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Abstract

We consider the problem of extracting infor-
mative exemplars from a data stream. Ex-
amples of this problem include exemplar-
based clustering and nonparametric inference
such as Gaussian process regression on mas-
sive data sets. We show that these prob-
lems require maximization of a submodular
function that captures the informativeness
of a set of exemplars, over a data stream.
We develop an efficient algorithm, Stream-
Greedy, which is guaranteed to obtain a
constant fraction of the value achieved by the
optimal solution to this NP-hard optimiza-
tion problem. We extensively evaluate our
algorithm on large real-world data sets.

1. Introduction

Modern machine learning is increasingly confronted
with the challenge of very large data sets. The un-
precedented growth in text, video, and image data de-
mands techniques that can effectively learn from large
amounts of data, while still remaining computation-
ally tractable. Streaming algorithms (Gaber et al.,
2005; Domingos & Hulten, 2000; Guha et al., 2003;
Charikar et al., 2003) represent an attractive approach
to handling the data deluge. In this model the learning
system has access to a small fraction of the data set
at any point in time, and cannot necessarily control
the order in which the examples are visited. This is
particularly useful when the data set is too large to fit
in primary memory, or if it is generated in real time
and predictions are needed in a timely fashion.

While computational tractability is critical, powerful
methods are required in order to learn useful mod-
els of complex data. Nonparametric learning meth-
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ods are promising because they can construct complex
decision rules by allowing the data to “speak for it-
self”. They may use complex similarity measures that
capture domain knowledge while still providing more
flexibility than parametric methods. However, non-
parametric techniques are difficult to apply to large
datasets because they typically associate a parame-
ter with every data point, and thus depend on all the
data. Therefore, most algorithms for nonparametric
learning operate in batch mode. To overcome this dif-
ficulty, nonparametric learning methods may be ap-
proximated by specifying a budget: a fixed limit on the
number of examples that are used to make predictions.

In this work, we develop a framework for budgeted
nonparametric learning that can operate in a stream-
ing data environment. In particular, we study sparse
Gaussian process regression and exemplar based clus-
tering under complex, non-metric distance functions,
which both meet the requirements of our framework.
The unifying concept of our approach is submodular-
ity, an intuitive diminishing returns property. When
a nonparametric problem’s objective function satis-
fies this property, we show that a simple algorithm,
StreamGreedy, may be used to choose examples
from a data stream. We use submodularity to prove
strong theoretical guarantees for our algorithm. We
demonstrate our approach with experiments involv-
ing sparse Gaussian Process regression and large scale
exemplar-based clustering of 1.5 million images.

2. Problem statement

We consider the problem of extracting a subset A ⊆ V
of k representative items from a large data set V (which
can, e.g., consist of vectors in Rd or other objects such
as graphs, lists, etc.). Our goal is to maximize a set
function F that quantifies the utility F (A) of any pos-
sible subset A ⊆ V. We give examples of such utility
functions in Sec. 3. Intuitively, in the clustering exam-
ple, F (A) measures, e.g., the reduction in quantization
error when selecting exemplars A as cluster centers. In
Gaussian process (GP) regression, F (A) measures the
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prediction performance when selecting the active set
A. As we show below, many utility functions, such as
those arising in clustering and GP regression, satisfy
submodularity, an intuitive diminishing returns prop-
erty: Adding a cluster center helps more if we have se-
lected few exemplars so far, and less if we have already
selected many exemplars. Formally, a set function F
is said to be submodular, if for all A ⊆ B ⊆ V and
s ∈ V \ B it holds that

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B).

An additional natural assumption is that F is mono-
tonic, i.e., F (A) ≤ F (B) whenever A ⊆ B ⊆ V.

Since the data set V is large, it is not possible to store it
in memory, and we hence can only access a small num-
ber of items at any given time t. Let B1, . . . ,BT , . . .
be a sequence of subsets of V, where Bt is the set of
elements in V that are available to the algorithm at
time t. Typically |Bt| = m � n = |V|. For example,
hardware limitations may require us to read data from
disk, one block Bt of data points at a time.

We only assume that there is a bound ρ, such that for
each element b ∈ V, if b /∈ Bt ∪ · · · ∪ Bt+`, then ` < ρ,
i.e., we have to wait at most ρ steps until b reappears.
This assumption is satisfied, for example, if Bt is a slid-
ing window over the data set (in which case ρ = n), or
V is partitioned into blocks, and the Bt cycle through
these blocks (in which case ρ is n/(mini |Bi|)). Our
goal is to select at each time t a subset At ⊆ At−1∪Bt,
|At| ≤ k, in order to maximize F (AT ) after some num-
ber of iterations T . Thus, at each time t we are allowed
to pick any combination of k items from both the pre-
vious selection At−1 and the available items Bt, and
we would like to maximize the final value F (AT ).

Our streaming assumptions mirror those of Charikar
et al. (2003), in that we assume a finite data set in
which data items may be revisited although the order
is not under our control. For certain submodular ob-
jectives (FV and FC but not FH , see Section 3) we
require the additional assumption that we may access
data items uniformly at random (see Section 4).

Note that even if B1 = · · · = BT = V, i.e., access to
the entire data set is always available, the problem of
choosing a set

A∗ = argmax
|A|≤k

F (A)

maximizing a submodular function F is an NP-hard
optimization problem (Feige, 1998). Hence, we cannot
expect to efficiently find the optimal solution in gen-
eral. The setting where Bt ( V is strictly more general
and thus harder. In this paper, we will develop an effi-

cient approximation algorithm with strong theoretical
guarantees for this problem.

3. Examples of online budgeted learning

In this section, we discuss concrete problem instances
of the streaming budgeted learning problem, and the
corresponding submodular objective functions F .

Active set selection in GPs. Gaussian processes
have been widely used as a powerful tool for non-
parametric regression (Rasmussen & Williams, 2006;
Cressie, 1991). Formally, a Gaussian process (GP) is
a joint probability distribution P (XV) over a (possi-
bly infinite) set of random variables XV indexed by a
set V, with the property that every finite subset XA
for A = {s1, . . . , sk}, A ⊆ V is distributed according
to a multivariate normal distribution, P (XA = xA) =
N (xA;µA,ΣAA), where µA = (M(s1), . . . ,M(sk)) is
the prior mean and

ΣAA =

K(s1, s1) . . . K(s1, sk)
...

...
K(sk, s1) . . . K(sk, sk)


is the prior covariance, parameterized through the pos-
itive definite kernel function K. In GP regression,
each data point s ∈ V is interpreted as a random
variable in a GP. Based on observations XA = xA
of a subset A of variables, the predictive distribution
of a new data point s ∈ V is a normal distribution
P (Xs | XA = xA) = N (µs|A;σ2

s|A), where

µs|A = µs + ΣsAΣ−1
AA(xA − µA) (3.1)

σ2
s|A = σ2

s − ΣsAΣ−1
AAΣAs, (3.2)

and ΣsA = (K(s, s1), . . . ,K(s, sk)) and ΣAs = ΣT
sA.

Computing the predictive distributions according to
(3.1) is expensive, as it requires “inverting” (find-
ing the Cholesky decomposition) of the kernel matrix
ΣAA, which, in general requires Θ(|A|3) floating point
operations. Reducing this computational complexity
(and thereby enabling GP methods for large data sets)
has been subject of much research (see Rasmussen &
Williams 2006).

Most approaches for efficient inference in GPs rely on
choosing a small active set A of data points for mak-
ing predictions. For example, the informative vector
machine (IVM) uses the set A that maximizes the in-
formation gain

FH(A) = H(XV)−H(XV | XA), (3.3)

or, equivalently, the entropy H(XA) of the random
variables associated with the selected data pointsA. It
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can be shown, that this criterion is monotonic and sub-
modular (Seeger, 2004). While efficiently computable,
the IVM criterion FH only depends on the selected
data points, and does not explicitly optimize the pre-
diction error of the non-selected examples V \ A.

An alternative is to choose data points which mini-
mize the prediction accuracy on the non-selected data:
L̂(A) =

∑
s∈V\A(xs − µs|A)2. If the data points V are

drawn from some distribution P (s), then this criterion
can be seen as a sample approximation to the expected
variance reduction,

L̂(A) ≈
∫

P (s)
∫

P (xs | xA)(xs − µs|A)2dsdxs

=
∫

P (s)σ2
s|Adxs = L(A).

It can be shown, that under certain assumptions on
the kernel function, the expected variance reduction

FV (A) = L(∅)− L(A) (3.4)

is a monotonic submodular function.

Exemplar based clustering with complex dis-
tance functions on data streams. In exemplar
clustering problems, the goal is to select a set of ex-
amples from the data set that are representative of
the data set as a whole. Exemplar clustering is par-
ticularly relevant in cases where choosing cluster cen-
ters that are averages of training examples (as in
the k-means algorithm) is inappropriate or impossi-
ble (see Dueck & Frey 2007 for examples). The k-
medoid (Kaufman & Rousseeuw, 1990) approach seeks
to choose exemplars that minimize the average dissim-
ilarity of the data items to their nearest exemplar:

L(A) =
1
|V|

∑
s∈V

min
c∈A

d(xs,xc). (3.5)

This loss function can be transformed to a monotonic
submodular utility function by introducing a phantom
exemplar x0 which may not be removed from the active
set, and defining the utility function

FC(A) = L({x0})− L(A ∪ {x0}). (3.6)

This measures the decrease in the loss associated with
the active set versus the loss associated with just the
phantom exemplar, and maximizing this function is
equivalent to minimizing (3.5). The dissimilarity func-
tion d(x,x′) need only be a positive function of x and
x′, making this approach potentially very powerful.

4. StreamGreedy for budgeted
learning from data streams

If, at every time, full access to the entire data set V
is available, a simple approach to selecting the subset

Algorithm 1 StreamGreedy

Initialize active set A0 = ∅; Bound ρ on wait time
for t = 1 : k do

Set st = argmaxs∈Bt
F (At−1 ∪ {s})

Set At ← At−1 ∪ {st}
end for
Set NI = 0
while NI ≤ ρ do

Set (s′, s) = argmax
s′∈At−1,s∈At−1∪Bt

F (At−1\{s′}∪{s})

Set t← t + 1; At = At−1 \ {s′} ∪ {s}
if F (At) > F (At−1) + η then

Set NI = 0
else

Set NI = NI + 1
end if

end while

AT would be to start with the empty set, A0 = ∅, and,
at iteration t, greedily select the element

st = argmax
s∈V

F (At−1 ∪ {s}) (4.1)

for t ≤ k, and At = At−1 for t > k. Perhaps surpris-
ingly, this simple greedy algorithm is guaranteed to ob-
tain a near-optimal solution: Nemhauser et al. (1978)
prove that for the solution AT , for any T ≥ k, ob-
tained by the greedy algorithm it holds that F (AT ) ≥
(1−1/e) max|A|≤k F (A), i.e., it achieves at least a con-
stant fraction of (1−1/e) of the optimal value. In fact,
no efficient algorithms can provide better approxima-
tion guarantees unless P=NP (Feige, 1998).

Unfortunately, the greedy selection rule (4.1) requires
access to all elements of V, and hence cannot be ap-
plied in the streaming setting. A natural extension to
the streaming setting is the following algorithm: Ini-
tialize A0 = ∅. For t ≤ k, set At ← At−1∪{st}, where

st = argmax
s∈Bt

F (At−1 ∪ {s}). (4.2)

For t > k, let

(s′, s) = argmax
s′∈At−1,s∈At−1∪Bt

F (At−1 \ {s′}∪{s}), (4.3)

and set At = At−1 \ {s′} ∪ {s}, i.e., replace item s′ by
item s in order to greedily maximize the utility. Stop
after no significant improvement (at least η for some
small value η > 0) is observed after a specified number
ρ of iterations. StreamGreedy is summarized in
Algorithm 1.

Dealing with limited access to the stream. So
far, we have assumed that StreamGreedy can eval-
uate the objective function F for any candidate set A.
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While the IVM objective FH(A) for active set selec-
tion in GPs (see Section 3) only requires access to the
selected data points A, evaluating the objectives FC

and FV requires access to the entire data set V. How-
ever, these objective functions share a key property:
They additively decompose over the data set. Hence,
they can be written in the form

F (A) =
1
|V|

∑
s∈V

f(A,xs)

for suitable function f such that f(·,xs) is submodu-
lar for each input xs. If we assume that data points
xs are generated i.i.d. from a distribution and f is a
measurable function of xs, then f(A,xs) are them-
selves a series of i.i.d. outcomes of a random variable.
Moreover, the range of random variables f(A,xs) is
bounded by some constant B (for clustering, B is the
diameter of the data set; for GP regression, B is the
maximum prior marginal variance). We can construct
a sample approximation F̂ (A) = 1

|W|
∑

s∈W f(A,xs)
by choosing a validation set W uniformly at random
from the stream V. The following corollary of Ho-
effding’s inequality adapted from Smola et al. (1999)
bounds the deviation between F̂ (A) and F (A):

Corollary 1 (Smola et al. 1999). Let c = B2 log( 2
δ )

2|V|ε2 and
δ > 0. Then, with probability 1− δ for |W| = c

1+c |V|:∣∣∣∣ 1
|W|

F̂ (A)− 1
|V|

F (A)
∣∣∣∣ < ε

The result relates the level of approximation to the
fraction of the data set that is needed for validation.
As the number of elements in the stream |V| increases,
smaller fractions are needed to reach a given accuracy.
Because this result holds for any (bounded) data dis-
tribution, it is usually pessimistic; in practice, smaller
validation sets often suffice.

Furthermore, this sample based approximation only
requires a constant amount of memory: When xs ar-
rives from the stream, f(A,xs) may be added to a
sufficient statistic and xs itself may be discarded.

5. Theoretical analysis

Clustering-consistent objectives. For clarity of
notation, we will consider the setting where Bt = {bt}
contains only a single element bt ∈ V. The results
generalize to sets Bt containing more elements.

We first show that for an interesting class of submod-
ular functions, the algorithm actually converges to the
optimal solution. Suppose, the data set V can be par-
titioned into a set of clusters, i.e., V = C1 ∪ · · · ∪ CL,
where Ci ∩ Cj = ∅. We call a monotonic submodular

function F clustering-consistent for a particular clus-
tering C1, . . . , CL, if the following conditions hold:

1. F (A) =
∑L

`=1 F (A ∩ C`), i.e., F decomposes ad-
ditively across clusters.

2. Whenever for two sets A,B ⊆ V such that B =
A∪{s}\{s′}, s ∈ Ci, s′ ∈ Cj , i 6= j it holds that if
|A ∩ Cj | > 1 and A ∩ Ci = ∅, then F (A) ≤ F (B).

Intuitively, a submodular function F is clustering-
consistent, if it is always preferable to select a rep-
resentative from a new cluster than having two repre-
sentatives of the same cluster.
Proposition 2. Suppose F is clustering-consistent for
V and k ≤ L. Then, for T = 2ρ it holds for all sets At,
t ≥ T returned by StreamGreedy (for η = 0) that

F (At) = max
|A|≤k

F (A).

The proofs can be found in the longer version of this
paper (Gomes & Krause, 2010). Thus, for clustering-
consistent objectives F , if the data set really consists
of L clusters, and we use StreamGreedy to select
a set of k ≤ L exemplars, then StreamGreedy con-
verges to the optimal solution after at most two passes
through the data set V.

A key question is which classes of objective functions
are clustering-consistent. In the following, suppose
that the elements in V are endowed with a metric d.
The following proposition gives interesting examples:
Proposition 3. Suppose V = C1∪· · ·∪CL, |Ci| < α|Cj |
for all i, j. Further suppose that

max
i

diam(Ci) < β min
i,j

d(Ci, Cj)

for suitable constants α and β, where d(Ci, Cj) =
minr∈Ci,s∈Cj d(r, s) and diam(Ci) = maxr,s∈Ci d(r, s).
Then the following objectives from Sec. 3 are
clustering-consistent with V = C1 ∪ · · · ∪ CL:

• The clustering objective FC , whenever
maxx∈Ci d(x,x0) ≤ minj d(Ci, Cj) for all i, j,
where x0 is the phantom exemplar.
• The entropy FH and variance reduction1 FV for

Gaussian process regression with squared exponen-
tial kernel functions with appropriate bandwidth
σ2, and where d is the Euclidean metric in Rd.

Intuitively, Propositions 2 and 3 suggests that in situa-
tions where the data actually exhibits a well-separated,
balanced clustering structure, and we are interested in
selecting a number of exemplars k consistent with the
number of clusters L in the data, we expect Stream-
Greedy to perform near-optimally.

1under the condition of conditional suppressor-freeness
(Das & Kempe, 2008)
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Figure 1. Left and Center: Convergence rates on MNIST data set. The y-axis represents the clustering utility evaluated
on the training set. The x-axis shows the number of data items processed by StreamGreedy and online k-means.
K-means’ unconstrained centers yield better quantization performance. When k-means’ centers are replaced with the
nearest training set example, the advantage disappears (center). Right: Test performance versus validation set size. It is
possible to obtain good generalization performance even using relatively small validation sets. The validation set size is
varied along the x-axis. The y-axis shows test utility divided by the test utility achieved with the entire data set used for
validation. As K increases, more validation data is needed to achieve full performance.

General submodular objectives. However, the
assumptions made by Propositions 2 and 3 are fairly
strong, and likely violated by the existence of outliers,
overlapping and imbalanced clusters, etc. Further-
more, when using criteria such as FC and FV (Sec. 3),
it is not possible to evaluate F (A) exactly, but only
up to additive error ε. Perhaps surprisingly, even in
such more challenging settings, the algorithm is still
guaranteed to converge to a near-optimal solution:
Theorem 4. Let η > 0. Suppose F is monotonic
submodular on V, and we have access to a function
F̂ such that for all A ⊆ V, |A| ≤ 2k it holds that
|F̂ (A)−F (A)| ≤ ε. Furthermore suppose F is bounded
by B. Then, for T = ρB/η it holds for all sets At,
t ≥ T selected by StreamGreedy applied to F̂ that

F (At) ≥
1
2

max
|A|≤k

F (A)− k(ε + η).

Thus, e.g., in the case where bt = st mod n, i.e., if
StreamGreedy sequentially cycles through the data
set V, at most B/η passes (typically it will stop far
earlier) through the data set will suffice to produce
a solution that obtains almost half the optimal value.
The proof relies on properties of the pairwise exchange
heuristic for submodular functions (Nemhauser et al.,
1978). See the long version of this paper (Gomes &
Krause, 2010) for details.

6. Experimental results
Exemplar based streaming clustering. Our ex-
emplar based clustering experiments involve Stream-
Greedy applied to the clustering utility FC

(Eq. (3.6)) with d(x,x′) = ||x − x′||2. The imple-
mentation can be made efficient by exploiting the fact
that only a subset of the validation points (c.f., Sec. 4)
change cluster membership for each candidate swap.

We have also implemented an adaptive stopping rule
that is useful when determining an appropriate size of
the validation set. Please see the long version (Gomes
& Krause, 2010) for details.

Our first set of experiments uses MNIST handwritten
digits with 60,000 training images and 10,000 test im-
ages.2 The MNIST digits were preprocessed as follows:
The 28 by 28 pixel images are initially represented as
784 dimensional vectors, and the mean of the train-
ing image vectors was subtracted from each image;
then the resulting vectors are normalized to unit norm.
PCA was performed on the normalized training vec-
tors and the first 50 principal components coefficients
were used to form feature vectors. The same normal-
ization procedure was performed on the test images
and their dimensionality was also reduced using the
training PCA basis.

Fig. 1 compares the performance of our approach
against batch k-means and online k-means (Dasgupta,
2009) with the number of exemplars set to K =
100. We chose the origin as the phantom exemplar
in this experiment, since this yielded better overall
quantization performance than choosing a random
exemplar. To unambiguously assess convergence
speed we use the entire training set of 60,000 points
as the validation set. We assess convergence by
plotting (3.6) against the number of swap candidates
(
∑T

t=1 |Bt|) considered. We find that our algorithm
converges to a solution after examining nearly the
same number of data points as online k-means, and
is near its final value after a single pass through the
training data. Similar convergence was observed for
smaller validation sizes. The left plot in Fig. 1 shows

2MNIST was downloaded from
http://yann.lecun.com/exdb/mnist/.



Budgeted Nonparametric Learning from Data Streams

50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

4

C
lu

st
er

 s
iz

e 
(#

m
em

be
rs

)

Cluster rank
50 100 150 200

0

2

4

x 10
4

Cluster rankC
lu

st
er

 s
iz

e 
(#

m
em

be
rs

)

Figure 2. Tiny Image data set. Top Left: Cluster exem-
plars discovered by StreamGreedy, sorted according to
descending size. Top Right: Cluster centers from online
kmeans (singleton clusters omitted). Bottom Left: Clus-
ter sizes (number of members) for our algorithm. Bottom
Right: Cluster sizes for online k-means. Online k-means
finds a poor local minima with many of the 200 clusters
containing only a single member.

that k-means performs better in terms of quantization
loss. This is probably because StreamGreedy must
choose exemplar centers from the training data, while
k-means center locations are unconstrained. When
the k-means’ centers are replaced with the nearest
training example (center plot), the advantage disap-
pears. The right plot in Fig. 1 examines the impact of
validation set size on quantization performance on the
held out test set, measured as test set utility ((3.6)
where V is the test set). It is possible to obtain good
generalization performance even when using a small
validation set. The y-axis indicates test performance
relative to the performance attained with the full data
set at the specified value of K (1.0 indicates equal
performance, values less than one indicate worse per-
formance than the full set), and the x-axis is plotted
as the relative size of the validation set versus the full
set. We find that as the number of centers K increases,
a larger fraction of the data set is needed to approach
the performance with the full set. This appears to be
because as K increases, the numerical differences be-
tween FC(At−1 \ {s′} ∪ {s}) for alternative candidate
swaps (s, s′) decrease, and more samples are needed
in order to stably rank the swap alternatives.
Our second set of experiments involves approximately
1.5 million Tiny Images3 (Torralba et al., 2008), and is
designed to test our algorithm on a large scale data set.
Each image in the data set was downloaded by Tor-
ralba et al. from an Internet search engine and is asso-
ciated with an English noun query term. The 32 by 32
RGB pixel images are represented as 3,072 dimensional
vectors. Following Torralba et al. (2008), we subtract
from each vector its mean value (average of all compo-

3http://people.csail.mit.edu/torralba/tinyimages/

Figure 3. Examples from Tiny Image cluster 26. Left: 100
examples nearest to exemplar 26. Right: 100 randomly
sampled images from cluster 26.

nents), then normalize it to unit norm. No dimension-
ality reduction is performed. We generate a random
center to serve as the phantom exemplar for this ex-
periment, since we find that this leads to qualitatively
more interesting clusters than using the origin4.

Fig. 2 (left) shows K = 200 exemplars discovered
by our algorithm. Clusters are organized primarily
according to non-semantic visual characterstics such
as color and basic shape owing to the simple sum
of squared differences similarity measure employed
(Fig. 3). We set the validation size to one-fifth of the
data set. This was determined by examining the sta-
bility of argmaxs′∈At−1,s∈At−1∪Bt

FC(At−1\{s′}∪{s})
as validation data was progressively added to the
sums in FC , which tends to stabilize well before
this amount of data is considered. The algorithm
was halted after 600 iterations (each considering
|Bt| = 1, 000 candidate centers). This was determined
based on inspection of the utility function, which
converged before a single pass through the data. We
compare against the online k-means algorithm with
200 centers initialized to randomly chosen images, and
run through a single pass over the data. We find that
online k-means converges to a suboptimal solution in
which many of the clusters are empty or contain only
a single member (see Fig. 2.)

In Fig. 4 (left) we assess the tradeoff between run
time and performance by varying the parameter
|Bt| = {500, 1000, 2000} and the validation set size as
{10%, 20%, 40%} of the data set. The number of cen-
ters and iterations are fixed at 200 and 600, respec-
tively. Our Matlab StreamGreedy implementation
was run on a quad-core Intel Xeon server. Performance
for each parameter setting is visualized as a point in
the test utility versus run time plane, and only the
Pareto optimal points are displayed for clarity. On-

4We find that a random phantom exemplar is unlikely
to be chosen as a prototype, while one near the origin is
the prototype for a significant fraction of the data.
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Figure 4. Left: Utility score versus run time on the Tiny
Images data set. Right: Gaussian Process regression. y-
axis is test set mean squared prediction error. x-axis is the
size of the active set.

line k-means is also shown for comparison. We find
that StreamGreedy achieves higher utility at less
running time, and a clear saturation in performance
occurs as run time increases.

Online active set selection for GP regression.
Our Gaussian Process regression experiments involve
specialization of StreamGreedy for the objective
function FV in Sec. 3. The implementation can be
made more efficient by using Cholesky factorization
on the covariance matrix combined with rank one
updates and downdates. (Please see the longer ver-
sion, Gomes & Krause (2010), for details.) We used
the KIN40K dataset5 which consists of 9 attributes
generated by a robotic arm simulator. We divide the
dataset into 10,000 training and 30,000 test instances.
We follow the preprocessing steps outlined by Seeger
et al. (2003) in order to compare our approach to the
results in that study. We used the squared exponen-
tial kernel with automatic relevance determination
(ARD) weights and learn the hyperparameters using
marginal likelihood maximization (Rasmussen &
Williams, 2006) on a subset of 2,000 training points,
again following Seeger et al. (2003).

Fig. 4 (right) shows the mean squared error predictive
performance 1

2

∑
s(ys − µs) on the test set as a func-

tion of the size of the active set. Comparing our re-
sults to the experiments of Seeger et al. (2003), we find
that our approach outperforms the info-gain criterion
for active set size K = {200, 400, 600} at all values
of the validation set size |W| = {2000, 6000, 10000}.
At values K = {800, 1000} our approach outperforms
info-gain for |W| = {6000, 10000}. Our performance
matches Smola & Bartlett (2000) at K = {200, 400}
but slightly underperforms their approach at larger
values of K. We find that even for |W| = 2, 000, the
algorithm is able to gain predictive ability by choosing
more active examples from the data stream. The per-
formance gap between |W| = 6, 000 and |W| = 10, 000
is quite small.

5Downloaded from http://ida.first.fraunhofer.de/ an-
ton/data.html.

7. Related Work
Specialization of StreamGreedy to the clustering
objective FC (3.6) yields an algorithm which is similar
to the Partitioning Around Medoids (PAM, Kaufman
& Rousseeuw 1990) algorithm for k-medoids, and
related algorithms CLARA (Kaufman & Rousseeuw,
1990) and CLARANS (Ng & Han, 2002). Like our
approach, these algorithms are based on repeatedly
exchanging centers for non-center data points if the
swap improves the objective function. Unlike our
approach, however, no performance guarantees are
known for these approaches. PAM requires access
to the entire data set, and every data point is
exhaustively examined at each iteration, leading to
an approach unsuitable for large databases. CLARA
runs PAM repeatedly on subsamples of the data
set, but then makes use of the entire dataset when
comparing the results of each PAM run. Like our
algorithm, CLARANS evaluates a random subset of
candidate centers at each iteration, but then makes
use of the entire data set to evaluate candidate
swaps. Our approach takes advantage of the i.i.d.
concentration behavior of the clustering objective in
order to eliminate the need for accessing the entire
data set, while still yielding a performance guarantee.
Domingos & Hulten (2001) exploit the concentration
behavior of the (non-exemplar) k-means objective in a
similar way. While there exist online algorithms for k-
medoids with strong theoretical guarantees (Charikar
et al., 2003), these algorithms require the distance
function d to be a metric, and the memory to grow
(logarithmically) in |V|. In contrast, our approach
uses arbitrary dissimilarity functions and the memory
requirements are independent of the data set size.

Specialization of StreamGreedy to sparse GP infer-
ence is an example of the subset of datapoints class of
sparse Gaussian Process approximations (Rasmussen
& Williams, 2006), in which the GP predictive distri-
bution is conditioned on only the datapoints in the
active set. Seeger et al. (2003) also use a subset of
datapoints approach that makes use of a submodu-
lar (Seeger, 2004) utility function (the entropy of the
Gaussian distribution of each site in the active set).
This approach is computationally cheaper than ours
in that the evaluation criterion does not require a vali-
dation set, but depends only on the current active set.
Seeger et al.’s approach also fits the framework pro-
posed by this paper, and our approach could be used
to optimize this objective over data streams. Smola
& Bartlett (2000) use a subset of regressors approach.
Their criterion for greedy selection of regressors has
the same complexity as our approach if we use the en-
tire data set for validation. Our approach is cheaper
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when we make use of a limited validation set. Csató
& Opper (2002) develop an approach for online sparse
GP inference based on projected process approximation
that also involves swapping candidate examples into
an active set, but without performance guarantees.
See Rasmussen & Williams (2006) for a survey of other
methods for sparse Gaussian Process approximation.

StreamGreedy’s structure is similar to the algo-
rithm by Weston et al. (2005) for online learning of
kernel perceptron classifiers, in that both approaches
make use of a fixed budget of training examples (the
active set) that are selected by evaluating a loss func-
tion defined over a limited validation set.

Nemhauser et al. (1978) analyzed the greedy algorithm
and a pairwise exchange algorithm for maximizing
submodular functions. As argued in Sec. 4, these
algorithms do not apply to the streaming setting.
Streeter & Golovin (2008) develop an online algorithm
for maximizing a sequence of submodular functions
over a fixed set (that needs to be accessed every
iteration). Our approach, in contrast, maximizes a
single submodular function on a sequence of sets,
using bounded memory.

8. Conclusions
We have developed a theoretical framework for ex-
tracting informative exemplars from data streams that
led to StreamGreedy, an effective algorithm with
strong theoretical guarantees. We have shown that
this framework can be successfully specialized to ex-
emplar based problems and nonparametric regression
with Gaussian Processes. In the case of clustering,
our experiments demonstrate that our approach is ca-
pable of discovering meaningful clusters in large high-
dimensional data sets, while remaining computation-
ally tractable. Our sparse Gaussian Process regres-
sion algorithm is competitive with respect to other
approaches and is capable of operating in a streaming
data environment. Future work involves discovering
other machine learning problems that fit the frame-
work (including classification) and exploring alterna-
tive ways to approximately evaluate submodular func-
tions without full access to a large data set.
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