Computational Linguistics I

HW04: CKY and Treebanks

Hand in at: http://www.cs.utah.edu/~hal/handin.pl?course=cmsc723. Remember that only PDF submissions are accepted. We encourage using IAT_EX to produce your writeups. See hw00.tex for an example of how to do so. You can make a .pdf out of the .tex by running "pdflatex hw00.tex".

1 Chart Parsing

Consider the following grammar (a variant of the grammar from the previous homework):

a.	S	-> NP VP 7	declarative sentence
b.	S	-> VP %	command
c.	NP	-> Det Nbar %	simple NP with specifier
d.	NP	-> Nbar %	unspecified NP
e.	NP	-> NP PP %	% NP with adjunct
f.	Nbar	-> Noun %	🕻 simple noun
g.	Nbar	-> Nbar Noun	noun-noun modification
h.	PP	-> Prep NP %	🖁 standard PPs
i.	VP	-> VP PP %	adjuncts
j.	VP	-> Verb NP %	<pre>verb with complement (object)</pre>
k.	VP	-> Verb %	verb without complement
1.	Det	-> an	
m.	Noun	-> time flies a	arrow
n.	Prep	-> like	
ο.	Verb	-> time flies]	ike

Big fat warning: You'll note that this grammar is NOT binarized! This means that you'll need to be able to handle unary rules!!!

Construct the *complete* chart for parsing " $_0$ times $_1$ flies $_2$ like $_3$ an $_4$ arrow $_5$ " using the above grammar. I've done part of the very first step, but you should do the rest.

• Phrases of length 1:

- (0,1): Noun[m], Verb[o], ???
- (1,2): Noun[m], Verb[o], ???
- -(2,3): Verb[o], ???
- -(3,4):???
- -(4,5):???
- Phrases of length 2:

-(3,5): NP[c,4], ???

You do the rest, as well as the "???"s above, which may contain stuff and also may not. The notation "X[a,3]" means that you derived something of type "X" using rule "a" and the split point was 3. If you can derive the same thing in multiple ways, write it as $X[a,3]^4$, meaning that you could derive it four ways. (In practice, you would store backpointers, but we'll not do that here.)

How many full-sentence parses did you find for this sentence?

2 Treebanking

Extract a *probabilistic* context free grammar from the following treebank, complete with rule probabilities. You do not need to smooth.

