]	/can]		a		can]		
31 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

SPIRL @ AAAI 2011

% From perceptron to margins

[SoYTNIr ‘stiepueyOOyS | (GOYTINF ‘[e+ieyse]]

@

[SOYTNIr ‘siiepueyOOyS | ‘GOYTINF ‘[e+ieyse]]

30

min 1
w,E§ 2

Response
for truth

s.t. w-p(x,,y,)
_W.d)<xn’5/)
+&>1,Vn,y#y,

Each true output is more
highly ranked, modulo &

SIwlP+c 2. €.

Response

for other

Hal Daumé Ill (me@hal3.name)

SPIRL @ AAAI 2011

Accounting for a loss function

> Some errors are worse than others...

| Pro || Md || Vb || Dt |[Nn |

B, R
T

lcan||can]|| a || can|

32

Hal Daumé Ill (me@hal3.name)

Margin
fl(y,y")

SPIRL @ AAAI 2011

[SoYTNIr ‘siiepueyOOyS | (GOYTINF ‘[e+ieyse]]

@

[SOYTNIr ‘siiepueyOOyS | (GOYTINF ‘[e+ieyse]]

&

Accounting for a loss function = Augmented argmax for sequences
$(x, y,)

> Add “loss” to each wrong node!

we[Pro-Pro]

we[can_Pro]

Vi, wolx,y,)—wo(x,y)+&=1y,,y)
is equivalent to

maxf’ w.¢(xn:yn)_w'd)(xn’y)—i_EnZl(yn’y)

W'¢(Xn,yn)_w'¢(xn,5/)+§n W'(l)(Xn,yn)—W'(b(Xn,)A/)‘FEn

>1 >1(y,,y)

Stochastically optimizing Markov nets” Stacking

> Structured models: accurate but slow
g i Output Labels
g g Input Features
> Independent models: less accurate but fast

L o« ’? ' What are we

= = assuming here?

[SoYTNIr ‘stiepueyOOyS | (GOYTINF ‘[e+ieyse]]
[SoYTNIr ‘siiepueyOOyS | (GOYTINF ‘[e+ieyse]]

> Forn=1..N: > For n=1..N: Output Labels
> Augmented Viterbi: > Viterbi: Input Features
y=argmax,w-¢(x,,k) y=argmax,w-¢(x,,k)
+(y, k) > If y#y: > Stacking: multiple independent models
I oy o o B Label
)’Z’&yn) w=w—¢(x_,¥) % Output Labels 2
W—W—¢(Xn,Y) +q§(xn,yn) f:—> Output Labels
+ =
> 1(15 (X”’y”) g Input Features
w={1l-—|w S

CN

Training a stacked model ® Do we really need structure?

> Train independent Output Labels 2 > Structured models: accurate but slow
classifier f; on Output Labels
input features Output Labels g g
Input Features

Input Features > .
> Train independent Independent models: less accurate but fast

classifier f, on Output Labels
input features + f;'s output

Input Features
> Goal: transfer power to get fast+accurate

> Solution: cross-validation Input Features
> Questions: are independent models...

> ... expressive enough? (approximation error)
> ... easy tolearn? (estimation error)

%

“Compiling” structure out “Compiling” structure out

Labeled Labeled

STy Lol LT | MR — oo

POS: 95.0% POS:91.7% POS:95.0% POS:91.7%
CRF(f7) NER:75.3% IRL(f1) NER:69.1% CRF(f7) NER:75.3% IRL(f1) NER:69.1%

POS:94.4%
f, = words/prefixes/suffixes/forms IRL(f) NER: 66.2%
f, = f; applied to a larger window

f; = words/prefixes/suffixes/forms

POS: 95.0%
ComplRL(f;) \eR 7279

[80TNDI ‘UBIM+a+buer]

[80TWDI ‘UBIM+a+buer]

[80TNDI ‘UBIM+a+buer]

Decomposition of errors

Sum of Ml on edges
= (o) N)
i i g i CRF(f1): POS=.003 (95.0% — 95.0%)
coherence
nonlinearities

Pc NER=.009 (76.3% — 76.0%)
O O O
@/im RLUco): Pa-

global information

O O O

Theorem:
KL(pc Il p1+) = KL(pc Il Pmc) + KL(ppc Il pa+) + KL(pa+ || p1+)

. . Train a truncated CRF
marginalized CR \er: 76.0% — 72.7%

Train a marginalized CRF
NER: 76.0% — 76.0%

[80INDI ‘wiBy+Q+buer,

® Structure compilation results
Part of speech Named Entity Parsing

96 78 88

76 86

95 74 84

: 72 82

94 70 80

68 78

3 66 76
2 4 8 16 32 64 2 4 8 16 32 64 4 14 24 44 84 164

“® Structured

*** Independent

® Outline: Part |

Coffee Break!!!

> What is Structured Prediction?

> Refresher on Binary Classification
> What does it mean to learn?
> Linear models for classification
> Batch versus stochastic optimization
> From Perceptron to Structured Perceptron
> Linear models for Structured Prediction
> The “argmax” problem
> From Perceptron to margins
> Structure without Structure
> Stacking
> Structure compilation

[80TWDI ‘UBIM+a+buer]

Outline: Part Il

> Learning to Search

> Incremental parsing

> Learning to queue
> Refresher on Markov Decision Processes
Inverse Reinforcement Learning
Determining rewards given policies
Maximum margin planning

Y

>
>

Y

Learning by Demonstration
> Searn
> Dagger

Y

Discussion

Argmax is hard!

> Classic formulation of structured prediction:
something we learn

score(x,y) = tomake “‘good”x,y pairs
score highly

> At test time:

f(x) = argmax, ., score (x,v)

> Combinatorial optimization problem
> Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search

Learning to Search

. Argmax is hard!

> Classiq@ef these words: bart better | madonna say than \

sC

> At test

f

[Soricut, PhD Thesis, USC 2007]
» Combinato

> Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search

Argmax is hard! Argmax is hard!
> Classio’ Order these words: bart better | madonna say than , > Classio’ Order these words: bart better | madonna say than ,
Best search (32.3): | say better than bart madonna , Best search (32.3): | say better than bart madonna,,
Original (41.6): better bart than madonna , | say Original (41.6): better bart than madonna , | say
SC SC

Best search (51.6): and so could really be a neural
apparently thought things as

dissimilar firing two identical
> At test > At test

f f

[Soricut, PhD Thesis, USC 2007] [Soricut, PhD Thesis, USC 2007]
> Combinato > Combinato

> Efficient only in very limiting cases > Efficient only in very limiting cases
> Solved by heuristic search: beam + A* + local search > Solved by heuristic search: beam + A* + local search
: / 7 . &
Argmax is hard! Incremental parsing, early 90s style

> Classiq@er these words: bart better | madonna say than \
Best search (32.3): | say better than bart madonna ,
Original (41.6): better bart than madonna , | say

Train a classifier
to make decisions

s¢ Best search (51.6): and so could really be a neural

apparently thought things as
dissimilar firing two identical

> Attest original (64.3): could two things so apparently
dissimilar as a thought and neural
f firing really be identical

[Soricut, PhD Thesis, USC 2007]

» Combinato
> Efficient only in very limiting cases Right
> Solved by heuristic search: beam + A* + local search

\ |/ Pro Hcan/MdHcan/VbH a /Dt \ can/Nn

[S6T10V ‘uewiabely]

Incremental parsing, mid 2000s style = Learning to beam-search

) > For n=1..N: seafc“
S S > Maﬂ“
y=argmaxkyw-¢(x,,k)
Train a classifier > If y#y
to make decisions ! X
w=w—¢(x,,9)
+o(x,,y,)
5
NP z NP
o
8
>
“i7pro | [can/md | [can/Vb | a/Dt |l can/tin| £ [i/pro | [can/Md | [can/Vb | a/Dt || can/Nn |
53 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 - 54 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
Learning to beam-search Learning to beam-search
NN ch NN ch

E > For n=1..N: E > Forn=1..N:

ARRunibeamisearcantl > Run beam search until
truth falls out of beam truth falls out of beam

g U pdate_ Wi > Update weights

T immediately!

> Restart at truth

[¥010V “eoy+suljo)]

| I/Pro | | can/Md || can/Vb |

55 Hal Daumé Ill (me@hal3.name)

" i/Pro | [can/md | [can/vb | a/ot |

SPIRL @ AAAI 2011 56 Hal Daumé Il (me@hal3.name)

SPIRL @ AAAI 2011

[¥010V “Meoy+suljo)]

&

[60HTNIM ‘le+nX :SOTNDI ‘NoIeN+A]

Incremental parsing results

F-measure parsing accuracy
o
a

88 T I T T
--8- No early update, no repeated use of examples
- Early update, no repeated use of examples
87 —4— Early update, repeated use of examples

(o]
[*2]

84
8 - S . 4
’,E— g - " T — e — = [i
82T I 1 I I
1 2 3 4 5 6

Number of passes over training data

% Generic Search Formulation

[¥070V “Weoy+suljjo)]

> Search Problem: > nodes =
> Search space MakeQueue(S0)
> Operators
> Goal-test function > while nodes is not empty
> Path-cost function > node :=
RemoveFront(nodes)
> Search Variable: > if node is a goal state

return node
next := Operators(node)

nodes := Enqueue(nodes,
next)

> Enqueue function

Varying the Enqueue

function can give us DFS, > fail
BFS, beam search, A*

search, etc...

Online Learning Framework (LaSO) ® Search-based Margin

> nodes := MakeQueue(S0)

> while nodes is not empty
> node := RemoveFront(nodes)
if none of {node} u nodes is y-good ornode is a goal & not y-

>

>
>

»

>
>
>

>

good

Monotonicity: for any

node, we can tell if it

can lead to the correct
solution or not

m Where should we have gone?
node,y

= update(w, x, sibs, {node} U nodes)
nodes = MakeQueue(sibs)

sibs := siblings(

else
if node is a goa

Update our weights based on
the good and the bad choices
Continue search...

next := Operators(node)
nodes := Enqueue(nodes, next)

INDI ‘noseN+A]

[604TAIM ‘[e+n

» The margin is the amount by which we are correct:

> Note that the margin and hence linear separability is
also a function of the search algorithm!

[60HTIAIP ‘[e+nX :GOTNDI ‘naJe+d]

[604TIAIP ‘[e+nX :GOTNDI ‘naJe+d]

M5

Syntactic chunking Results = Tagging+chunking results

et g Mgy S T LIS NI RN : SemicrF
fbeam 25) A s ar tron ge in
\ = » * LaSOp-5
o4 / \ = LaSOp-25 985 - -
- \Ma = Peu:ep:mn o LaSOp—axac-. /
hgfn 5 - Search (Exac) \ Bes: prior ﬁg:; 5 ‘\ Large Margin
[Zhar:::gle;%erauﬂohnson ﬁgzzfa: % Lram 191 S":[‘;Etgj\ﬂaécauum 2004]
o WB5- 2002]; timing unknown ? % 98 -
8 . ‘-—__7__‘__ Standard ; = g’ o
otz [22min
. [Collins 2002] = 5 L
@3 6 g) - ® Suton
< D « LasOp-1
= 3 g
. oz e
‘ Semi-C RF model >< % Qa5 - - Lasq:,_m
w3 K c = » O LaSQa-1
+ LaSQa-5
k=B LaSQa-10
P LaSQa-25
g LaSCa-50
92| ; y 4 ; " ,_ 945_ ..n e . -;| - -l= - re— .,‘...13
0 500 1000 1500 2000 2500 3000 3500 g e . b 0 v
Training Time (minutes) © Training Time (hours) [log scale]
Variations on a beam ~ What if our model sucks?
> Observation: > Sometimes our model cannot produce the “correct”
. output
> We needn't use the same beam size for i P cal | Hine translati
. . canonical exampie: macnine transiation
training and decoding P Bod’ 1o
- . .) old” update
> Varying these values independently yields: P
Decoding Current Reference
Beam Hypothesis

1 5 10 25 50 N-best list

o 1 939 928 919 913 909 or“opt!mal
S e 5 905 943 944 941 94.1 M decoding”
S 3§10 895 943 944 942 942 Outputs
l‘_Em 25 88.7 942 945 943 943
50 884 942 944 942 944 “Local” update achievable
output

[604TIAIP ‘[e+nX :GOTNDI ‘NaJe+d]

[60HTIAIP ‘[e+nX :GOTNDI ‘naJe+d]

[90710V ‘[e+buer] i£010V ‘Uo0]

Local versus bold updating...

Machine Translation Performance (Bleu)
35.5

35
34.5 W Bold
34 B Local
[l Pharoah
33.5
33
32.5

Monotonic Distortion

Reinforcement learning

> Basic idea:
> Receive feedback in the form of rewards
> Agent’s utility is defined by the reward function
> Must learn to act to maximize expected rewards
> Change the rewards, change the learned behavior

> Examples:
> Playing a game, reward at the end for outcome
> Vacuuming, reward for each piece of dirt picked up
> Driving a taxi, reward for each passenger delivered

Refresher on
Markov Decision
Processes

® Markov decision processes

What are the values (expected future rewards) of
states and actions? .

Markov Decision Processes

> An MDP is defined by:

> Asetofstatesse S

> Asetofactionsae A

> A transition function T(s,a,s’)
> Prob that a from s leads to s’
> i.e., P(s’|s,a)
> Also called the model

> Areward function R(s, a, s’)
> Sometimes just R(s) or R(s’)

> A start state (or distribution)

> Maybe a terminal state

> MDPs are a family of non-
deterministic search problems

> Total utility is one of:

t
2ror 2y,
t t

69 Hal Daumé Ill (me@hal3.name)

Solving MDPs
> In deterministic single-agent search problem, want an
optimal plan, or sequence of actions, from start to a
goal
> In an MDP, we want an optimal policy n(s)
] 1] > A policy gives an action for each state
> Optimal policy maximizes expected if followed
START > Defines a reflex agent
1 2 3 4 3 - - -
08 Optimal policy 2 | 4 S
0.14 > 0.1 when R(s, a, s’) =
-0.04 for all non- 1 f — | - | =
terminals s
1 2 3 4
SPIRL @ AAAI 2011 70 Hal Daumé Il (me@hal3.name) SPIRL @ AAAI 2011
%

Example Optimal Policies

| | » | |
0 BEEEN OE
R(s) = -0.01 R(s) = -0.03
| | =]
1 nEn EE
b=]|= -]
71 REV=04 o baumé i rograsnamey R SPIRL @ AAAI 2011

Optimal Utilities

> Fundamental operation: compute
the optimal utilities of states s (all
at once)

> Why? Optimal values define
optimal policies!

> Define the utility of a state s:
V'(s) = expected return starting in *|*™ . v |
s and acting optimally B IV D I
> Define the utility of a g-state (s,a): L
Q’(s,a) = expected return starting
in s, taking action a and T -
thereafter acting optimally | =

> Define the optimal policy:
1 (s) = optimal action from state s o

72 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

The Bellman Equations = Solving MDPs / memoized recursion ~
> Definition of utility leads to a simple > Recurrences:
one-step lookahead relationship
amongst optimal utility values: Vo(s) =0

Optimal rewards = maximize over
first action and then follow optimal

policy

Vi*(s) = max Qf(s,a)

Qi (s,a) = Y T(s,a,s) |R(s,a,5') +7V;"1(s))]

> : '
Formally: m;(s) = argmax Q; (s, a)
a

V*(s) = maxQ*(s,a)
“ > Cache all function call results so you never repeat
Q*(s,a) =Y T(s,a,8) [R(s,a,8") + vV (5] work
s/ > What happened to the evaluation function?
V*(s) = max Z T(s,a,s’) [R(S, a,s') 4+~ V*(s/)}

S

Q-Value lteration RL = Unknown MDPs
> Value iteration: iterate approx optimal values > If we knew the MDP (i.e., the reward function and
> Start with V,'(s) = 0, which we know is right (why?) transition function):
> Given V/', calculate the values for all states for depth > Value iteration leads to optimal values
i+1: > Will always converge to the truth
Vit1(s) « mc?xz;T(s’ a,s') {R(S’ a,s") + 7 %(3/)} > Reinforcement learning is what we do when we do not

know the MDP

S
> But Q-values are more useful! .)
> All we observe is a trajectory

» Start with Q,(s,a) = 0, which we know is right (why?)
> Given Q/, calculate the g-values for all g-states for > (Spagry, Spaxry Szaslz ...
depth i+1:
/ / o > Many algorithms exist for this problem; see
Qit1(s,a) — > T(s,a,s) {R(S, a,s’) +v max Qi(s',a") Sutton+Barto's excellent book!

S

Q-Learning = Exploration / Exploitation

> Learn Q*(s,a) values
> Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
> Consider your new sample estimate:

> Several schemes for forcing exploration
» Simplest: random actions (e greedy)

> Every time step, flip a coin

> With probability €, act randomly

. . —— : .

O*(s.a) = ZT(S, a,s') [R(s, a,s) + ma?x Q% (s, d") With probability 1-¢, act according to current policy
S/

> Problems with random actions?

> Incorporate the new estimate into a running average: ~ You do explore the space, but keep thrashing around once
learning is done

> One solution: lower € over time

. / / / . . .
sample = (s, a,s') +ymaxQ(s’, a’) > Another solution: exploration functions

Q(s,;a) — (1 —a)Q(s,a) + () [sample]

Q-Learning e

> In realistic situations, we cannot possibly learn about

every single state! I nve rse

> Too many states to visit them all in training

> Too many states to hold the g-tables in memory Re i nfo rce m e nt
> Instead, we want to generalize:

> Learn about some small number of training states from Lea rn I n g

experience

> Generalize that experience to new, similar states: (aka Inverse Optimal Control)

Q(s,a) = wif1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

> Very simple stochastic updates:
Q(s,a) — Q(s,a) + aferror]

w; «— w; + «a[error] f;(s,a)

Inverse RL: Task

>

Y

Y

Y

Given:

> measurements of an agent's behavior over time, in
a variety of circumstances

> if needed, measurements of the sensory inputs to
that agent

> if available, a model of the environment.

Determine: the reward function being optimized

Proposed by [Kalman68]
First solution, by [Boyd94]

= Why inverse RL?

> Computational models for animal learning

> “In examining animal and human behavior we must consider
the reward function as an unknown to be ascertained
through empirical investigation.”

> Agent construction

> “An agent designer [...] may only have a very rough idea of
the reward function whose optimization would generate
'desirable' behavior.”

> eg., “Driving well”

> Multi-agent systems and mechanism design

> learning opponents’ reward functions that guide their actions
to devise strategies against them

IRL from Sample Traject(warning: need to be i Apprenticeship Learning via IRL

>

>

>

careful to avoid
trivial solutions!

Optimal policy available through s
(eg., driving a car)

Want to find Reward function that makes this policy look
as good as possible

Write RW(S)ZWd)(S) so the reward is linear

and V;(So) be the value of the starting state

max ;f(va*<so>—vak<so>)

How good does the How good does the
“optimal policy” look? some other policy look?

[00TNDI ‘lleSSNY+6N]

> For t=1,2,...

> Inverse RL step:
Estimate expert’s reward function R(s)= w'¢(s) such
that under R(s) the expert performs better than all
previously found policies {r}.

> RL step:
Compute optimal policy =, for the estimated reward w

[¥0TNDI ‘BN+880ay]

Car Driving Experiment

> No explicit reward function at all!

> Expert demonstrates proper policy via 2 min. of driving
time on simulator (1200 data points).

> & different “driver types” tried.

> Features: which lane the car is in, distance to closest
car in current lane.

> Algorithm run for 30 iterations, policy hand-picked.
> Movie Time! (Expert left, IRL right)

“Evil” driver

% “Nice” driver

[¥0TNDI ‘BN+880ay]

® Maxent IRL

Distribution over trajectories:

P(O

Match the reward of observed behavior:

PO faem D

Maximizing the causal entropy over trajectories given
stochastic outcomes:

(Condition on random -
uncontrolled outcomes, but As uniform
only after they happen) as possible

[80IVVY ‘[e+leqaiZ]

Data collection

S d Accidents
'f:ae d Construction
T Congestion

ype Time of day

Lanes

Planning as structured prediction

mace | - friinng o - e tast oo ave o regen

e 2 - e enat ma o vl e

25 Taxi

= Predicting destinations....

Drivers

Over 100,000 miles

[80IVVY ‘e+HeadlZ

ot 1 - ienred path over ravel region

A © - e ek oy e egon

[SOSdIN ‘le+yipey]

Maximum margin planning

> Let U(s,a) denote the probability of reaching g-state
(s,a) under current model w

max margin ~ s.t. planner run with w
w yields human output

Q-state visitation
frequency by human

min 1 b u(s,a)w-(b(xn,s,a)
Iwl[” s.t. A ,
2 i(s,a)w-p(x,,s,a)>1
Q-state visitation , Vn,s,a
frequency by planner

All trajectories,
and all g-states

[SOSdIN ‘let+iiped]

Optimizing MMP

> For n=1..N:

R

> Augmented planning:
Run A* on current (augmented) cost map
to get g-state visitation frequencies u (s,a)

> Update:w=w+z Z [/fl(s,a)—u(s,a)]cl)(xn,s,a

N a

> Shrink: w= 1—L w
' CN

Parsing via inverse optimal control

>

>

State space = all partial parse trees over the full
sentence labeled “S”

Actions: take a partial parse and split it anywhere in the
middle

Transitions: obvious
Terminal states: when there are no actions left
Reward: parse score at completion

)

® Maximum margin planning movies

[SOSdIN ‘le+iiped]

e Parsing via inverse optimal control

[60r1N ‘ueArsdezs+naN]

90
85
80
75
70
65
60

R

Small

Medium

Large

B Maximum B Projection [l Perceptron B Appren-

Likelihood

B Maximum B Maximum [Policy

Margin

Entropy

Matching

ticeship
Learning

[SOSdIN ‘le+yiped]

[60rTIN ‘enadeazg+nap]

Learning by
Demonstration

Reducing search to classification

> Natural chicken and egg problem:
> Want h to get low expected future loss
> ... on future decisions made by h
> ... and starting from states visited by h

> |terative solution

\ h(t-1)

Hyp: The man ate
Cov:
I' croissant.

h®

Input: Le homme mange I' croissant.
Output: The man ate a croissant.

Cov: —» Loss =0

Hyp: The man ate a croissant

Hyp: The man ate a fox

Cov: —» Loss=1.8

croissant.

Hyp: The man ate happy

Cov: |- —» Loss =1.2

Hyp: The manaea Hyp: The man ate a
Cov: Cov: —» Loss =0.5

. I
croissant.

—» Loss =0

% Integrating search and learning

% Reduction for Structured Prediction

[60r TN ‘nose+piojbue+Q]

Input:

Output:

Le homme mange ' croissant.

The man ate a croissant.

\

Hyp: The man ate
Cov:
I' croissant.

Hyp: The man ate a
Cov:
croissant.

}

Cov:

Hyp: The man ate a croissant

Hyp: The man ate a fox
Cov:
croissant.

Hyp: The man ate happy
Cov:
Il

Cov:
Il

Hyp: The man ate a

> ldea: view structured prediction in light of search

Each step here
looks like it
could be
represented as
a weighted
multi-class
problem.

N)
A)
®
V)
1 sig)

[merrilﬁ

Can we

Loss function:

LUNVR],[NVR])=0

L(N VR], [NV V]

)=1/3

formalize this
idea?

[60r 1N ‘noJepy+paojBuBT+Q ‘SOTINDI ‘NoIBN+A]

[60r TN ‘Nose+piojbue+A]

Reducing Structured Prediction

[I] [sing] [merrilya

Desired: good policy on test data

(i.e., given only input string)

Key Assumption: Optimal Policy for training data

101

Given: input, true output and state;
Return: best successor state

Weak!

Hal Daumé Ill (me@hal3.name)

How to Learn in Search

103

O =0
c=2 O
O O
O
O O
1 [sing]

> Translating DSP into Searn(DSP, loss, n):
> Draw x ~ DSP
> Run 7 on x, to get a path
> Pick position uniformly on path

SPIRL @ AAAI 2011

> Generate example with costs given by expected

(wrt) completion costs for “loss”

Hal Daumé Ill (me@hal3.name)

SPIRL @ AAAI 2011

[60r TN ‘nose+piojbue+A]

£

[60r TN ‘nose+piojbue+d]

i

How to Learn in Search

O
O O
O O
O

Idea: Train based only on optimal path (ala MEMM)

Better Idea: Train based only on optimal policy,
then train based on optimal policy + a little learned policy
then train based on optimal policy + a little more learned policy
then ...
eventually only use learned policy

[60r TN ‘nose+piojbue+A]

102 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

@

Searn

Algorithm: Searn-Learn(A, DSP, loss, n*, B)
1: Initialize: n = n*

2: while not converged do

3: Sample:D ~ Searn(DSP, loss, =)

4: Learn: h <« A(D)

5 Update: n «— (1-B)n+B h

6: end while

7: return & without n*

Ingredients for Searn:
Input space (X) and output space (), data from X
Loss function (loss(y, y')) and features
“Optimal” policy n*(x, Yq)

TN noJe+plojBue+q]

104 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

But what about demonstrations? %

> What did we assume before?

3d racing game (TuxKart)

Input: Output:

- ®

Steering in [-1,1]

Key Assumption: e
httemst: 1 of

Optimal Policy for S tinene
training data

Given: input,
true output
and state;
Return: best
successor state

> We can have a human (or system) demonstrate, thus

giving us an optimal policy Resized to 25x19
pixels (1425
features)
105 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011 106 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011
DAgger: Dataset Aggregation Experiments: Racing Game
> Collect trajectories from expert 1t* IfN=TlogT,

> Dataset Do ={ (s, *(s)) | s~ *}|L(m,) < T ey + O(1)
> Train 1ty on Dy
>

for some n

Collect new trajectories from 1ty

> But let the expert steer!
Dataset Dy ={ (s, t*(s)) | s~ T, }

Y

> Train Tty on Dy U Dy

> In general:
> Dp={(s,ms))|s~m,}
> Train M, on U, D;

Steering in [-1,1]

Resized to 25x19
pixels (1425

features)
108 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

[11sIBIS|Y ‘|leubeg+uopion+ss0y]

107 Hal Daumé Ill (me@hal3.name) SPIRL @ AAAI 2011

@ [11s1R1S|Y ‘l[I9UbERg+UOPIOD)+SSOY]

[11s1BIS|Y ‘|leubeg+uopion+ss0y]

Average falls per lap

45

N

o
wn
T

o
T

5
5
T

N
T

Average Falls/Lap

—*—DAgger
i ~—-SMiLe(0.1) ||
"""" Supervised
0 1
0 0.5 1 1.5 2 2.5
Number of Training Data i

Training (expert)

= Super Mario Bros.

From Mario Al competition 2009

:
Input:
LAY | ML)
7 =

LAV)
HUNHIULY 21

1181161101 (1 1¢R0

Extracted 27K+ binary features
from last 4 observations
(14 binary features for every cell)

& [1i1smIgly ‘leubeg+uopion+ssoy]

[1IsreIg|Y ‘|leubeg+uopion+ssoy]

Output:

Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Test-time execution (classifier)

& [1i1smisly ‘leubeg+uopion+ssoy]

[11sreIg|Y ‘|leubeg+uopion+ssoy]

Test-time execution (Dagger) = Average distance per stage

Perceptron vs. LaSO vs. Searn

. Incremental perceptron
LaSO

. Searn / DAgger

X Un-learnable decision

Discussion

3200
3000
2800
) 2600 g g EEEAg _ g
s V,E-_‘E.-E--[—i' ; —I—-}-;E—E"I‘{-{ 3
% 2400 X _I/I——Eff\‘E - 'g g E
— f F 4 " : b —
T g | . Uy SN f T
) S 2200 ¥ \ ,)
g N = (7 v/ T \ g
) - L 7 v - -
o g 0 2000 X4 \ 5
S o] & =
o F g . o
= foa) & 1800 =
> 3] 7
EJ é 1600 —#—DAgger vs}
] /T T T B B Do e T BB =0 Seam(1) |3]
=1 1400 =1
[} =* Searn(0.4) [}
> 1200+ ~=-SMILe(0.1) | - =
@ T | T L T T Y | Supervised %)
— 1000 L L L L 1 L L I 1 —
% 0 1 2 3 4 5 3 7 8] 10 %
- Number of Training Data iR o

Relationship between SP and IRL

> Formally, they're (nearly) the same problem
> See humans performing some task
> Define some loss function
> Try to mimic the humans

> Difference is in philosophy:
> (DRL has little notion of beam search or dynamic
programming
> SP doesn't think about separating reward estimation from
solving the prediction problem

> (DRL has to deal with stochastiticity in MDPs

Hal's Wager

> Give me a structured prediction problem where:
> Annotations are at the lexical level
> Humans can do the annotation with reasonable agreement
> You give me a few thousand labeled sentences

> Then | can learn reasonably well...
> ...using one of the algorithms we talked about

> Why do | say this?
> Lots of positive experience
> I'm an optimist
> | want your counter-examples!

= Important Concepts

> Search and loss-augmented search for margin-based
methods

> Bold versus local updates for approximate search
> Training on-path versus off-path

> Stochastic versus deterministic worlds

> Q-states / values

> Learning reward functions vs. matching behavior

. Open problems

> How to do SP when argmax is intractable....
> Bad: simple algorithms diverge [Kulesza+Pereira, NIPS07]
> Good: some work well [Finley+Joachims, ICML08]
> And you can make it fast! [Meshi+al, ICML10]
> How to do SP with delayed feedback (credit assignment)
> Kinda just works sometimes [D, ICML09; Chang-+al, ICML10]
> Generic RL also works [Branavan+al, ACL09; Liang+al, ACL09]
> What role does structure actually play?
> Little: only constraints outputs [Punyakanok+al, IJCAI05]
> Little: only introduces non-linearities [Liang+al, ICML08]
> Role of experts?
> what if your expert isn't actually optimal?
> what if you have more than one expert?
> what if you only have trajectories, not the expert?

Things | have no idea how to solve... = Things | have no idea how to solve...

all (a - Bool) - - Bool

[a]

of the list satisfy the predicate, and 'False' otherwise.

Applied to a predicate and a list, returns "True' if all elements

"

$module main:MyPrelude
%data main:MyPrelude.MyList aadj =
{main:MyPrelude.Nil;
main:MyPrelude.Cons aadj
%rec
{main:MyPrelude.myzuall ::

((main:MyPrelude.MyList aadj))};
$forall tadA . (tadA ->

->

\ @ tadA
(padk::tadA -> ghczmprim:GHCziBool.Bool)
(dsddE: : (main:MyPrelude.MyList tadA)) ->
%case ghczmprim:GHCziBool.Bool dsddE
%0of (wildBl:: (main:MyPrelude.MyList tadA))
{main:MyPrelude.Nil ->
ghczmprim:GHCziBool.True;
main:MyPrelude.Cons
(xadm: :tadA) (xsadn:: (main:MyPrelude.MyList tadAa))
%$case ghczmprim:GHCziBool.Bool (padk xadm)
%$of (wildlXc::ghczmprim:GHCziBool.Bool)
{ghczmprim:GHCziBool.False ->
ghczmprim:GHCziBool.False;
ghczmprim:GHCziBool.True —>
main:MyPrelude.myzuall @ tadA padk xsadn}}};

all p
all p
if g
th

el

ghczmprim:GHCziBool.Bool)

(main:MyPrelude.MyList tadA)
ghczmprim:GHCziBool.Bool =

->

—>

(s1) A father had a family of sons who were perpetually
quarreling among themselves. (s2) When he failed to heal
their disputes by his exhortations, he determined to give
them a practical illustration of the evils of disunion; and for
this purpose he one day told them to bring him a bundle of

sticks_ (33) Wher\ thav had Annea en ha nlarad tha fannnt

Software

> Sequence labeling

> Mallet
> CRF++

http://mallet.cs.umass.edu
http://crfpp.sourceforge.net

> Search-based structured prediction

> LaSO
> Searn

http://hal3.name/TagChunk
http://hal3.name/searn

> Higher-level “feature template” approaches

> Alchemy
> Factorie

http://alchemy.cs.washington.edu
http://code.google.com/p/factorie

into the hands of _kather _Sons
them to break it i - (annoyed) o _Shared...oonn —(quarreling),
strength, and we m s —
the faggot, took { m(My, (stop quarreling)as
again put_them ir o M, (exhortations),,
‘t‘rlc/?msgﬁgllyf. (gg) m‘: = (exhortations fail),s
) |) "
Othyer you W?/” be = Mea (teach lesson),g
3 . "k &
of your enemies; 7 M,y (get sticks & break)as .., request :
you will be broke &/ a ("7 Molget sticks & break)as
[\ I shared ...-- — (cannot break sticks) a0
a| \ +,4 (cannot break sticks),g " #
| B ™M . (bundle & break)q1:... request :
\ 5 (W, L e 5 (’\/‘,ss(bundle & break)ai2
N ! shared;as< -+ 5(break sticks),13
\ —+.5 (break sticks)gyqg - " *
“s 4.5 (lesson succeeds),15

&
¥ Summary

>

YV V VYV V

Y

Structured prediction is easy if you can do argmax
search (esp. loss-augmented!)

Label-bias can kill you, so iterate (Searn/Dagger)
Stochastic worlds modeled by MDPs
IRL is all about learning reward functions

IRL has fewer assumptions
> More general
> Less likely to work on easy problems

We're a long way from a complete solution
Hal's wager: we can learn pretty much anything

Thanks! Questions?

References

See also:

http://www.cs.utah.edu/~suresh/mediawiki/index.php/MLRG

http://braque.cc/ShowChannel?handle=P5BVAC34

Other good stuff

>

Reinforcement learning for mapping instructions to actions. S.R.K. Branavan, H. Chen, L. Zettlemoyer and R.
Barzilay. ACL, 2009.

Driving semantic parsing from the world's response. J. Clarke, D. Goldwasser, M.-W. Chang, D. Roth. CoNLL 2010.
New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron.
M.Collins and N. Duffy. ACL 2002.

Unsupervised Search-based Structured Prediction. H. Daumé IIl. ICML 2009.

Training structural SVMs when exact inference is intractable. T. Finley and T. Joachims. ICML, 2008.

Structured learning with approximate inference. A. Kulesza and F. Pereira. NIPS, 2007.

Conditional random fields: Probabilistic models for segmenting and labeling sequence data. J. Lafferty, A. McCallum,
F. Pereira. ICML 2001.

Structure compilation: trading structure for features. P. Liang, H. Daume, D. Klein. ICML 2008.
Learning semantic correspondences with less supervision. P. Liang, M. Jordan and D. Klein. ACL, 2009.
Generalization Bounds and Consistency for Structured Labeling. D. McAllester. In Predicting Structured Data, 2007.

Maximum entropy Markov models for information extraction and segmentation. A. McCallum, D. Freitag, F. Pereira.
ICML 2000.

FACTORIE: Efficient Probabilistic Programming for Relational Factor Graphs via Imperative Declarations of Structure,

Inference and Learning. A. McCallum, K. Rohanemanesh, M. Wick, K. Schultz, S. Singh. NIPS Workshop on
Probabilistic Programming, 2008

Learning efficiently with approximate inference via dual losses. O. Meshi, D. Sontag, T. Jaakkola, A. Globerson.
ICML 2010.

Learning and inference over constrained output. V. Punyakanok, D. Roth, W. Yih, D. Zimak. IJCAI, 2005.

Boosting Structured Prediction for Imitation Learning. N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt. NIPS 2007.
Efficient Reductions for Imitation Learning. S. Ross and J. Bagnell. AISTATS, 2010.

Kernel Dependency Estimation. J. Weston, O. Chapelle, A. Elisseeff, B. Schoelkopf and V. Vapnik. NIPS 2002.

® Stuff we talked about explicitly

Apprenticeship learning via inverse reinforcement learning, P. Abbeel and A. Ng. ICML, 2004.
Incremental parsing with the Perceptron algorithm. M. Collins and B. Roark. ACL 2004.

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. M.
Collins. EMNLP 2002.

Search-based Structured Prediction. H. Daumé IlI, J. Langford and D. Marcu. Machine Learning, 2009.

Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction. H. Daumé Ill and D.
Marcu. ICML, 2005.

An End-to-end Discriminative Approach to Machine Translation. P. Liang, A. Bouchard-Cété, D. Klein, B. Taskar.
ACL 2006.

Statistical Decision-Tree Models for Parsing. D. Magerman. ACL 1995.

Training Parsers by Inverse Reinforcement Learning. G. Neu and Cs. Szepesvdri. Machine Learning 77, 2009.
Algorithms for inverse reinforcement learning, A. Ng and A. Russell. ICML, 2000.

(Online) Subgradient Methods for Structured Prediction. N. Ratliff, J. Bagnell, and M. Zinkevich. AlStats 2007.
Maximum margin planning. N. Ratliff, J. Bagnell and M. Zinkevich. ICML, 2006.

Learning to search: Functional gradient techniques for imitation learning. N. Ratliff, D. Silver, and J. Bagnell.
Autonomous Robots, Vol. 27, No. 1, July, 2009.

Reduction of Imitation Learning to No-Regret Online Learning. S. Ross, G. Gordon and J. Bagnell. AlStats 2011.
Max-Margin Markov Networks. B. Taskar, C. Guestrin, V. Chatalbashev and D. Koller. JMLR 2005.

Large Margin Methods for Structured and Interdependent Output Variables. |. Tsochantaridis, T. Joachims, T.
Hofmann, and Y. Altun. JMLR 2005.

Learning Linear Ranking Functions for Beam Search with Application to Planning. Y. Xu, A. Fern, and S. Yoon.
JMLR 2009.

Maximum Entropy Inverse Reinforcement Learning. B. Ziebart, A. Maas, J. Bagnell, and A. Dey. AAAI 2008.

