
Implicit Online Learning

Brian Kulis KULIS@EECS.BERKELEY.EDU

ICSI and Department of EECS, University of California, Berkeley, CA 94720, USA

Peter L. Bartlett BARTLETT@EECS.BERKELEY.EDU

Department of EECS and Department of Statistics, University of California, Berkeley, CA 94720, USA

Abstract

Online learning algorithms have recently risen to
prominence due to their strong theoretical guar-
antees and an increasing number of practical ap-
plications for large-scale data analysis problems.
In this paper, we analyze a class of online learn-
ing algorithms based on fixed potentials and non-
linearized losses, which yields algorithms with
implicit update rules. We show how to effi-
ciently compute these updates, and we prove re-
gret bounds for the algorithms. We apply our for-
mulation to several special cases where our ap-
proach has benefits over existing online learning
methods. In particular, we provide improved al-
gorithms and bounds for the online metric learn-
ing problem, and show improved robustness for
online linear prediction problems. Results over
a variety of data sets demonstrate the advantages
of our framework.

1. Introduction

In its most general form, online convex program-
ming (Cesa-Bianchi & Lugosi, 2006; Zinkevich, 2003)
can be described as follows: a player chooses some point
wt from a convex set at each iteration. A convex loss
function ℓt is revealed, and the player pays lossℓt(wt).
This is repeated forT timesteps, resuling in a total loss
of

∑

t ℓt(wt). Examples of problems that fall within
this framework include online portfolio management, on-
line linear regression, online classification, and many oth-
ers (see Cesa-Bianchi & Lugosi (2006) for an overview).
Much of the recent success in online learning has been in
developing algorithms that are provably competitive with
offline counterparts. Typically, we measure the quality of
an online learning method in terms of theregret: the dif-
ference between the sum of the losses

∑

t ℓt(wt) and the

Appearing inProceedings of the27 th International Conference
on Machine Learning, Haifa, Israel, 2010. Copyright 2010 by the
author(s)/owner(s).

sum of the losses of the best fixed predictorw∗. Regret
of O(

√
T) has been shown for general online convex pro-

gramming andO(log T) for some special cases.

Online learning updates are often motivated as balancing a
tradeoff between “conservativeness” and “correctiveness:”
when updating from step to step, we do not want to change
our model (i.e., our vectorwt) very much, and yet we want
to minimize the loss. Such a balance can naturally be mod-
eled using a weighted sum of two terms, one for the con-
servativeness and one for the correctiveness; one can then
compute an update as the minimizer of such a function.
Despite this motivation, such updates have proven difficult
to analyze in general, so alternative approaches have been
proposed and analyzed. One approachlinearizesthe losses
via a first-order Taylor expansion, which makes the analy-
sis simpler but looser (e.g. Kivinen & Warmuth (1997) and
others). A second approach employs an evolving notion
of conservativeness, leading to typically expensive updates
(e.g. the method of Azoury & Warmuth (2001)).

Our goal in this paper is to analyze updates obtained by the
non-linearized loss with a fixed notion of conservativeness
(i.e. a fixed potential, or regularizer), leading to algorithms
with implicit update rules. We motivate the study of these
updates from practical problems, including non-negative
linear regression and online metric learning. For example,
a popular regularizer for metric learning is the LogDet di-
vergence, and implicit methods involving this regularizer
avoid restrictive assumptions and outperform other meth-
ods in practice. Implicit updates are further desirable in
special cases where closed-form solutions are available, or
where the updates can be computed easily; we discuss sev-
eral such examples in the paper. To our knowledge, implicit
updates, while used ubiquitously to motivate online learn-
ing, have not been analyzed in general. As we will see,
such updates are slightly more computationally expensive
to compute than fixed potential methods with linearized
losses (since the resulting implicit updates cannot be com-
puted in closed form), but less expensive than time-varying
potential methods. To summarize the main contributions of
our work:

• We showO(
√

T) regret for arbitrary Bregman diver-

Implicit Online Learning

gence regularizers for the linear prediction problem,
comparable to existing bounds.

• We showO(log T) regret when the loss functions are
strongly convex and the potential isφ(x) = 1

2‖x‖2
2,

matching existing bounds up to terms independent of
T .

• For LogDet online metric learning, our analysis yields
O(

√
T) regret under a variety of constraints; previous

bounds for the LogDet regularizer were notO(
√

T).
• We show results indicating that the implicit updates

are desirable for linear regression and non-negative
linear regression problems.

2. Online Convex Programming: Background
and Related Work

We begin with a discussion on the necessary mathematical
background and related work for online convex program-
ming (OCP).

2.1. Mathematical Background

Recall that a functionf is convexif, for any two pointsx
andy in its domain andβ ∈ (0, 1):

f(βx + (1 − β)y) ≤ βf(x) + (1 − β)f(y).

The function is strictly convex if the inequality holds
strictly. The convex conjugatef∗ of a convex functionf
on a convex domainS is defined as

f∗(x∗) = sup
x∈S

(〈x∗,x〉 − f(x)) .

We consider functions ofLegendre type(see Rockafellar
(1997)), which implies that the gradient map∇f is defined
on int domf and is an isomorphism between int domf and
int domf∗. For a functionφ of Legendre type, denote the
Bregman divergencewith respect toφ as

Dφ(x,y) = φ(x) − φ(y) − (x − y)T∇φ(y).

Examples of Bregman divergences include the squared
Euclidean distance12‖x − y‖2

2, arising from the func-
tion φ(x) = 1

2‖x‖2
2. Other examples include the rel-

ative entropy (or KL-divergence) arising fromφ(x) =
∑

i(x(i) log x(i) − x(i)), or the LogDet divergence, aris-
ing in the matrix domain fromφ(X) = − log detX.

2.2. OCP Formulation

In online convex programming, the player (algorithm)
chooses a point from a fixed convex setF , which we will
denote aswt, during each timestept. After making this
choice, the convex loss functionℓt is revealed and the
player pays lossℓt(wt). The goal is to minimize the to-
tal loss

∑

t ℓt(wt). We compare against the loss of the best

fixed strategy. We denote the regret as

RT =

T
∑

t=1

ℓt(wt) − min
w∈F

T
∑

t=1

ℓt(w).

Typically, we denote the optimal fixed strategy fromF as
w∗, and soRT =

∑

t(ℓt(wt) − ℓt(w∗)). Here,T is the
total number of time steps.

To illustrate with a simple example, consider online lin-
ear prediction. The loss function at each step is given by
ℓt(wt) = 1

2 (wT
t xt − yt)

2. That is, we may view the algo-
rithm as receiving a data pointxt and responseyt at every
iteration, with the goal of finding a good vector of weights
to minimize the squared loss between a linear combination
of the weights over the data points and the response vari-
ables. After paying the lossℓt(wt) at each iteration, the
algorithm uses information aboutwt, xt, andyt (and po-
tentially information from the previous timesteps) to update
the vector of weights towt+1.

2.3. Explicit Updates for OCP

Algorithmically, a standard approach to designing on-
line convex programming algorithms has been to update
weights as a tradeoff between conservativeness and correc-
tiveness. Loosely speaking, we do not want to change our
vectorwt “too much” at each timestep, while at the same
time we want the loss over the updated vector to be small.
More formally, we can define the following regularized loss
function:

ft(w) = Dφ(w,wt) + ηtℓt(w). (1)

The first term (the “conservativeness” term) measures the
divergence betweenw and the current vectorwt via a
Bregman divergence, while the second term gives the loss
incurred byw (and measures “correctiveness”).ηt is called
the learning rate, and governs the tradeoff between these
two terms. The update for computingwt+1 is then defined
by the minimizer of (1) projected ontoF , that is,

w̃t+1 = argmin
w∈domφft(w) (2)

wt+1 = argmin
w∈F Dφ(w, w̃t+1)

It has proven difficult to analyze such updates in general
(see, e.g., the discussion in Kivinen & Warmuth (1997)); as
a result, two related approaches have been proposed. The
first assumes that the loss functionsℓt are linear, and if
they are not, the loss functions are linearized via the first-
order Taylor approximation aboutwt. In particular, we can
approximateℓt(w) as

ℓt(w) ≈ ℓt(wt) + ∇ℓt(wt)(w − wt),

and since the regret with the original loss functions is less
than or equal to the regret with the approximated loss func-
tions (due to convexity of the loss), we can bound the re-
gret with the approximate functions to obtain a bound on

Implicit Online Learning

the regret with the original loss functions. See Kivinen &
Warmuth (1997); Zinkevich (2003); Hazan et al. (2007) for
examples of this approach.

Assuming linear loss functions in this manner greatly sim-
plifies both the mechanics of the algorithm, and its analysis.
The updates can generally be computed in closed form by
computing the gradient offt with the linearized loss func-
tions and solving forw. Noting that∇wDφ(w,wt)

= ∇w(φ(w) − φ(wt) − (w − wt)
T∇φ(wt))

= ∇φ(w) −∇φ(wt),

and∇ℓt(w) = ∇ℓt(wt) for linearized losses, we can solve
for w̃t+1 by setting the gradient to 0 as

w̃t+1 = ∇φ∗(∇φ(wt) − ηt∇ℓt(wt))

whenφ is of Legendre type. Such updates have been ana-
lyzed for arbitrary Bregman divergence regularizers (Cesa-
Bianchi & Lugosi, 2006). Assuming only that the loss
functions are convex, it has been shown that the regret is
bounded byO(

√
T). If the loss functions are strongly con-

vex, the regret forφ(x) = 1
2‖x‖2

2 has been shown to be
bounded byO(log T) (Hazan et al., 2007).

Another approach, which we will not consider in de-
tail in this paper, has been to use atime-varyingpoten-
tial approach. We define the functionft as ft(w) =
Dφt

(w,wt) + ηtℓt(w), and so the Bregman divergence,
our notion of conservativeness, changes from iteration to
iteration (typicallyφt = φ0 +

∑

t ηtℓt). Algorithms in
this class include the Follow the Regularized Leader tech-
nique (e.g., Kakade & Shalev-Shwartz (2008)) and the el-
liptic potential method (Azoury & Warmuth, 2001). Such
methods have shown logarithmic regret for a wider class of
loss functions, including exp-concave loss functions. How-
ever, the updates for these methods are more expensive (in
the vector case, typicallyO(d2) as opposed toO(d) where
d is the dimensionality of the data), and the regret bounds
have a linear dependence on the dimensionality.

3. Implicit Updates for OCP

Our goal in this work is to study the updates arising from
solvingft directly as in (2). As we will see in the next sec-
tion, because we do not linearize the loss functions, the re-
sulting updates cannot always be computed in closed form,
hence we call themimplicit updates.

3.1. Motivation

Given that there has been a wide body of existing work on
online learning, why even bother with studying implicit
updates? Below we sketch out a few reasons.

Non-negative Linear Regression. Consider the case of
linear prediction (ℓt(wt) = 1

2 (wT
t xt − yt)

2) using the

Burg entropy functionφ(x) = −∑

i log x(i). A related
scenario arises in the matrix case for online metric learn-
ing (Jain et al., 2009), whereφ(X) = − log detX and
the loss is 1

2 (tr(WT
t Xt) − yt)

2; such a regularizer has
been shown to be useful for learning positive semi-definite
matrices due to LogDet’s various intrinsic properties. In
the vector case, the Bregman divergence corresponding to
the Burg entropy is called the Itakura-Saito divergence:
Dφ(x,y) =

∑

i(
x(i)
y(i) − log x(i)

y(i) − 1). It is a useful reg-
ularizer for non-negative linear regression, as its domain
is limited to positive-valued vectors but, unlike the relative
entropy, those vectors are not typically restricted to lie over
a unit simplex.

It is straightforward to show that the updates using the lin-
earized loss in the case of Burg entropy regularization are
given by

w̃t+1(i) =
wt(i)

1 + ηt(wT
t xt − yt)wt(i)x(i)

.

As noted in Jain et al. (2009), this update can
cause elements ofw̃t+1 to be negative (when
ηt(w

T
t xt − yt)wt(i)xt(i) < −1), which is outside

of the domain ofφ. Hence, the analysis breaks down, and
restrictive assumptions must be placed over the domain
of the inputs and/or the step sizes. In contrast, Jain et al.
(2009) derived an implicit update in closed form in the
matrix domain (i.e. φ(X) = − log detX) for a class
of losses that arise in online metric learning. Unlike
the linearized case, updates using non-linearized losses
always remain in the domain ofφ, making analysis and
computation simpler. Jain et al. (2009) proved a simple
regret bound for this case, but it is notO(

√
T); we will

refine and generalize their approach to a larger class of
online LogDet metric learning algorithms withO(

√
T)

regret.

Closed-Form Special Cases. Applying an update with a
non-linearized loss is clearly desirable in cases where a
closed-form update is possible since the inherent approx-
imation introduced by the linearized loss is removed, with-
out any additional cost for the update. In addition to the
case noted above, one can also perform implicit gradient
descent updates in closed form. Take the example with
φ(x) = 1

2‖x‖2
2, ℓt(wt) = 1

2 (wT
t xt − yt)

2, andF = Rd.
The update using the linearized loss is the standard gradient
descent update:

wt+1 = wt − ηt(w
T
t xt − yt)xt.

Updating using the original lossℓt and solving (2) results
in the closed-form update

wt+1 = wt −
ηt

1 + ηt‖xt‖2
2

(wT
t xt − yt)xt.

The updates are nearly identical, except that the implicit
update can be viewed as using a modified learning rate

Implicit Online Learning

ηt/(1 + ηt‖xt‖2
2). Terms of this form will appear in our

analysis. Other cases whenφ(x) = 1
2‖x‖2

2 also yield
closed-form updates.

Robustness. Empirically, implicit updates outperform or
nearly match the performance of explicit updates in gen-
eral. Furthermore, the implicit methods appear to be more
robust to scaling of the data. Using the gradient descent ex-
ample from above, the update naturally factors in the scale
of the input vectorxt when computing the update, which
may help explain such robustness. We will show some ex-
amples of this phenomenon in our experiments.

3.2. Computing the Updates

The updates for the implicit online algorithm are obtained
by solving (2) directly. Using the definition of the Bregman
divergence, the gradient offt with respect tow simplifies
to

∇φ(w) −∇φ(wt) + ηt∇ℓt(w),

and so setting this to zero to computẽwt+1 yields
the expression∇φ(w̃t+1) = ∇φ(wt) − ηt∇ℓt(w̃t+1).
Sinceφ is of Legendre type,w̃t+1 = ∇φ∗(∇φ(wt) −
ηt∇ℓt(w̃t+1)) (Rockafellar, 1997). This is animplicit up-
date sincew̃t+1 appears on both sides. For cases when the
update cannot be computed in closed form, a root finding
method must be employed, but in many practical cases, fast
root finding can be performed with only a few functions
evaluations. For example, in the case of linear prediction
(ℓt(w) = 1

2 (wT
xt − yt)

2), we can use a root finder to
solve for the inner product̄yt = w̃

T
t+1xt, resulting in the

following equation:

∇φ∗(∇φ(wt) − ηt(ȳt − yt)xt)
T
xt − ȳt = 0.

The resulting computation is similar to computing a Breg-
man projection (Censor & Zenios, 1997). Typically, good
implementations require only a few choices forȳt (using
a bisection method or more sophisticated approach); for
example, for the relative entropy and von Neumann di-
vergence, one can adapt the root finding method discussed
in Kulis et al. (2009) for computing Bregman projections.
In these cases, the typical running time of the algorithm is
maintained atO(d), making the updates competitive with
the explicit updates.

3.3. A General Stepwise Lemma and Regret Bound

Let us bound the regret of our implicit online algorithm
by analyzing how the online solution compares with the
optimal solution from step to step.

Lemma 3.1. [Stepwise Lemma] Using updates defined
by (1) and (2), at each stept,

αtηtℓt(wt) − ηtℓt(w∗) ≤ Dφ(w∗,wt) − Dφ(w∗,wt+1),

if αt satisfiesαt ≤ ft(w̃t+1)
ft(wt)

andw∗ is the optimal offline
solution.

Proof. We will prove that the stepwise lemma holds with
w̃t+1 in place ofwt+1. Then, noting thatDφ(w∗,wt) −
Dφ(w∗,wt+1) = [Dφ(w∗,wt) − Dφ(w∗, w̃t+1)] +
[Dφ(w∗, w̃t+1) − Dφ(w∗,wt+1)] ≥ Dφ(w∗,wt) −
Dφ(w∗, w̃t+1) + Dφ(wt+1, w̃t+1) ≥ Dφ(w∗,wt) −
Dφ(w∗, w̃t+1), where the first inequality follows by the
generalized Pythagorous inequality (see Censor & Zenios
(1997), Thm. 2.4.1), the stepwise lemma will hold for
wt+1 as well.

Using the definition of Bregman divergences and the fact
that ∇φ(w̃t+1) = ∇φ(wt) − ηt∇ℓt(w̃t+1), straightfor-
ward algebra verifies that

Dφ(w∗,wt) − Dφ(w∗, w̃t+1)

= Dφ(w̃t+1,wt) + ηt∇ℓt(w̃t+1)
T (w̃t+1 − w∗).

Therefore, we will prove the lemma by showing that for
appropriateαt, the following holds:

αtηtℓt(wt) − ηtℓt(w∗) − Dφ(w̃t+1,wt)

−ηt∇ℓt(w̃t+1)
T (w̃t+1 − w∗) ≤ 0.

The convexity ofℓt implies the following:

ℓt(w∗) ≥ ℓt(w̃t+1) + (w∗ − w̃t+1)
T∇ℓt(w̃t+1). (3)

We rearrange and plug into the above equation (after mul-
tiplying by ηt), and from this we know that the lemma is
true if

αtηtℓt(wt) − ηtℓt(w̃t+1) − Dφ(w̃t+1,wt) ≤ 0, (4)

or equivalently,αtft(wt) − ft(w̃t+1) ≤ 0. The lemma
follows.

We can use this lemma to prove the following regret bound.
It has two pieces. The second, the almost-telescoping sum
of divergences, is standard. The first is more unusual: it is
small whenever the relative drop in value of the criterionft

after the implicit update is not too large. In the next section,
we shall see that the following theorem impliesO(

√
T) and

O(log T) regret for several specific cases.

Theorem 3.2. Let RT =
∑

t ℓt(wt) −
∑

t ℓt(w∗) be the
regret of the implicit online learning algorithm. Then, for
αt ≤ ft(w̃t+1)/ft(wt), we haveRT ≤
∑

t

1

ηt

(

(1−αt)ηtℓt(wt)+Dφ(w∗,wt)−Dφ(w∗,wt+1)

)

.

Proof. We add(1 − αt)ηtℓt(wt) to both sides of the step-
wise lemma, and then divide the inequality byηt. Finally,
sum over allT timesteps.

Implicit Online Learning

4. Special Cases

In the following, we will look in depth at some special
cases of interest—the case of linear prediction, and the case
when the loss functions are strongly convex. For linear
prediction, we give a general result over all Bregman di-
vergence regularizers that is comparable to known regret
bounds, and discuss specific examples in detail. We show
for strongly convex loss functions how to achieve logarith-
mic regret, nearly matching existing bounds for this case.

4.1. Linear Prediction

For linear prediction, our loss function is given by
ℓt(wt) = 1

2 (wT
t xt − yt)

2. Note that∇2ℓt(wt) = xtx
T
t ,

and is not strongly convex.

First we simplify the expression forαt:

Lemma 4.1. For ℓt(wt) = 1
2 (wT

t xt − yt)
2, and regu-

larization with an arbitrary strictly convex functionφ of
Legendre type, choosing

αt =
1

1 + ηtγt

satisfies the conditions of Lemma 3.1, whereγt =
x

T
t [∇2φ(w̃t+1)]

−1
xt.

The proof appears in the appendix. To prove a regret bound,
we sum up the stepwise lemma over allT timesteps using
the above choice ofαt, and note the telescoping sum. The
proof is similar to Zinkevich (2003) but is included here to
highlight differences in the bounds. For notational simplic-
ity, let ‖x‖2

St
= x

T Stx, whereSt = [∇2φ(w̃t+1)]
−1.

Theorem 4.2. Let RT =
∑T

t=1 ℓt(wt) − ∑T
t=1 ℓt(w∗)

be the regret of the implicit online learning algorithm with
a strictly convex functionφ of Legendre type. Suppose
there are constantsG andD such that for allwt andSt,
‖∇ℓt(wt)‖2

St
≤ G andDφ(w∗,wt) ≤ D. Then, choosing

ηt = O(t−1/2), we haveRT = O(
√

T).

Proof. We take the stepwise lemma result, and add(1 −
αt)ηtℓt(wt) to both sides, then divide byηt. This yields

ℓt(wt) − ℓt(w∗) ≤
ηtγt

1 + ηtγt
ℓt(wt)

+
1

ηt
(Dφ(w∗,wt) − Dφ(w∗,wt+1)).

Noting that(ηtγt)/(1 + ηtγt) ≤ ηtγt, we haveℓt(wt) −
ℓt(w∗)

≤ ηtγtℓt(wt) +
1

ηt
(Dφ(w∗,wt) − Dφ(w∗,wt+1))

=
ηt

2
‖∇ℓt(wt)‖2

St
+

1

ηt
(Dφ(w∗,wt) − Dφ(w∗,wt+1)),

and summing over all timesteps yieldsRT

≤
∑

t

ηt

2
‖∇ℓt(wt)‖2

St

+
∑

t

1

ηt
(Dφ(w∗,wt) − Dφ(w∗,wt+1))

≤ G

2

∑

t

ηt +
∑

t

1

ηt
(Dφ(w∗,wt) − Dφ(w∗,wt+1)).

Settingηt =
√

D/(tG), we can simplify the second sum-
mation to

√
GDT since the sum telescopes. The first sum

simplifies using
∑T

t=1
1√
t
≤ 2

√
T − 1 to obtain the result

RT ≤ 2
√

DGT .

Note that the simplerηt = t−1/2 (as in Zinkevich (2003))
also yieldsO(

√
T) regret, but the result above is tighter.

Moreover, we can improve the analysis by not simplifying
via (ηtγt)/(1 + ηtγt) ≤ ηtγt as is done in the proof. In
this case, we achieve regret of the form

√
T − log T when

choosingηt = O(t−1/2).

4.2. Linear Prediction Examples

We discuss three particular special cases in this section:
the squared Euclidean distance, the relative entropy, and
the Itakura-Saito divergence. Sinceγt is indirectly a
function ofηt, and thereforet, we also show bounds onγt

for each of these cases (alternatively, we can say thatγt is
the maximum over all vectorsx,w of x

T [∇2φ(w)]−1
x in

the domain ofφ, but this may be a weak estimate ofγt).

Squared Euclidean Distance: The squared Euclidean
distance is generated by the functionφ(x) = 1

2‖x‖2
2;

this divergence is particularly desirable because the exact
gradient update can be computed in closed form for linear
prediction. Furthermore, we have∇φ(x) = x, and
∇2φ = I. Therefore,γt = ‖xt‖2

2. Given thatγt = ‖xt‖2
2,

we haveγtℓt(wt) = 1
2‖∇ℓt(wt)‖2

2.

Relative Entropy: Now consider the Breg-
man divergence obtained by the generating func-
tion φ(x) =

∑

i x(i) log x(i). In this case,
γt =

∑

i w̃t+1(i)xt(i)
2 ≤ 3‖xt‖2

∞. The equality
follows by noting that∇2φ(w̃t+1) = diag(1/w̃t+1),
where the division is elementwise. The proof of the
inequality is omitted due to lack of space.

Itakura-Saito and LogDet: A third special case arises in
the case of non-negative linear regression. In the vector
case, the potential is called the Burg entropy and is defined
by φ(x) = −∑

i log x(i); in the matrix case, the potential
is defined asφ(X) = − log detX. It is straightforward to
show thatγt =

∑

i w̃t+1(i)
2
xt(i)

2 for the vector case, and
γt = tr((XtW̃t+1)

2) for the matrix case.

Implicit Online Learning

To boundγt for the vector case, we letF be the set of
vectors whose elements are less than or equal to 1. LetR be
the maximum value of‖xt‖1; we will also assume thatyt ∈
[−R,R] (sincew

T
∗ xt ∈ [−R,R] by Hölder’s inequality).

The projection step ontoF guarantees that̂yt = w
T
t xt ∈

[−R,R] for all t. Since|ȳt − yt| ≤ |ŷt − yt| (as thew̃t+1

update minimizes (2)), we can further conclude thatȳt ∈
[−3R, 3R]. Finally, let v(i) = w̃t+1(i)xt(i). Then the
following holds:

γt = ‖v‖2
2 ≤ ‖v‖2

1 ≤ 9R2.

Thus,γt ≤ 9R2. An analogous result holds for the matrix
case.

4.3. Logarithmic Regret with Strongly Convex Losses

A second class of loss functions that have been widely stud-
ied assumes strong convexity of the loss; that is∇2ℓt º
HI, for some scalarH. An example would be the loss
functionℓt(wt) = 1

2‖wt − xt‖2, whose second derivative
is simply the identity (i.e.,H = 1).

Strongly convex losses are useful and widely studied be-
cause they have been shown to yield online learning al-
gorithms with logarithmic regret bounds (e.g. Hazan et al.
(2007); Kakade & Shalev-Shwartz (2008)). Here we will
show that when choosingφ(x) = 1

2‖x‖2
2, implicit up-

dates achieve logarithmic regret for any strongly convex
loss function. Our resulting bounds will be comparable to
existing bounds; the first step is to prove a stronger version
of the stepwise lemma, stated below.

Lemma 4.3. [Stepwise Lemma for H-Strongly Convex
Losses] At each stept,

αtηtℓt(wt) − ηtℓt(w∗) ≤

Dφ(w∗,wt) − Dφ(w∗,wt+1) −
ηtH

2
‖w∗ − wt+1‖2

2,

whereαt ≤ ft(w̃t+1)
ft(wt)

andw∗ is the optimal offline solution.

Proof. The proof follows the stepwise lemma proof, ex-
cept in place of (3), we use the following inequality arising
from strong convexity (see Boyd & Vandenberghe (2004),
Section 9.1.2):

ℓt(w∗) ≥ ℓt(w̃t+1) + (w∗ − w̃t+1)
T∇ℓt(w̃t+1)

+
H

2
‖w∗ − w̃t+1‖2

2.

We also use the generalized Pythagorous theorem for the
additionalηtH

2 ‖w∗ − wt+1‖2
2 term, analogous to the step-

wise lemma. The remainder of the proof is the same.

Next, we bound the difference inft obtained from updating
wt to wt+1 using anupper boundon the Hessian ofℓt:

Lemma 4.4. For φ(x) = 1
2‖x‖2

2 and ℓt such thathI º
∇2ℓt is an upper bound on the Hessian ofℓt, the following
holds:

ft(wt) − ft(w̃t+1) ≤
1 + ηth

2
‖w̃t+1 − wt‖2

2.

See the proof in the appendix. The stepwise lemma ensures
that the second term in the regret cancels when choosing
ηt = 1/(Ht), and the lemma above ensures that the first
term of the regret is bounded logarithmically.

Theorem 4.5. Let RT =
∑

t ℓt(wt) −
∑

t ℓt(w∗) be the
regret of the implicit online learning algorithm. Given that
φ(x) = 1

2‖x‖2
2 andℓt is H-strongly convex, then choosing

ηt = 1/(Ht) yieldsRT = O(log T) when running for a
total ofT timesteps.

The proof appears in the appendix. Comparing with the ex-
isting proof for explicit updates with strongly convex func-
tions of Hazan et al. (2007), we see that the existing bound
is RT ≤ G

2H (1 + log T), where‖∇ℓt‖2 ≤ G. Our bound
is identical for the terms dependent onT , but has an addi-
tional additive term dependent on the maximum condition
number of the Hessian ofℓt.

5. Application: Online Metric Learning

So far, we have seen that implicit online learning updates
can be applied in a variety of settings, yielding competitive
regret bounds as compared to state-of-the-art explicit meth-
ods. To highlight an application of implicit updates for a
practical problem, we now focus on a domain where im-
plicit updates are particularly useful—online metric learn-
ing. As we discuss below, and as the empirical results in-
dicate, the LogDet divergence as a regularizer has shown
superior performance in this domain; further, as discussed
in Section 3.1, an implicit update scheme is necessary. Our
analysis yields better bounds and a more general algorithm.

The goal in online Mahalanobis metric learning is to learn a
positive semi-definite matrixW that paramaterizes the so-
called Mahalanobis distance:dW (x,y) = (x−y)T W (x−
y). We will updateW in an online manner; each it-
eration, we receive some information about the desired
Mahalanobis distance, which is encoded in the loss func-
tion ℓt(Wt) = 1

2 (tr(WtXt) − yt)
2. For example, when

Xt = (xt − yt)(xt − yt)
T , then tr(WtXt) is simply the

Mahalanobis distance betweenxt andyt usingWt, and so
the loss encodes how close the Mahalanobis distance is to
the target distanceyt. Note that in this case,Xt is a rank-
one matrix. Another possibility, used frequently in the of-
fline setting, is that of relative distance constraints.

Various regularizers are possible in the matrix domain. Ex-
amples include the squared Frobenius normDφ(X,Y) =
1
2‖X − Y ‖2

F , the von Neumann divergenceDφ(X,Y) =
tr(X log X−X log Y −X+Y), or the LogDet divergence,

Implicit Online Learning

discussed earlier. Because the constraints for online metric
learning are typically low-rank (i.e., the matricesXt are
low-rank), the implicit LogDet updates can be computed in
closed form (see Jain et al. (2009) for the case of similarity
and dissimilarity constraints) inO(d2) time, whered is the
number of rows/columns ofWt. The von Neumann diver-
gence updates require an eigendecomposition in practice,
resulting in updates that costO(d3), and because theWt

matrices are restricted to the positive semi-definite cone,
the squared Frobenius norm updates must project onto the
PSD cone, which may be potentially expensive. Combined
with the fact that LogDet has produced good empirical re-
sults for online metric learning, the LogDet divergence is a
natural regularizer for the online metric learning problem.

The previous work of Jain et al. (2009) considered only
the case of similarity and dissimilarity constraints, and
the analysis depended on properties of rank-one matrices.
In contrast, the analysis in this paper applies in general
to other constraints and regularizers for the online metric
learning problem. Furthermore, our bounds for the case
considered in Jain et al. (2009) are stronger; their bounds
are not of the formO(

√
T), even if the stepsize forηt is

defined to beO(1/
√

t).

6. Experimental Results

Synthetic Results. We begin with some simple synthetic
experiments to demonstrate advantages of the implicit ap-
proach. First, we compare standard gradient descent with
the implicit gradient descent algorithm for linear predic-
tion. An optimal 20-dimensional vectorw∗ was cho-
sen randomly (with uniform weights in[0, 1]). For each
timestep, we chose randomxt vectors with weights uni-
formly random from[−.5, .5] and computed ayt value as
the inner product between the optimalw∗ and xt, with
added Gaussian noise (variance .1). We compared the
methods (usingηt = 1/

√
t), and then repeated the experi-

ment by scaling thext vectors (and the noise) by2 and2.5
(but keeping the same learning rate). The results in the top
row of Figure 1 show that as the scale increases, the stan-
dard gradient descent makes larger mistakes during early
timesteps, whereas the implicit method appears more ro-
bust during these timesteps. As a result, the difference in
the total accumulated loss between the methods grows with
the scale of the data.

Next, we compared exponentiated gradient descent, expo-
nentiated gradient descent with implicit updates, and the
Itakura-Saito based descent method. As before, we con-
structxt vectors with weights chosen uniformly at random
from [−.5, .5]. When the optimal weight vector is normal-
ized to sum to 1, we found that the exponentiated gradi-
ent descent methods and the Itakura-Saito method all gave
nearly identical results (plots not shown). We also tested
cases where the optimal weight vector was not normalized
to sum to 1. For this case, the loss for the EGD-based meth-

Iris Balance Scale Soybean Car Audiology
0

0.1

0.2

0.3

0.4

0.5

k−
N

N
 E

rr
or

von Neumann
von Neumann Imp.
Frobenius
Frobenius Imp.
LogDet

Figure 2.Comparison of metric learning methods on standard
UCI data sets.

ods was always significantly higher due to the restriction
that the weights lie on the unit simplex. See the final plot of
Figure 1 for an example; note that both EGD-based meth-
ods performed similarly in this experiment and it is difficult
to distinguish them on the plot.

Online Metric Learning. We applied our method to the
online metric learning problem over a set of UCI data sets.
We compared various regularizers for metric learning, us-
ing similarity and dissimilarity constraints (see Section5
for a description of the problem). For this experiment,
we ran the following methods: a von Neumann regular-
ized explicit method, a von Neumann regularized implicit
method, a squared Frobenius regularized explicit method,
a squared Frobenius regularized implicit method, and the
LogDet regularized implicit method. For each algorithm,
we ran 10,000 online timesteps and constraints were gener-
ated randomly over a 70 percent training set. Each con-
straint is a random pair of points from the training set,
and target distances are set to the 5th and 95th percentile
of the training set for same-class and different-class con-
straints, respectively. Results are averaged over 10 runs.
We see from the results in Figure 2 that the LogDet method
clearly outperforms the other online regularizers and algo-
rithms on these data sets. Furthermore, given the addi-
tional cost of the von Neumann-based methods (each it-
eration isO(d3) whereas the cost of an iteration for the
LogDet-based method isO(d2)), the requirement that the
Frobenius-based methods project onto the positive semi-
definite cone, and the fact that LogDet cannot be effectively
analyzed in the explicit case, these results further validate
our analysis of implicit methods.

References
Azoury, K. S. and Warmuth, M. Relative loss bounds for on-line

density estimation with the exponential family of distributions.
Machine Learning, 43(3):211–246, 2001.

Boyd, S. and Vandenberghe, L.Convex Optimization. Cambridge
University Press, 2004.

Censor, Y. and Zenios, S.Parallel Optimization. Oxford Univer-
sity Press, 1997.

Implicit Online Learning

0 2000 4000 6000
0

20

40

60

Number of time steps

A
cc

um
ul

at
ed

 lo
ss

Scale = 1

Gradient Descent
Gradient Descent Imp.

0 2000 4000 6000
0

100

200

300

400

Number of time steps

A
cc

um
ul

at
ed

 lo
ss

Scale = 2

Gradient Descent
Gradient Descent Imp.

0 2000 4000 6000
0

200

400

600

800

1000

Number of time steps

A
cc

um
ul

at
ed

 lo
ss

Scale = 2.5

Gradient Descent
Gradient Descent Imp.

0 5000 10000
0

1000

2000

3000

Number of time steps

A
cc

um
ul

at
ed

 lo
ss

No Noise, Opt. Unnormalized

Exp. Gradient Descent
Exp. Gradient Descent Imp.
Itakura−Saito

Figure 1.Synthetic results. The first 3 plots show how the implicit gradient descent algorithm is more robust as the scale of the data
is increased; the last plot shows that, for non-negative linear regression, the Itakura-Saito methods (which require implicit analysis) are
more suited than exponentiated gradient descent for problems where the optimal weight vector is not normalized. See text for details.

Cesa-Bianchi, N. and Lugosi, G.Prediction, Learning, and
Games. Cambridge University Press, 2006.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret algo-
rithms for online convex optimization.Machine Learning, 69:
169–192, 2007.

Jain, P., Kulis, B., Dhillon, I., and Grauman, K. Online metric
learning and fast similarity search. InAdvances in Neural In-
formation Processing Systems (NIPS), 2009.

Kakade, S. and Shalev-Shwartz, S. Mind the duality gap: Loga-
rithmic regret algorithms for online optimization. InAdvances
in Neural Information Processing Systems (NIPS), 2008.

Kivinen, J. and Warmuth, M. K. Exponentiated gradient versus
gradient descent for linear predictors.Information and Com-
putation, 132(1):1–64, 1997.

Kulis, B., Sustik, M., and Dhillon, I. Low-rank kernel learning
with Bregman matrix divergences.Journal of Machine Learn-
ing Research (JMLR), 10, 2009.

Rockafellar, R. T.Convex Analysis. Princeton University Press,
1997.

Zinkevich, M. Online convex programming and generalized in-
finitesimal gradient ascent. InInternational Conference on Ma-
chine Learning (ICML), 2003.

Appendix: Proofs

Proof: [Lemma 4.1] Recall from the stepwise lemma that
αt must satisfyαtft(wt) ≤ ft(w̃t+1) or, equivalently,
αtft(wt) − ft(w̃t+1) ≤ 0. Define the left-hand side us-
ing (4) as a function ofyt; that ish(yt) =

αt
ηt

2
(wT

t xt −yt)
2− ηt

2
(w̃T

t+1xt −yt)
2−Dφ(w̃t+1,wt).

We will show that the derivative ofh is zero somewhere
(andh = 0 at that point), and that the second derivative is
always negative for a specific choice ofαt, implying that
h ≤ 0 everywhere. Since∂ft/∂w̃t+1 = 0, we know from
the multivariate chain rule that when taking the derivative
of h with respect toyt, we can treatw̃t+1 as a constant.
That leads to(dh)/(dyt) = −αtηt(ŷt − yt) + ηt(ȳt − yt),
whereŷt = w

T
t xt andȳt = w̃

T
t+1xt. Whenŷt = yt, then

loss is zero and sõwt+1 = wt, h = 0, andh′ = 0. Now we
must compute the second derivative ofh with respect toαt

and show that this is always negative. The 2nd derivative is
computed as (noting that̄yt is a function ofyt)

αtηt + ηt

(

dȳt

dyt
− 1

)

,

which results in the conditionαt ≤ 1 − (dȳt)/(dyt).
From Section 3.2, we know that̃wt+1 = ∇φ∗(∇φ(wt) −
η(w̃T

t+1xt − yt)xt) and so therefore sincēyt = w̃
T
t+1xt,

we haveȳt = ∇φ∗(∇φ(wt) − η(ȳt − yt)xt)
T
xt. Simple

application of the chain rule yields

dȳt

dyt
= −ηtx

T
t [∇2φ∗(∇φ(wt)−ηt(ȳt−yt)xt)]xt

(

dȳt

dyt
−1

)

.

Using ∇2φ∗(∇φ(x)) = [∇2φ(x)]−1 and γt =
x

T
t [∇2φ(w̃t+1)]

−1
xt, we simplify to

dȳt

dyt
=

ηtγt

1 + ηtγt
,

and simplification ofαt yields the lemma.

Proof: [Lemma 4.4] An upper bound ofhI on∇2ℓt (Boyd
& Vandenberghe (2004), Section 9.1.2) yieldsℓt(wt) ≤

ℓt(w̃t+1) + (wt − w̃t+1)
T∇ℓt(w̃t+1) +

h

2
‖wt − w̃t+1‖2

2.

Since w̃t+1 = wt − ηt∇ℓt(w̃t+1), the term
(wt − w̃t+1)

T∇ℓt(w̃t+1) simplifies to 1
ηt

‖w̃t+1 − wt‖2
2.

Multiplying the whole equation byηt and simplifying via
ft(w̃t+1) = 1

2‖w̃t+1 − wt‖2
2 + ηtℓt(w̃t+1), the result

follows.

Proof: [Theorem 4.5] By summing over allT timesteps as
in Theorem 3.2, using Lemma 4.3 we obtain

RT ≤
∑

t

1

ηt
(ft(wt) − ft(w̃t+1)) +

∑

t

1

2ηt
(‖w∗ − wt‖2

2 − ‖w∗ − wt+1‖2
2 − ηtH‖w∗ − wt+1‖2

2).

By choosingηt = 1/(Ht), the second sum simplifies to
1

2η1
‖w∗ −w1‖2

2. For the first sum, we use Lemma 4.4 and
the fact that‖w̃t+1 − wt‖2

2 = η2
t ‖∇ℓt(w̃t+1)‖2

2 ≤ η2
t G,

where‖∇ℓt‖2 ≤ G. This gives us

RT ≤ G
∑

t

ηt + η2
t h

2
+

HD

2

≤ G

2H

(

1 + log T

)

+
Gh

H2
+

HD

2
.

