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Abstract

Online learning algorithms have recently risen to
prominence due to their strong theoretical guar-
antees and an increasing number of practical ap-
plications for large-scale data analysis problems.
In this paper, we analyze a class of online learn-
ing algorithms based on fixed potentials and non-
linearized losses, which yields algorithms with
implicit update rules. We show how to effi-
ciently compute these updates, and we prove re-
gret bounds for the algorithms. We apply our for-
mulation to several special cases where our ap-
proach has benefits over existing online learning
methods. In particular, we provide improved al-
gorithms and bounds for the online metric learn-
ing problem, and show improved robustness for
online linear prediction problems. Results over
a variety of data sets demonstrate the advantages
of our framework.

1. Introduction

sum of the losses of the best fixed predicter. Regret
of O(v/T) has been shown for general online convex pro-
gramming and)(log T') for some special cases.

Online learning updates are often motivated as balancing a
tradeoff between “conservativeness” and “correctiveriess
when updating from step to step, we do not want to change
our model (i.e., our vectaw,) very much, and yet we want

to minimize the loss. Such a balance can naturally be mod-
eled using a weighted sum of two terms, one for the con-
servativeness and one for the correctiveness; one can then
compute an update as the minimizer of such a function.
Despite this motivation, such updates have proven difficult
to analyze in general, so alternative approaches have been
proposed and analyzed. One apprologarizesthe losses

via a first-order Taylor expansion, which makes the analy-
sis simpler but looser (e.g. Kivinen & Warmuth (1997) and
others). A second approach employs an evolving notion
of conservativeness, leading to typically expensive ugslat
(e.g. the method of Azoury & Warmuth (2001)).

Our goal in this paper is to analyze updates obtained by the
non-linearized loss with a fixed notion of conservativeness
(i.e. afixed potential, or regularizer), leading to aldgurits
with implicit update rules. We motivate the study of these

Imnin|ts (Crggzt-B%irg:iriag fli)[:m(,)sioglénoe& CZC)ig\ILZ)\(/iCﬂrOg(I;aOg])- updates from practical problems, including non-negative
g . foll g. ’ | ' h ’ .Iipear regression and online metric learning. For example,
canfbe described as follows: ?1 player c ches somelpon& popular regularizer for metric learning is the LogDet di-
;"t :_om ga convex Isedt at gat(liu |te|rat|0n. lconvex OSSvergence, and implicit methods involving this regularizer
ur?_c lon £ 1S re(\j/efae , and the p ayelf pays d‘sé’wlt)l- avoid restrictive assumptions and outperform other meth-
Tf IS |s€repeate E ofr tllmest?ps, rtc)alsu |ngh|n aftﬁ)ta_ rc])_ss ods in practice. Implicit updates are further desirable in
ot D¢ Li(wy). Examples of problems that fall within special cases where closed-form solutions are available, o
this framework include online portfolio management, on- here the updates can be computed easily; we discuss sev-
line linear regression, online classification, and many oth eral such examples in the paper. To our knO\’NIedge, implicit

ers (see Cesa-Bianchi & Lugosi (2006) for an Overv'ew).'updates, while used ubiquitously to motivate online learn-

Much of the recent success in online learning has been 'ﬂ'\g have not been analyzed in general. As we will see
de\(elopmg algorithms th_at are provably compet|t|ve.W|th such updates are slightly more computationally expensive
offline 'counterp.arts. Typlca_lly, we measure the qua'llty Ofto compute than fixed potential methods with linearized
;r;eonncl?%elfv%g:ﬁhrgestgfnd(;? tLee:Tossoé ttémgret :lnedcilr]:-e losses (since the resulting implicit updates cannot be com-

€sle(wr) puted in closed form), but less expensive than time-varying
potential methods. To summarize the main contributions of
our work:

e We showO(\/T) regret for arbitrary Bregman diver-
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gence regularizers for the linear prediction problem,fixed strategy. We denote the regret as

comparable to existing bounds. " r
e We showO(log T') regret when the loss functions are —\"y . ,

strongly convex and the potential g§z) = 3|z|J3, Br = ; o(w:) glel%; (w)-

matching existing bounds up to terms independent of

T. Typically, we denote the optimal fixed strategy frdrmas
e For LogDet online metric learning, our analysis yields W+, and soRy = 3, (£(wy) — &(w.)). Here,T'is the

O(\/T) regret under a variety of constraints; previous total number of time steps.

bounds for the LogDet regularizer were rdt/'T). To illustrate with a simple example, consider online lin-
e We show results indicating that the implicit updates ear prediction. The loss function at each step is given by
are desirable for linear regression and non-negative, (w,) = 3 (w{ x; — y)?. Thatis, we may view the algo-
linear regression problems. rithm as receiving a data poinf, and responseg, at every
iteration, with the goal of finding a good vector of weights
2. Online Convex Programming: Background to minimi;e the squared loss be_tween alinear combinatior_1
and Related Work of the weights over the data points and th(_a response vari-
ables. After paying the los& (w;) at each iteration, the
We begin with a discussion on the necessary mathematic&lgorithm uses information about;, =, andy; (and po-
background and related work for online convex program-tentially information from the previous timesteps) to ufgda

ming (OCP). the vector of weights tav; ;1.
2.1. Mathematical Background 2.3. Explicit Updates for OCP
Recall that a functiorf is convexif, for any two pointsz  Algorithmically, a standard approach to designing on-
andy in its domain ands € (0, 1): line convex programming algorithms has been to update
weights as a tradeoff between conservativeness and correc-
f(Bx+ (1 —B)y) < Bf(x)+ (1 —B)f(y). tiveness. Loosely speaking, we do not want to change our

vectorw; “too much” at each timestep, while at the same
The function is strictly convex if the inequality holds time we want the loss over the updated vector to be small.
strictly. The convex conjugatg* of a convex functionf More formally, we can define the following regularized loss

on a convex domaiis' is defined as function:
(@) = sup (@) - f(@)). fi(w) = Dy (w, wr) + mely(w). &)
xES

The first term (the “conservativeness” term) measures the

We consider functions ofegendre typdsee Rockafellar ~divergence betweem and the current vectotw, via a
(1997)), which implies that the gradient m&jy is defined ~ Bregman divergence, while the second term gives the loss
on int domyf and is an isomorphism between int dprand ~ incurred byw (and measures “correctivenessj) is called

int domf*. For a functiong of Legendre type, denote the thelearning rate and governs the tradeoff between these

Bregman divergenceith respect tap as two terms. The update for computing ., is then defined
by the minimizer of (1) projected ontb, that is,

Dy(x,y) = ¢(x) — d(y) — (x —y)" Vo(y).

Wi = AGMIN,,cgomgfe(w) 2
Examples of Bregman divergences include the squared W = argmin, e Do (w, wyi1)
. ) s )
Euchdean d|st1anc%2||a: yliz, arising from the func It has proven difficult to analyze such updates in general
tion ¢(x) = 3|lx||5. Other examples include the rel-

(see, e.g., the discussion in Kivinen & Warmuth (1997)); as
a result, two related approaches have been proposed. The
first assumes that the loss functiofisare linear, and if

they are not, the loss functions are linearized via the first-

. order Taylor approximation about,. In particular, we can

ative entropy (or KL-divergence) arising from(x) =
> (x(i)log (i) — =(i)), or the LogDet divergence, aris-
ing in the matrix domain fromp(X) = — log det X.

In online convex programming, the playgr (algonlthm) G(w) & Ly(wy) + Vi (wy) (w — wy),

chooses a point from a fixed convex getwhich we will

denote asw,, during each timestep After making this and since the regret with the original loss functions is less
choice, the convex loss functiofy is revealed and the than or equal to the regret with the approximated loss func-
player pays losg,(w;). The goal is to minimize the to- tions (due to convexity of the loss), we can bound the re-
tal loss) , ¢;(w;). We compare against the loss of the bestgret with the approximate functions to obtain a bound on
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the regret with the original loss functions. See Kivinen & Burg entropy functionp(x) = — >, logx(i). A related
Warmuth (1997); Zinkevich (2003); Hazan et al. (2007) for scenario arises in the matrix case for online metric learn-
examples of this approach. ing (Jain et al., 2009), where(X) = —logdet X and
the loss isi (tr(W'X,) — v;)?; such a regularizer has
been shown to be useful for learning positive semi-definite
matrices due to LogDet’s various intrinsic properties. In
e vector case, the Bregman divergence corresponding to
the Burg entropy is called the Itakura-Saito divergence:

Dy(z,y) = 22(58 — log ;’58 —1). ltis a useful reg-
Va (p(w) — p(wy) — (w — wy) T V(wy)) ularizer for non-negative linear regression, as its domain
Vo(w) — Vo(w,), is limited to positive-valued vectors but, unIi_ke the réq{at
entropy, those vectors are not typically restricted to liero
andV/,(w) = V{,(w,) for linearized losses, we can solve a unit simplex.

for w1 by setting the gradient to 0 as

Assuming linear loss functions in this manner greatly sim-
plifies both the mechanics of the algorithm, and its analysis
The updates can generally be computed in closed form b
computing the gradient of; with the linearized loss func-
tions and solving forw. Noting thatV,, Dg(w, w;)

It is straightforward to show that the updates using the lin-

Wi = VoH (Vo(wy) — Vil (wy)) earized loss in the case of Burg entropy regularization are
given by
wheng is of Legendre type. Such updates have been ana- .
lyzed for arbitrary Bregman divergence regularizers (€Eesa Wi () = - wy (i) S
Bianchi & Lugosi, 2006). Assuming only that the loss L+ ne(wi @ — ye)we (i) (i)

functions are convex, it has been shown that the regret ids noted in Jain et al. (2009), this update can
bounded byD(v/T). If the loss functions are strongly con- cause elements of,, to be negative (when
vex, the regret fors(z) = 3| «[3 has been shown to be mwlz, — y)w,(i)x(i) < —1), which is outside
bounded byO(log T') (Hazan et al., 2007). of the domain of. Hence, the analysis breaks down, and
Another approach, which we will not consider in de- "estrictive assumptions must be placed over the domain
tail in this paper, has been to usetime-varyingpoten-  Of the inputs and/or the step sizes. In contrast, Jain et al.
tial approach. We define the functiof as f,(w) =  (2009) derived an implicit update in closed form in the
Dy, (w,w;) + iy (w), and so the Bregman divergence, Matrix domain (i.e. ¢(X) = —logdet X) for a class
our notion of conservativeness, changes from iteration t®f 10Sses that arise in online metric learning. Unlike
iteration (typically, = ¢o + 2, mf:). Algorithms in the linearized case, updates using non-linearized losses
this class include the Follow the Regularized Leader tech@/ways remain in the domain af, making analysis and
nique (e.g., Kakade & Shalev-Shwartz (2008)) and the el€0mputation simpler. Jain et al. (2009) proved a simple
liptic potential method (Azoury & Warmuth, 2001). Such regret bound for this case, but it is no{v/T); we wil
methods have shown logarithmic regret for a wider class oféfine and generalize their approach to a larger class of
loss functions, including exp-concave loss functions. How Online LogDet metric learning algorithms wit®(v/'T)
ever, the updates for these methods are more expensive (iB9ret.

the vector case, typicall§)(d?) as opposed t®(d) where

d is the dimensionality of the data), and the regret boundgs|psed-Form Special Cases. Applying an update with a

have a linear dependence on the dimensionality. non-linearized loss is clearly desirable in cases where a
closed-form update is possible since the inherent approx-
3. Implicit Updates for OCP imation introduced by the linearized loss is removed, with-

S ) o out any additional cost for the update. In addition to the
Our goal in this work is to study the updates arising fromcase noted above, one can also perform implicit gradient

solving f; directly as in (2). As we will see in the next sec- descent updates in closed form. Take the example with

tion, because we do not linearize the loss functions, the rep(x) = %kug, O (wy) = %(thmt —y;)?, andF = RY,
sulting updates cannot always be computed in closed formrhe update using the linearized loss is the standard gradien
hence we call therimplicit updates. descent update:

3.1. Motivation Wit1 = Wt — nt(thwt — i)y

Given that there has been a wide body of existing work or?Pdating using the original los§ and solving (2) results

online learning, why even bother with studying implicit In the closed-form update

updates? Below we sketch out a few reasons. _ "t T
Wiyl = Wy — 72(1% Ty — Yi) T
L+ mel|zel3

Non-negative Linear Regression. Consider the case of The updates are nearly identical, except that the implicit
linear prediction {;(w;) = %(th:ct — y)?) using the update can be viewed as using a modified learning rate
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ne/(1 + n;||l||2). Terms of this form will appear in our if o, satisfiesn; < %ﬂj)) andw, is the optimal offline
analysis. Other cases wherx) = %||a:||§ also yield  solution.
closed-form updates.

Proof. We will prove that the stepwise lemma holds with

Robustness. Empirically, implicit updates outperform or @t+1 in place ofw;,. Then, noting thaDy (w.., w;) —
nearly match the performance of explicit updates in gen-D¢(w*7w~t+1) = [Dy(wi,wy) — Dy(ws, wip1)] +

eral. Furthermore, the implicit methods appear to be moréDaﬁ(w*ﬂf’tJrl) - D¢(w*,wt~+1)} > Dy(ws,wy) —
robust to scaling of the data. Using the gradient descent exPs (W, Wiy1) + Do(wir, Wi1) > Dy(w., wi) —
ample from above, the update naturally factors in the scald’s (W, w.11), where the first inequality follows by the
of the input vectorr; when computing the update, which 9eneralized Pythagorous inequality (see Censor & Zenios
may help explain such robustness. We will show some ex{1997), Thm. 2.4.1), the stepwise lemma will hold for

amples of this phenomenon in our experiments. w1 as well.
. Using the definition of Bregman divergences and the fact
3.2. Computing the Updates that Vo (1) = Vé(wy) — 0V (wyy1), straightfor-

The updates for the implicit online algorithm are obtainedWard algebra verifies that

by solving (2) directly. Using the definition of the Bregman Dg(ws, wy) — Dy(w,, y41)

divergence, the gradient gf with respect taw simplifies . . T

to = Dg(Wiyr1,wp) + 0Vl (1) (W1 — wy).
Vo(w) — Vo(wy) + 1 Vi (w), Therefore, we will prove the lemma by showing that for

. . _ ) appropriatey, the following holds:
and so setting this to zero to compuig,,; Yyields

the expressiolWo(wi11) = Vo(w:) — 0V (Wey1). amly(wy) — nely(wy) — Dy (Wiy1, wy)
Since ¢ is of Legendre typew;1 = Vo¢*(Vo(wy) —
n: VL (w;11)) (Rockafellar, 1997). This is amplicit up-
date sincew, 1 appears on both sides. For cases when therhe convexity of?; implies the following:

update cannot be computed in closed form, a root finding

method must be employed, but in many practical cases, fast £¢(w.) > £y(Wit1) + (W — Wyp1)" Vi (Wir1).  (3)

root finding can be performed with only a few functions W d olug into the ab i ft |
evaluations. For example, in the case of linear prediction e rearrange and plug into the above equation (after mul-

(Co(w) = %(met — 41)2), we can use a root finder to tiplyipg by 7,), and from this we know that the lemma is

1Vl (wyg1)T (W1 — ws) < 0.

solve for the inner produgl, = w},,z, resulting in the rue if
following equation: atntft(wt) - Utft('lbtﬂ) - D¢>(ﬁ’t+17wt) <0, 4
Vo* (Vo(wy) — ny (e — yt)mt)Tgct — 7 =0. or equivalently,«; fi(w;) — fi(w;41) < 0. The lemma
follows.
The resulting computation is similar to computing a Breg- O

man projection (Censor & Zenios, 1997). Typically, good

|mp.|eme_ntat|ons require only a feV.V c;hmces ﬁ;r(usmg \We can use this lemma to prove the following regret bound.
a bisection method or more sophisticated approach); fort has two pieces. The second, the almost-telescoping sum

example, for the relative entropy 'anq von Neumgnn d"oé divergences, is standard. The first is more unusual: it is
vergence, one can adapt the root finding method discusse

. . X I Sall whenever the relative drop in value of the criterfen
in Kulis et al. (2009) for computing Bregman projections. oL . .
) L9 : ; after the implicit update is not too large. In the next settio
In these cases, the typical running time of the algorithm is X o
L : 2 . e shall see that the following theorem impligéy/7T") and
maintained at(d), making the updates competitive with e
o O(log T) regret for several specific cases.
the explicit updates.
Theorem 3.2. LetRy = ), li(w;) — >, ¢:(w,) be the
3.3. A General Stepwise Lemma and Regret Bound regret of the implicit online learning algorithm. Then, for
ay < fi(Wig1)/ fe(wy), we haveRy <

Let us bound the regret of our implicit online algorithm

by analyzing how the online solution compares with the 1<1_a 0, (w)+Dy(w,. w,)—Dy(w,. w )
optimal solution from step to step. zt:m (L=e)mde(we) Dy (s, we) =Dy {0y, wers)

Lemma 3.1. [Stepwise Lemma] Using updates defined
by (1) and (2), at each step, Proof. We add(1 — ay)n:¢:(w;) to both sides of the step-
wise lemma, and then divide the inequality fy Finally,

anily(wi) — nle(w,) < Dy(wa, wi) — Dy(wa, wig1), sum over alll’ timesteps. O



Implicit Online Learning

4. Special Cases and summing over all timesteps yiel&s:
In the following, we will look in depth at some special Z ﬁHVK ()] |2
cases of interest—the case of linear prediction, and the case — 2 TS,

when the loss functions are strongly convex. For linear ! 1

prediction, we give a general result over all Bregman di- + Z — (Dy(wy, w) — Dy (ws, wig1))
vergence regularizers that is comparable to known regret i

bounds, and discuss specific examples in detail. We show G 1

for strongly convex loss functions how to achieve logarith- = 5 Z U Z E(DM“’*’ W) = Dy (W, wi1))-
mic regret, nearly matching existing bounds for this case. t t

Settingn: = \/D/(tG), we can simplify the second sum-
mation to/G DT since the sum telescopes. The first sum
For linear prediction, our loss function is given by simplifies usingy,_, % < 2¢/T — 1 to obtain the result

4.1. Linear Prediction

l(wy) = L (w]'m, — y)%. Note thatV2(, (w,) = z,x] _
and is not strongly convex. Ry <2VDGT. O
First we simplify the expression far,: Note that the simplen, — ¢~1/2 (as in Zinkevich (2003))

Lemma 4.1. For £, (w,) = %(thwt — y,)%, and regu- also yieldsO(\/T) regret, but the result above is tighter.

larization with an arbitrary strictly convex functiop of ~ Moreover, we can improve the analysis by not simplifying

Legendre type, choosing via (n:ve)/(1 + my) < moye as is done in the proof. In
this case, we achieve regret of the fotfi’ — log 7" when
1 choosingy, = O(t=1/2).
o= ———
T4yt

4.2. Linear Prediction Examples
satisfies the conditions of Lemma 3.1, where =

x] [V2p(Wep1)] .

We discuss three particular special cases in this section:
the squared Euclidean distance, the relative entropy, and

The proof appears in the appendix. To prove a regret boundhe Itakura-Saito divergence. Sineg is indirectly a

we sum up the stepwise lemma over’Altimesteps using

function of,, and therefore, we also show bounds opn

the above choice af,, and note the telescoping sum. The for each of these cases (alternatively, we can say-thist
proof is similar to Zinkevich (2003) but is included here to the maximum over all vectoes, w of z” [V?¢(w)] "z in
highlight differences in the bounds. For notational simpli the domain of, but this may be a weak estimatej.
|ty, let ||w||?91 = a:TStw, WhereSt = [v2¢(wt+1)]71.

Theorem 4.2. Let Ry = ZtT:1ft(wt) _ 23:1 lo(w,) Squared Euclidean Distance: The squared Euclidean

. . : _ 1 2.
be the regret of the implicit online learning algorithm with distance is generated by the functigiiz) = 3|zf3;
a strictly convex functions of Legendre type. Suppose this divergence is particularly desirable because thetexac
there are constant§' and D such that for aIIw.t and S, gradient update can be computed in closed form for linear
V2 (we)|% < G and Dy (w.,w;) < D. Then, choosing prediction. Furthermore, we ha_ﬁqﬁ(w) = «, and

ot V2¢ = I. Thereforeyy, = ||z:||3. Given thaty, = |x¢||3,
n: = O(t~1/2), we haveRr = O(VT). 1 i :

! we haveytét(wt) = §||V€t(wt)|\2

Proof. We take the stepwise lemma result, and &tld- Relative

. L S Entropy: Now consider the Breg-
at)nel:(w) to both sides, then divide by. This yields man divergence obtained by the generating func-
— tion ¢(x) = >, x(i)logx(i). In this case,
b(wy) — Le(wy) < mgt('wt) v o= YW (D)e(i)? < 3||z]|2,.  The equality
) e follows by noting thatV2¢(w, ) = diag(l/w:, 1),
+—(Dg(w., w;) — Dy (Wi, wis1)). where the division is elementwise. The proof of the
U inequality is omitted due to lack of space.
Noting that(n:v:)/(1 + n:v:) < mey:, we havel, (w;) — Itakura-Saito and LogDet: A third special case arises in
O (wy) the case of non-negative linear regression. In the vector

case, the potential is called the Burg entropy and is defined
1 by ¢(x) = — >, log (i); in the matrix case, the potential
< meyebe(we) + E(D‘f’(w*’ we) = Dy (W, wi+1)) is defined ag(X) = — log det X. It is straightforward to
- , 1 show thaty, = 3=, w1 (i)*x. (i) for the vector case, and
= S IVE(w)lls, + E(Drb(w*th) = Dy (we, wit1))s 1, = tr((X,Wy41)2) for the matrix case.



Implicit Online Learning

To bound~, for the vector case, we lef be the set of Lemma4.4. For ¢(z) = %|«||3 and ¢, such thathl >
vectors whose elements are less than or equal to IRbet  V2¢, is an upper bound on the Hessian/f the following
the maximum value ofx,||;; we will also assume that €  holds:

[—R, R] (sincewl'z; € [-R, R] by Holder’s inequality).

The projection step onté’ guarantees that, = wl'z; € Folwy) — fo(ei) < L+ n:h [Bys1 — w2

[-R, R] for all t. Since|g: — y+| < |9+ — y¢| (as thew;4 U= * .
update minimizes (2)), we can further conclude that

[-3R,3R]. Finally, letv(i) = wi11(i)z(i). Then the See the proofin the appendix. The stepwise lemma ensures

following holds: that the second term in the regret cancels when choosing
n: = 1/(Ht), and the lemma above ensures that the first
v =v]3 < |v]l} < 9R>. term of the regret is bounded logarithmically.

Theorem 4.5. Let Ry = Zt Et(wt) — Zt Ef(w*) be the
regret of the implicit online learning algorithm. Given tha
¢(x) = 1|3 and¢, is H-strongly convex, then choosing
n = 1/(Ht) yields R = O(logT) when running for a
total of 7' timesteps.

A second class of loss functions that have been widely stud- ) ) ) )

ied assumes strong convexity of the loss; thaV’¥, = Th_e proof appears |.n.the appendl_x. Comparing with the ex-
HI, for some scalafl. An example would be the loss |§t|ng proof for explicit updates with strongly convex func
function, (w;) = 1[w, — ||, whose second derivative tions of ngan etal. (2007), we see t2hat the existing bound
is simply the identity (i.e. [ = 1). is Ry < 57 (1 4 logT'), where[|V{,|* < G. Our bound

is identical for the terms dependent ®nbut has an addi-

Strongly convex losses are useful and widely studied betional additive term dependent on the maximum condition
cause they have been shown to yield online learning alnumbper of the Hessian @f.

gorithms with logarithmic regret bounds (e.g. Hazan et al.
(2007); Kakade & Shalev-Shwartz (2008)). Here we will

show that when choosing(z) = 1|z||%, implicit up-

Thus,v; < 9R2. An analogous result holds for the matrix
case.

4.3. Logarithmic Regret with Strongly Convex L osses

5. Application: Online Metric Learning
2

dates achieve logarithmic regret for any strongly convexgg far, we have seen that implicit online learning updates
loss function. Our resulting bounds will be comparable t0¢an pe applied in a variety of settings, yielding compegitiv
existing bounds; the first step is to prove a stronger VersioRagret bounds as compared to state-of-the-art explicimet

of the stepwise lemma, stated below. ods. To highlight an application of implicit updates for a
Lemma 4.3. [Stepwise Lemma for H-Strongly Convex  practical problem, we now focus on a domain where im-
Losses] At each steg, plicit updates are particularly useful—online metric learn
ing. As we discuss below, and as the empirical results in-
agnily(we) — el (wy) < dicate, the LogDet divergence as a regularizer has shown
nH superior performance in this domain; further, as discussed

Dy (ws, wt) = Do(ws, wet1) — ——[lwi — w15, in Section 3.1, an implicit update scheme is necessary. Our
analysis yields better bounds and a more general algorithm.

wherea; < 7f}i’(";t)1) andw, is the optimal offline solution.  The goal in online Mahalanobis metric learning is to learn a
positive semi-definite matrikXi’ that paramaterizes the so-
H H . _ T
Proof. The proof follows the stepwise lemma proof, ex- ¢alled Mahalanobis distancéiy (2, y) = (z—y) _W("B__
cept in place of (3), we use the following inequality arising ¥)- e will update W in an online manner; each it-
from strong convexity (see Boyd & Vandenberghe (2004) €ration, we receive some information about the desired

Section 9.1.2): Mahalanobis distance, which is encoded in the loss func-
tion ¢,(W,) = L(tr(W,X,) — y)?. For example, when
U(we) > b(Wig) + (Wi — W) Vi (Wig1) Xy = (2 — yi)(x — yy)7, then W(W,.Xy) is simply the
H Mahalanobis distance betweenandy, usingW;, and so

+§Hw* - U%+1||§- the loss encodes how close the Mahalanobis distance is to

the target distancg;. Note that in this caseX; is a rank-
We also use the generalized Pythagorous theorem for thene matrix. Another possibility, used frequently in the of-
additional% lw. — w; 1|3 term, analogous to the step- fline setting, is that of relative distance constraints.

wise lemma. The remainder of the proof is the same.] Various regularizers are possible in the matrix domain. Ex-

amples include the squared Frobenius ndig(X,Y) =
Next, we bound the difference jf obtained from updating  1|/.X — Y'||%, the von Neumann divergende,(X,Y) =
w; t0 w1 USing anupper boundn the Hessian of;: tr(Xlog X — X logY — X +Y), or the LogDet divergence,
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discussed earlier. Because the constraints for onlindenetr 05
learning are typically low-rank (i.e., the matricé§ are Bl von Neumann
low-rank), the implicit LogDet updates can be computed in 0.4 [llvon Neumann Imp

[ JFrobenius
[ Frobenius Imp.
Il LogDet

closed form (see Jain et al. (2009) for the case of similarity
and dissimilarity constraints) i@ (d?) time, whered is the
number of rows/columns df/;. The von Neumann diver-
gence updates require an eigendecomposition in practice
resulting in updates that coét(d®), and because th#/;
matrices are restricted to the positive semi-definite cone,
the squared Frobenius norm updates must project onto tht .
PSD cone, which may be potentially expensive. Combined Iis  Balance Scale Soybean  Car  Audiology
with the fact that LogDet has produced good empirical re-

sults for onllne.metrlc 'eaf”'”g' the ngDet dlyergence IS aFigure 2.Comparison of metric learning methods on standard
natural regularizer for the online metric learning problem ;¢ gata sets.

k-NN Error
o o
b

o
i

The previous work of Jain et al. (2009) considered only

:Eg ;ﬁ;ﬁ sci)sf j;mgigtg da:)nnd ?(I)sselrr?illez”(t)); rc;%fgg'en?;itzzgods was always significantly higher due to the restriction
y P prop aEmat the weights lie on the unit simplex. See the final plot of

In contrast, the.analy3|s in th'S. paper applies In gener; igure 1 for an example; note that both EGD-based meth-
to other constraints and regularizers for the online metric

. ods performed similarly in this experiment and it is difficul
learning problem. Furthermore, our bounds for the casg, distinguish them on the plot
considered in Jain et al. (2009) are stronger; their bounds ’
are not of the formO(+/T), even if the stepsize fay, is ~ Online Metric Learning. We applied our method to the
defined to beD(1/v/1). online metric learning problem over a set of UCI data sets.
We compared various regularizers for metric learning, us-
ing similarity and dissimilarity constraints (see Sect®n

for a description of the problem). For this experiment,
Synthetic Results. We begin with some simple synthetic we ran the following methods: a von Neumann regular-
experiments to demonstrate advantages of the implicit apzed explicit method, a von Neumann regularized implicit
proach. First, we compare standard gradient descent witmethod, a squared Frobenius regularized explicit method,
the implicit gradient descent algorithm for linear predic- a squared Frobenius regularized implicit method, and the
tion. An optimal 20-dimensional vectow, was cho- LogDet regularized implicit method. For each algorithm,
sen randomly (with uniform weights if9, 1]). For each we ran 10,000 online timesteps and constraints were gener-
timestep, we chose random vectors with weights uni- ated randomly over a 70 percent training set. Each con-
formly random from[—.5, .5] and computed @; value as ~ straint is a random pair of points from the training set,
the inner product between the optimal, and x,, with ~ and target distances are set to the 5th and 95th percentile
added Gaussian noise (variance .1). We compared thef the training set for same-class and different-class con-
methods (using); = 1/+/1), and then repeated the experi- straints, respectively. Results are averaged over 10 runs.
ment by scaling the:, vectors (and the noise) lyand2.5  We see from the results in Figure 2 that the LogDet method
(but keeping the same learning rate). The results in the toglearly outperforms the other online regularizers and-algo
row of Figure 1 show that as the scale increases, the stafithms on these data sets. Furthermore, given the addi-
dard gradient descent makes larger mistakes during earljonal cost of the von Neumann-based methods (each it-
timesteps, whereas the implicit method appears more rceration isO(d®) whereas the cost of an iteration for the
bust during these timesteps. As a result, the difference ihogDet-based method i9(d?)), the requirement that the
the total accumulated loss between the methods grows withrobenius-based methods project onto the positive semi-
the scale of the data. definite cone, and the fact that LogDet cannot be effectively

. . analyzed in the explicit case, these results further vedida
Next, we compared exponentiated gradient descent, expqy;,, analysis of implicit methods

nentiated gradient descent with implicit updates, and the

Itakura-Saito based descent method. As before, we con-

structz:; vectors with weights chosen uniformly at random REferences

from [—.5,.5]. When the optimal weight vector is normal- azoury, K. S. and Warmuth, M. Relative loss bounds for on-line
ized to sum to 1, we found that the exponentiated gradi- density estimation with the exponential family of distributions.
ent descent methods and the Itakura-Saito method all gave Machine Learning43(3):211-246, 2001.

nearly identical results (plots not shown). We also testeddoyd, S. and Vandenberghe, Convex OptimizationCambridge
cases where the optimal weight vector was not normalized University Press, 2004.

to sumto 1. For this case. the loss for the EGD-based metH=€nsor. Y. and Zenios, Parallel Optimization Oxford Univer-
' ' sity Press, 1997.

6. Experimental Results
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Figure 1.Synthetic results. The first 3 plots show how the implicit gradient desdgatigam is more robust as the scale of the data
is increased; the last plot shows that, for non-negative linear régnesise Itakura-Saito methods (which require implicit analysis) are
more suited than exponentiated gradient descent for problems wiessptimal weight vector is not normalized. See text for details.

Cesa-Bianchi, N. and Lugosi, G.Prediction, Learning, and which results in the conditiony, < 1 — (dg:)/(dy:).

’ GameES szbndgl;epl\vae(rjs&y lPre;s, EOO6I'th _ Cal From Section 3.2, we know thait; .1 = V¢*(Vo(w;) —
azan, E., Agarwal, A., and Kale, S. Logarithmic regret algo- .~T _ i Y
rithms for online convex optimizatiorMachine Learning69: N(Wis1 0 yt)mi) and so therefore SanﬁT_ W1t

169-192, 2007. we havey, = Vo*(Vo(wy) — n(ys — yi)xe) ! ;. Simple
Jain, P., Kulis, B., Dhillon, 1., and Grauman, K. Online metric application of the chain rule yields

learning and fast similarity search. Advances in Neural In- J 4y

formation Processing Systems (NIP&)09. t_ T2 % o (77— 29t
Kakade, S. and Shalev-Shwartz, S. Mind the duality gap: Loga-dy, "t (V2" (Vo (we)—n: (@ yt)wtﬂgvt(dyt 1)'

rithmic regret algorithms for online optimization. Advances )

in Neural Information Processing Systems (NIPZ5)08. Using V2¢*(Vo(z)) = [V¢(x)]™t and v =
Kivinen, J. and Warmuth, M. K. Exponentiated gradient versusz! [V2¢(w;1)] 'z, we simplify to

gradient descent for linear predictoriiformation and Com-

putation 132(1):1-64, 1997. Ay — mne
Kulis, B., Sustik, M., and Dhillon, I. Low-rank kernel learning dy; 14+ nt%’

with Bregman matrix divergencedournal of Machine Learn- . . .

ing Research (JMLRLO, 2009. and simplification ofy, yields the lemma.
Rockafellar, R. T.Convex AnalysisPrinceton University Press,

1997.

Zinkevich, M. Online convex programming and generalized in- Proof: [Lemma 4.4] An upper bound dfI on V¢, (Boyd
finitesimal gradient ascent. International Conference onMa- & Vandenberghe (2004), Section 9.1.2) yielg&w;) <
chine Learning (ICML,)2003.

. _ _ h -
O (Weqr) + (Wi — Wig1) Vi (Wr41) + 5 [[we — Wy ]|3-

Appendix: Proofs Since w1 = wy — Ve (We), the term
. | (wy — Wy41)T VL (1) simplifies to:L ;1 — w3,

Proof: [Lemma 4.1] Recall from }he stepwise lemma that vy tiplying the whole equation by, and simplifying via

oy must SatISfyf)ztft(wt) < ft_(th) or, equwal_ently, fi(ep1) = %||qz;t+1 — w3 + nely(wyyq), the result

ag fr(wy) — fi(wi41) < 0. Define the left-hand side us- fg)ows.

ing (4) as a function ofy; that ish(y,) =

ﬁ(ﬁ)fﬂwt )2 = Dy(psr, wy). Proof: [Theorem 4.5] By summing over &ll timesteps as

N, T 2
o — Wy, Ty — —
vg (Wi =) 2 in Theorem 3.2, using Lemma 4.3 we obtain

2
We will show that the derivative of is zero somewhere 1 -
(andh = 0 at that point), and that the second derivative is Br < Z eq(wt) = i) +
always negative for a specific choice @f, implying that ‘
h < 0 everywhere. Sincéf;/0w¢.1 = 0, we know from %" 5 (llw. - w3 — | we — w1 |3 — neH || we — wiir||3).
the multivariate chain rule that when taking the derivative 7~ <"

_cIJ_Lh \I/vi'[hd respect toy;, we can trgatbt+1 as af:onstant. By choosingn; = 1/(Ht), the second sum simplifies to
atleads tc‘ﬁ”)/(dytl - _?}m@t =) + e (Ge = ), 5+ [|lw, — w1 ||3. For the first sum, we use Lemma 4.4 and
wherey; = w; x; andy; = w;,,x;. Wheng; = y;, then m - ~
- L e A the fact that|w; 1 — w3 = 7| Ve (we1)]3 < n2G
loss is zero and s, 1 = wy, h = 0, andh’ = 0. Now we N i <t+é Th't 2 =M t(wet1)|lz < i G,
must compute the second derivativehofiith respect tay, ~ WNerelVEll® < G. This gives us
and show that this is always negative. The 2nd derivative is 2h  HD
Yy g R GZ Ua +277t 4
t

2

IN

computed as (hoting thgt is a function ofy;) T

dy: G Gh HD
= < — — RN
oy +nt<dyt 1), S 5f 1+logT +H2+ 5



