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Abstract

We introduce a natural generalization of sub-
modular set cover and exact active learning
with a finite hypothesis class (query learn-
ing). We call this new problem interactive
submodular set cover. Applications include
advertising in social networks with hidden in-
formation. We give an approximation guar-
antee for a novel greedy algorithm and give
a hardness of approximation result which
matches up to constant factors. We also dis-
cuss negative results for simpler approaches
and present encouraging early experimental
results.

1. Introduction

As a motivating example, we consider viral marketing
in a social network. In the standard version of the
problem, the goal is to send advertisements to influ-
ential members of a social network such that by send-
ing advertisements to only a few people our message
spreads to a large portion of the network. Previous
work (Kempe et al., 2005; 2003) has shown that, for
many models of influence, the influence of a set of
nodes can be modelled as a submodular set function.
Therefore, selecting a small set of nodes with maximal
influence can be posed as a submodular function max-
imization problem. The related problem of selecting a
minimal set of nodes to achieve a desired influence is
a submodular set cover problem. Both of these prob-
lems can be approximately solved via a simple greedy
approximation algorithm.

Consider a variation of this problem in which the goal
is not to send advertisements to people that are influ-
ential in the entire social network but rather to peo-
ple that are influential in a specific target group. For
example, our target group could be people that like
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snowboarding or people that listen to jazz music. If
the members of the target group are unknown and we
have no way of learning the members of the target
group, there is little we can do except assume every
member of the social network is a member of the tar-
get group. However, if we assume the group has some
known structure and that we receive feedback from
sending advertisements (e.g. in the form of ad clicks
or survey responses), it may be possible to simulta-
neously discover the members of the group and find
people that are influential in the group.

We call problems like this learning and covering prob-
lems. In our example, the learning aspect of the prob-
lem is discovering the members of the target group
(the people that like snowboarding), and the covering
aspect of the problem is to select a small set of peo-
ple that achieve a desired level of influence in the tar-
get group (the people to target with advertisements).
Other applications have similar structure. For exam-
ple, we may want to select a small set of representative
documents about a topic of interest (e.g. about linear
algebra). If we do not initially know topic labels for
documents, this is a learning and covering problem.

We propose a new problem called interactive submodu-
lar set cover that can be used to model many learning
and covering problems. Besides addressing interest-
ing new applications, interactive submodular set cover
directly generalizes submodular set cover and exact
active learning with a finite hypothesis class (query
learning) giving new insight into many previous the-
oretical results. We derive and analyze a new algo-
rithm that is guaranteed to perform approximately as
well as any other algorithm. Our algorithm considers
simultaneously the learning and covering parts of the
problem. It is tempting to try to treat these two parts
of the problem separately for example by first solving
the learning problem and then solving the covering
problem. We prove this approach and other simple
approaches may perform much worse than the opti-
mal algorithm. Some proofs are omitted for space but
are in the technical report (Guillory & Bilmes, 2010).
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2. Background

2.1. Submodular Set Cover

A submodular function is a set function satisfying a
natural diminishing returns property. We call a set
function F defined over a ground set V submodular iff
for all A ⊆ B ⊆ V and v ∈ V \B

F (A+ v)− F (A) ≥ F (B + v)− F (B) (1)

In other words, adding an element to A, a subset of B,
results in a larger gain than adding the same element
to B. F is called modular if Equation 1 holds with
equality. F is monotone non-decreasing if for all A ⊆
B ⊆ V , F (A) ≤ F (B).

In the submodular set cover problem the goal is to
find a set S ⊆ V minimizing a modular cost function
c(S) =

∑
s∈S c(s) subject to the constraint F (S) =

F (V ) for a monotone non-decreasing submodular F .

This problem is closely related to the problem of sub-
modular function maximization under a modular cost
constraint c(S) < k for a constant k. A number of in-
teresting real world applications can be posed as sub-
modular set cover or submodular function maximiza-
tion problems including influence maximization in so-
cial networks (Kempe et al., 2003), sensor placement
and experiment design (Krause et al., 2008), and doc-
ument summarization (Lin & Bilmes, 2010). In the
sensor placement problem, for example, the ground set
V corresponds to a set of possible locations. An ob-
jective function F (S) measures the coverage achieved
by deploying sensors to the locations corresponding to
S ⊆ V . For many reasonable definitions of coverage,
F (S) turns out to be submodular.

Submodular set cover is a generalization of the set
cover problem, and, as is the case for set cover,
a greedy algorithm has approximation guarantees
(Wolsey, 1982). In particular, if F is integer valued,
then the greedy solution is within H(maxv∈V F ({v}))
of the optimal solution where H(k) is the kth harmonic
number. Up to lower order terms, this matches the
hardness of approximation lower bound for set cover
(Feige, 1998). We note a variation of submodular set
cover uses a constraint F (S) ≥ α for a fixed threshold
α. It can be shown this variation is equivalent (Krause
et al., 2008; Narayanan, 1997), so without loss of gen-
erality or specificity, we use this variation.

2.2. Exact Active Learning

In the exact active learning problem we have a known
finite hypothesis class given by a set of objects H,
and we want to identify an initially unknown target

hypothesis h∗ ∈ H. We identify h∗ by asking ques-
tions. Define Q to be the known set of all possible
questions. A question q maps an object h to a set
of valid responses q(h) ⊆ R with q(h) 6= ∅ where
R ,

⋃
q∈Q,h∈H q(h) is the set of all possible responses.

We know the mapping for each q (i.e. we know q(h)
for every q and h). Asking q reveals some element
r ∈ q(h∗) which may be chosen adversarially (cho-
sen to impede the learning algorithm). Each question
q ∈ Q has a positive cost c(q) defined by the modular
cost function c.

The goal of active learning is to ask a sequence of ques-
tions with small total cost that identifies h∗. By iden-
tifying h∗, we mean that for every h 6= h∗ we have
received some response r to a question q such that
r /∈ q(h). Questions are chosen sequentially so that
the response from a previous question can be used to
decide which question to ask next.

In a typical exact learning problem, H is a set of differ-
ent classifiers and h∗ is a unique zero-error classifier.
Questions in Q can, for example, correspond to la-
bel (membership) queries for data points. If we have
a fixed data set consisting of data points xi, we can
create a question qi corresponding to each xi and set
qi(h) = {h(xi)}. We note that we assume that there
is no noise in responses and that the hypothesis class
is correct (h∗ ∈ H). Questions can also correspond to
more complicated queries. For example, a question can
ask if any points in a set are positively labelled. The
setting we have described allows for mixing arbitrary
types of queries with different costs.

For a set of question-response pairs Ŝ, define the ver-
sion space V (Ŝ) to be the subset of H consistent with
Ŝ. More formally V (Ŝ) , {h ∈ H : ∀(q, r) ∈ Ŝ, r ∈
q(h)}. In terms of the version space, the goal of exact
active learning is to ask a sequence of questions such
that |V (Ŝ)| = 1.

Building on previous work (Balcázar et al., 2007), Han-
neke (2006) showed that a simple greedy active learn-
ing strategy is approximately optimal in the setting we
have described. The greedy strategy selects the ques-
tion which relative to cost distinguishes the greatest
number of hypotheses from h∗. Hanneke (2006) shows
this strategy incurs no more than ln |H| times the cost
of any other question asking strategy.

3. Problem Statement

We use notation similar to the exact active learning
problem we described in the previous section. Assume
we have a finite hypothesis class H containing an un-
known target hypothesis h∗ ∈ H. We again assume
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there is a finite set of questions Q, a question q maps
each object h to a set of valid responses q(h) ⊆ R with
q(h) 6= ∅, and each question q ∈ Q has a positive cost
c(q) defined by the modular cost function c. We also
again assume that we know the mapping for each q
(i.e. we know q(h) for every q and h). Asking q re-
veals some adversarially chosen element r ∈ q(h∗). In
the exact active learning problem the goal is to iden-
tify h∗ through questions. In this work we consider a
generalization in which the goal is instead to satisfy a
submodular constraint that depends on h∗.

We assume that for each object h there is a corre-
sponding monotone non-decreasing submodular func-
tion Fh defined over subsets of Q×R (sets of question-
response pairs). We repeatedly ask a question q̂i and
receive a response r̂i. Let the sequence of questions
be Q̂ = (q̂1, q̂2, . . . ) and sequence of responses be
R̂ = (r̂1, r̂2, . . . ). Define Ŝ =

⋃
q̂i∈Q̂{(q̂i, r̂i)} to be

the final set of question-response pairs corresponding
to these sequences. Our goal is to ask a sequence of
questions with minimal total cost c(Q̂) so Fh∗(Ŝ) ≥ α
for some threshold α without knowing h∗ beforehand.
We call this interactive submodular set cover.

Interactive Submodular Set Cover
Given:

• Hypothesis class H containing an unknown
target h∗

• Query set Q and response set R with known
q(h) ⊆ R for every q ∈ Q, h ∈ H

• Modular query cost function c defined over Q
• Submodular monotone non-decreasing objec-

tive functions Fh for h ∈ H defined over Q×R
• Objective threshold α

Repeat: Ask a question q̂i ∈ Q and receive a re-
sponse r̂i ∈ q̂i(h∗)
Until: Fh∗(Ŝ) ≥ α where Ŝ =

⋃
i{(q̂i, r̂i)}

Objective: Minimize
∑
i c(q̂i)

Note that although we know the hypothesis class H
and the corresponding objective functions Fh, we do
not initially know h∗. Information about h∗ is only re-
vealed as we ask questions and receive responses to
questions. Responses to previous questions can be
used to decide which question to ask next, so in this
way the problem is “interactive.” Furthermore, the ob-
jective function for each hypothesis Fh is defined over
sets of question-response pairs (as opposed to, say, sets
of questions), so when asking a new question we can-
not predict how the value of Fh will change until after
we receive a response. The only restriction on the re-
sponse we receive is that it must be consistent with
the initially unknown target h∗. It is this uncertainty

about h∗ and the feedback we receive from questions
that allows us to model learning and covering.

3.1. Connection to Submodular Set Cover

If we know h∗ (e.g. if |H| = 1) and we assume
|q(h)| = 1 ∀q ∈ Q, h ∈ H (i.e. that there is only
one valid response to every question), our problem re-
duces exactly to the standard submodular set cover
problem. Under these assumptions, we can compute
Fh∗(Ŝ) for any set of questions without actually ask-
ing these questions. Krause et al. (2008) study a non-
interactive version of interactive submodular set cover
in which |q(h)| = 1 ∀q ∈ Q, h ∈ H and the entire se-
quence of questions must be chosen before receiving
any responses. This restricted version of the problem
can also be reduced to standard submodular set cover
Krause et al. (2008).

3.2. Connection to Active Learning

Define
Fh(Ŝ) , F (Ŝ) = |H \ V (Ŝ)|

where V (Ŝ) is again the version space (the set of hy-
potheses consistent with Ŝ). This objective is the num-
ber of hypotheses eliminated from the version space by
Ŝ and is submodular and monotone non-decreasing.

For this objective, if we set α = |H| − 1 we get the
standard exact active learning problem: our goal is to
identify h∗ using a set of questions with small total
cost. Note that in this case the objective Fh does not
actually depend on h (i.e. Fh = Fh′ for all h, h′ ∈ H)
but the problem still differs from standard submodu-
lar set cover because Fh(Ŝ) is defined over question-
response pairs.

We can also model other variations of active learning;
for example, instead of requiring |V (Ŝ)| = 1, with an
appropriate Fh we can require that every h ∈ V (Ŝ)
has low error with respect to h∗.

3.3. Connection to Adaptive Submodularity

In concurrent work, Golovin & Krause (2010) show
results similar to ours for a different but related class
of problems which also involve interactive (i.e. sequen-
tial, adaptive) optimization of submodular functions.
What Golovin & Krause call realizations correspond to
hypotheses in our work while items and states corre-
spond to queries and responses respectively. Golovin &
Krause consider both average-case and worst-case set-
tings and both maximization and min-cost coverage
problems. In contrast, we only consider worst-case,
min-cost coverage problems. In this sense our results
are less general.
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Figure 1. A cartoon example social network.

However, in other ways our results are more general.
The main greedy approximation guarantees shown by
Golovin & Krause require that the problem is adap-
tive submodular ; adaptive submodularity depends not
only on the objective but also on the set of possible re-
alizations and the probability distribution over these
realizations. In contrast we only require that for a
fixed hypothesis the objective is submodular. Golovin
& Krause call this pointwise submodularity. Pointwise
submodularity does not in general imply adaptive sub-
modularity (see the clustered failure model discussed
by Golovin & Krause).

Some other previous work also considers interactive
versions of covering problems in the average-case
(Asadpour et al., 2008; Goemans & Vondrák, 2006).

4. Example

In the advertising application we described in the in-
troduction, the target hypothesis h∗ corresponds to
the group of people we want to target with adver-
tisements (e.g. the people that like snowboarding),
and the hypothesis class H encodes our prior knowl-
edge about h∗. For example, if we know the target
group forms a small dense subgraph in the social net-
work, then the hypothesis class H would be the set of
all small dense subgraphs in the social network. The
query set Q and response set R correspond to advertis-
ing actions and feedback respectively, and finally the
objective function Fh measures advertising coverage
within the group corresponding to h.

To make the discussion concrete, assume the advertiser
sends a single ad at a time and that after a person is
sent an ad the advertiser receives a binary response in-
dicating if that person is in the target group (i.e. likes
snowboarding). Let qi correspond to sending an ad to
user i (i.e. node i), and qi(h) = {1} if user i is in group
h and qi(h) = {0} otherwise. For our coverage goal, as-
sume the advertiser wants to ensure that every person
in the target group either receives an ad or has a friend
that receives an ad. We say a node is “covered” if it
has received an ad or has a neighbor that has received

an ad. This is a variation of the minimum dominating
set problem, and we use the following objective

Fh(Ŝ) ,∑
v∈Vh

I
(
v ∈ VŜ or ∃s ∈ VŜ : (v, s) ∈ E

)
+ |V \ Vh|

where V and E are the nodes and edges in the social
network, Vh is the set of nodes in group h, and VŜ is
the set of nodes corresponding to ads we have sent.
With this objective Fh∗(Ŝ) = |V | iff we have achieved
the stated coverage goal. This objective is also sub-
modular and monotone non-decreasing.

Figure 1 shows a cartoon social network. For this ex-
ample, assume the advertiser knows the target group
is one of the four clusters shown (marked A, B, C, and
D) but does not know which. This is our hypothesis
class H. The node marked v is initially very useful for
learning the members of the target group: if we send
an ad to this node, no matter what response we receive
we are guaranteed to eliminate two of the four clusters
(either A and B or C and D). However, this node has
only a degree of 2 and therefore sending an ad to this
node does not cover very many nodes. On the other
hand, the nodes marked x and w are connected to ev-
ery node in clusters B and D respectively. x (resp.
w) is therefore very useful for achieving the coverage
objective if the target group is B (resp. D). An algo-
rithm for learning and covering must choose between
actions more beneficial for learning vs. actions more
beneficial for covering (although sometimes an action
can be beneficial for both to a certain degree). The
interplay between learning and covering is similar to
the exploration-exploitation trade-off in reinforcement
learning. In this example an optimal strategy is to end
an ad to v and then cover the remaining two clusters
using two ads for a worst case cost of 3.

5. Greedy Approximation Guarantee

We are interested in approximately optimal polyno-
mial time algorithms for the interactive submodular
set cover problem. We call a question asking strat-
egy correct if it always asks a sequence of questions
such that Fh∗(Ŝ) ≥ α where Ŝ is again the final set
of question-response pairs. A necessary and sufficient
condition to ensure Fh∗(Ŝ) ≥ α for worst case choice
of h∗ is to ensure minh∈V (Ŝ) Fh(Ŝ) ≥ α where V (Ŝ) is
the version space. Then a simple stopping condition
which ensures a question asking strategy is correct is to
continue asking questions until minh∈V (Ŝ) Fh(Ŝ) ≥ α.
We call a question asking strategy approximately op-
timal if it is correct and the worst case cost incurred
by the strategy is not much worse than the worst case
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Algorithm 1 Worst Case Greedy

1: Ĥ ⇐ H
2: Ŝ ⇐ ∅
3: while F̄α(Ŝ) < α do
4: q̂ ⇐ argmaxqi∈Q minh∈V (Ŝ) minri∈qi(h)(F̄α(Ŝ +

(qi, ri))− F̄α(Ŝ))/c(qi)
5: Ask q̂ and receive response r̂
6: Ŝ ⇐ Ŝ + (q̂, r̂)
7: end while

cost of any other strategy.

As discussed informally in the previous section, it is
important for a question asking strategy to balance be-
tween learning (identifying h∗) and covering (increas-
ing Fh∗). Ignoring either aspect of the problem is in
general suboptimal (we show this formally in Section
6). We propose a reduction which converts the prob-
lem over many objective functions Fh into a problem
over a single objective function F̄α that encodes the
trade-off between learning and covering. We can then
use a greedy algorithm to maximize this single objec-
tive, and this turns out to overcome the shortcomings
of simpler approaches. This reduction is inspired by
the reduction used by Krause et al. (2008) in the non-
interactive setting to convert multiple covering con-
straints into a single covering constraint.

Define

F̄α(Ŝ) , (1/|H|)(
∑

h∈V (Ŝ)

min(α, Fh(Ŝ)) +α|H \ V (Ŝ)|)

F̄α(Ŝ) ≥ α iff Fh(Ŝ) ≥ α for all h ∈ V (Ŝ) so a ques-
tion asking strategy is correct iff it satisfies F̄α(Ŝ) ≥ α.
This objective balances the value of learning and cov-
ering. The sum over h ∈ V (Ŝ) measures progress to-
wards satisfying the covering constraint for hypotheses
h in the current version space (covering). The second
term α|H \ V (Ŝ)| measures progress towards identify-
ing h∗ through reduction in version space size (learn-
ing). Note that the objective does not make a hard
distinction between learning actions and covering ac-
tions. In fact, the objective will prefer actions that
both increase Fh(Ŝ) for h ∈ V (Ŝ) and decrease the
size of V (Ŝ). Crucially, F̄α retains submodularity.
Lemma 1. F̄α is submodular and monotone non-
decreasing when every Fh is submodular and monotone
non-decreasing.

Algorithm 1 shows the worst case greedy algorithm
which at each step picks the question qi that maximizes
the worst case gain of F̄α

min
h∈V (Ŝ)

min
ri∈qi(h)

(F̄α(Ŝ + (qi, ri))− F̄α(Ŝ))/c(qi)

We now argue that Algorithm 1 is an approxi-
mately optimal algorithm for interactive submodular
set cover. Note that although it is a simple greedy al-
gorithm over a single submodular objective, the stan-
dard submodular set cover analysis doesn’t apply: the
objective function is defined over question-response
pairs, and the algorithm cannot predict the actual ob-
jective function gain until after selecting and commit-
ing to a question and receiving a response. We use
an Extended Teaching Dimension style analysis (Han-
neke, 2006) inspired by previous work in query learn-
ing. We are the first to our knowledge to use this kind
of proof for a submodular optimization problem.

Define an oracle (teacher) T ∈ RQ to be a function
mapping questions to responses. As a short hand, for
a sequence of questions Q̂ define

T (Q̂) ,
⋃
q̂i∈Q̂

{(q̂i, T (q̂i))}

T (Q̂) is the set of question-response pairs received
when T is used to answer the questions in Q̂. We now
define a quantity analogous to the General Identifica-
tion Cost for exact active learning (Hanneke, 2006).
Define the General Cover Cost, GCC

GCC , max
T∈RQ

( min
Q̂:F̄α(T (Q̂))≥α

c(Q̂))

GCC depends on H, Q, α, c, and the objective func-
tions Fh, but for simplicity of notation this dependence
is suppressed. GCC can be viewed as the cost of sat-
isfying F̄α(T (Q̂)) ≥ α for worst case choice of T where
the choice of T is known to the algorithm selecting Q̂.
Here the worst case choice of T is over all mappings be-
tween Q and R. There is no restriction that T answer
questions in a manner consistent with any hypothesis
h ∈ H.

We first show that GCC is a lower bound on the op-
timal worst case cost of satisfying Fh∗(Ŝ) ≥ α.

Lemma 2. If there is a correct question asking strat-
egy for satisfying Fh∗(Ŝ) ≥ α with worst case cost C∗

then GCC ≤ C∗.

Proof. Assume the lemma is false and there is a correct
question asking strategy with worst case cost C∗ and
GCC > C∗. Using this assumption and the definition
of GCC, there is some oracle T ∗ such that

min
Q̂:F̄α(T∗(Q̂))≥α

c(Q̂) = GCC > C∗

When we use T ∗ to answer questions, any sequence
of questions Q̂ with total cost less than or equal to
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C∗ must have F̄α(Ŝ) < α. F̄α(Ŝ) < α in turn im-
plies Fh∗(Ŝ) < α for some target hypothesis choice
h∗ ∈ V (Ŝ). This contradicts the assumption there is
a correct strategy with worst case cost C∗.

We now establish that when GCC is small, there must
be a question which increases F̄α.
Lemma 3. For any initial set of questions-response
pairs Ŝ, there must be a question q ∈ Q such that

min
h∈V (Ŝ)

min
r∈q(h)

F̄α(Ŝ + (q, r))− F̄α(Ŝ) ≥

c(q)(α− F̄α(Ŝ))/GCC

Proof. Assume the lemma is false and for every ques-
tion q there is some h ∈ V (Ŝ) and r ∈ q(h) such that

F̄α(Ŝ + (q, r))− F̄α(Ŝ) < c(q)(α− F̄α(Ŝ))/GCC

Define an oracle T ′ which answers every question with
a response satisfying this inequality. For example, one
such T ′ is

T ′(q) , argminr F̄α(Ŝ + (q, r))− F̄α(Ŝ)

By the definition of GCC

min
Q̂:F̄α(T ′(Q̂))≥α

c(Q̂)) ≤ max
T∈RQ

( min
Q̂:F̄α(T (Q̂))≥α

c(Q̂)) = GCC

so there must be a sequence of questions Q̂ with c(Q̂) ≤
GCC such that F̄α(T ′(Q̂)) ≥ α. Because F̄α is mono-
tone non-decreasing, we also know F̄α(T ′(Q̂)∪ Ŝ) ≥ α.
Using the submodularity of F̄α,

F̄α(T ′(Q̂) ∪ Ŝ)

≤ F̄α(Ŝ) +
∑
q∈Q̂

(F̄α(Ŝ ∪ {(q, T (q))})− F̄α(Ŝ))

< F̄α(Ŝ) +
∑
q∈Q̂

c(q)(α− F̄α(Ŝ))/GCC ≤ α

which is a contradiction.

We can now show approximate optimality.
Theorem 1. Assume that α is an integer and, for any
h ∈ H, Fh is an integral monotone non-decreasing
submodular function. Algorithm 1 incurs at most
GCC(1 + ln(αn)) cost.

Proof. Let q̂i be the question asked on the ith iter-
ation, Ŝi be the set of question-response pairs after
asking q̂i and Ci be

∑
j≤i c(q̂j). By Lemma 3

F̄α(Ŝi)− F̄α(Ŝi−1) ≥ c(q̂i)(α− F̄α(Ŝi−1))/GCC

After some algebra we get

α− F̄α(Ŝi) ≤ (α− F̄α(Ŝi−1))(1− c(q̂i)/GCC)

Now using 1− x < e−x

α−F̄α(Ŝi) ≤ (α−F̄α(Ŝi−1))e−c(q̂i)/GCC = αe−Ci/GCC

We have shown that the gap α− F̄α(Ŝi) decreases ex-
ponentially fast with the cost of the questions asked.
The remainder of the proof proceeds by showing that
(1) we can decrease the gap to 1/|H| using questions
with at most GCC ln(α|H|) cost and (2) we can de-
crease the gap from 1/|H| to 0 with one question with
cost at most GCC.

Let j is the largest integer such that α − F̄α(Ŝj) ≥
1/|H| holds. Then

1/|H| ≤ αe−Cj/GCC

Solving for Cj we get Cj ≤ GCC ln(α|H|). This com-
pletes (1).

By Lemma 3, F̄α(Ŝi) < F̄α(Ŝi+1) (we strictly increase
the objective on each iteration). Because α is an in-
teger and for every h Fh is an integral function, we
can conclude F̄α(Ŝi) < F̄α(Ŝi+1) + 1/|H|. Then qj+1

will be the final question asked. By Lemma 3, qj+1

can have cost no greater than GCC. This completes
(2). We can finally conclude the cost incurred by the
greedy algorithm is at most GCC(1 + ln(α|H|))

By combining Theorem 1 and Lemma 2 we get

Corollary 1. For integer α and integral monotone
non-decreasing submodular Fh, the worst case cost of
Algorithm 1 is within 1+ln(α|H|) of that of any other
correct question asking strategy

We have shown a result for integer valued α and ob-
jective functions. We speculate that for more general
non-integer objectives it should be possible to give
results similar to those for standard submodular set
cover (Wolsey, 1982). These approximation bounds
typically add an additional normalization term.

6. Negative Results

The method we propose for interactive submodular set
cover simultaneously solves the learning problem and
covering problem in parallel, only solving the learning
problem to the extent that it helps solve the covering
problem. A simpler strategy is to solve these two prob-
lems in series (i.e. first identify h∗ using the standard
greedy query learning algorithm and second solve the
submodular set cover problem for Fh∗ using the stan-
dard greedy set cover algorithm). We call this the
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Learn then Cover approach. We can show that this
approach and in fact any approach that identifies h∗

exactly can perform very poorly. Therefore it is im-
portant to consider the learning problem and covering
problem simultaneously.

Theorem 2. Assume Fh is integral for all h and
that α is an integer. Any algorithm that ex-
actly identifies h∗ has approximation ratio at least
Ω(|H|maxi c(qi)/mini c(qi)).

Another simple approach is to ignore feedback and
solve the covering problem for all h ∈ H. We call
this the Cover All method. This method is an ex-
ample of a non-adaptive method: a non-adaptive (i.e.
non interactive) method is any method that does not
use responses to previous questions in deciding which
question to ask next. The adaptivity gap (Dean et al.,
2004) for a problem characterizes how much worse the
best non-adaptive method can perform as compared
to to the best adaptive method. For interactive sub-
modular set cover we define the adaptivity gap to be
the maximum ratio between the cost of the optimal
non-adaptive strategy and the optimal adaptive strat-
egy. With this definition, we can show that, in contrast
to related problems (Asadpour et al., 2008) where the
adaptivity gap is a constant, the adaptivity gap for
interactive submodular set cover is quite large.

Theorem 3. The adaptivity gap for interactive sub-
modular set cover is at least Ω(|H|/ ln |H|).

This result shows, even if we optimally solve the sub-
modular set cover problem, the Cover All method
can incur exponentially greater cost than the optimal
adaptive strategy.

We can finally also show that the 1+ln(α|H|) approx-
imation factor achieved by the method we propose is
in fact the best possible up to the constant factor as-
suming there are no slightly superpolynomial time al-
gorithms for NP. The result and proof are very similar
to those for the non-interactive setting (Krause et al.,
2008).

Theorem 4. Interactive submodular set cover can-
not be approximated within a factor of (1 −
ε) max(ln |H|, lnα) in polynomial time for any ε > 0
unless NP has nO(log logn) time deterministic algo-
rithms.

The approximation factor we have shown for the
greedy algorithm is

1+ln(α|H|) = 1+lnα+ln |H| < 1+2 max(ln |H|, lnα)

so our hardness of approximation result matches up to
the constant factor and lower order term.

7. Experiments

We tested our method on the interactive dominating
set problem described in Section 4. In this problem,
we are given a graph and H is a set of possibly over-
lapping clusters of nodes. The goal is to find a small
set of nodes which forms a dominating set of an ini-
tially unknown target group h∗ ∈ H. After select-
ing each node, we receive feedback indicating if the
selected node is in the target group. Our proposed
method (Simultaneous Learning and Covering) simul-
taneously learns about the target group h∗ and finds
a dominating set for it. We compare to two base-
lines: a method which first exactly identifies h∗ and
then finds a dominating set for the target group (Learn
then Cover) and a method which simply ignores feed-
back and finds a dominating set for the union of all
clusters (Cover All). Note that Theorem 2 and The-
orem 3 apply to Learn then Cover and Cover All re-
spectively, so these methods do not have strong theo-
retical guarantees. However, we might hope however
that for reasonable real world problems they perform
well. We use real world network data sets with sim-
ple synthetic hypothesis classes designed to illustrate
differences between the methods. The networks are
from Jure Leskovec’s collection of datasets available at
http://snap.stanford.edu/data/index.html. We
convert all the graphs into undirected graphs and re-
move self edges.

Table 1 shows our results. Each reported result is the
average number of queries over 100 trials. Bolded re-
sults are the best methods for each setting with multi-
ple results bolded when differences are not statistically
significant (within p = .01 with a paired t-test). In the
first set of results (Clusters), we create H by using the
METIS graph partition package 4 separate times par-
titioning the graph into 10, 20, 30, and 40 clusters. H
is the combined set of 100 clusters, and these clusters
overlap since they are taken from 4 separate parti-
tions of the graph. The target h∗ is chosen at random
from H. With this hypothesis class, we’ve found that
there is very little difference between the Simultane-
ous Learning and Covering and the Learn then Cover
methods. The Cover All method performs significantly
worse because without the benefit of feedback it must
find a dominating set of the entire graph.

In the second set of results, we use a hypothesis class
designed to make learning difficult (Noisy Clusters).
We start with H generated as before. We then add
to H 100 additional hypotheses which are each very
similar to h∗. Each of these hypotheses consists of
the target group h∗ with a random member removed.
H is then the combined set of the 100 original hy-

http://snap.stanford.edu/data/index.html
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Table 1. Average number of queries required to find a dominating set in the target group.
Data Set / Hypothesis Class Simultaneous Learning and Covering Learn then Cover Cover All
Enron / Clusters 156.64 161.81 3091.00
Physics / Clusters 175.97 177.88 3340.00
Physics Theory / Clusters 172.38 175.12 3170.00
Epinions / Clusters 774.81 779.23 15777.00
Slashdot / Clusters 709.30 715.39 15383.00
Enron / Noisy Clusters 179.00 231.03 3091.00
Physics / Noisy Clusters 186.13 225.02 3340.00
Physics Theory / Noisy Clusters 160.62 201.24 3170.00
Epinions / Noisy Clusters 788.52 788.06 15777.00
Slashdot / Noisy Clusters 804.87 804.86 15383.00

potheses and these 100 variations of h∗. For this hy-
pothesis class, Learn then Cover performs significantly
worse than our Simultaneous Learning and Covering
method on 3 of the 5 data sets. Learn then Cover
exactly identifies h∗, which is difficult because of the
many hypotheses similar to h∗. Our method learns
about h∗ but only to the extent that it is helpful for
finding a small dominating set. On the other two data
sets Learn then Cover and Simultaneous Learning and
Covering are almost identical. These are larger data
sets, and we’ve found that when the covering problem
requires many more queries than the learning problem,
our method is nearly identical to Learn then Cover.
This makes sense since when α is large compared to
the sum over Fh(Ŝ) the second term in F̄α dominates.

Although we use real world graph data, the hypothesis
classes and target hypotheses we use are very simple
and synthetic, and as such these experiments are pri-
marily meant to provide reasonable examples in sup-
port of our theoretical results.

8. Future Work

We believe there are other interesting applications
which can be posed as interactive submodular set
cover. In some applications it may be difficult to com-
pute F̄α exactly because H may be very large or even
infinite. In these cases, it may be possible to approxi-
mate this function by sampling from H. It’s also im-
portant to consider methods that can handle misspec-
ified hypothesis classes and noise within the learning.
One approach could be to extend agnostic active learn-
ing (Balcan et al., 2006) results to a similar interactive
optimization setting.
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spread of influence through a social network. In KDD,
2003.

Kempe, D., Kleinberg, J., and Tardos, É. Influential nodes
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