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Abstract

We present a theoretical analysis of super-
vised ranking, providing necessary and suf-
ficient conditions for the asymptotic consis-
tency of algorithms based on minimizing a
surrogate loss function. We show that many
commonly used surrogate losses are incon-
sistent; surprisingly, we show inconsistency
even in low-noise settings. We present a
new value-regularized linear loss, establish its
consistency under reasonable assumptions on
noise, and show that it outperforms conven-
tional ranking losses in a collaborative filter-
ing experiment.

The goal in ranking is to order a set of inputs in accor-
dance with the preferences of an individual or a popu-
lation. In this paper we consider a general formulation
of the supervised ranking problem in which each train-
ing example consists of a query q, a set of inputs x,
sometimes called results, and a weighted graph G rep-
resenting preferences over the results. The learning
task is to discover a function that provides a query-
specific ordering of the inputs that best respects the
observed preferences. This query-indexed setting is
natural for tasks like web search in which a different
ranking is needed for each query. Following existing
literature, we assume the existence of a scoring func-
tion f(x, q) that gives a score to each result in x; the
scores are sorted to produce a ranking (Herbrich et al.,
2000; Freund et al., 2003). We assume simply that
the observed preference graph G is a directed acyclic
graph (DAG). Finally, we cast our work in a decision-
theoretic framework in which ranking procedures are
evaluated via a loss function L(f(x, q), G).
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It is important to distinguish between the loss function
used for evaluating learning procedures from the loss-
like functions used to define specific methods (gener-
ally via an optimization algorithm). In prior work the
former (evaluatory) loss has often been taken to be a
pairwise 0-1 loss that sums the number of misordered
pairs of results. Recent work has considered losses
that penalize errors on more highly ranked instances
more strongly. Järvelin & Kekäläinen (2002) suggest
using discounted cumulative gain, which assumes that
each result xi is given a score yi and that the loss is a
weighted sum of the yi of the predicted order. Rudin
(2009) uses a p-norm to emphasize the highest ranked
instances. Here we employ a general graph-based loss
L(f(x, q), G) which is equal to zero if f(q,x) obeys
the order specified by G—that is, fi(x, q) > fj(x, q)
for each edge (i → j) ∈ G, where fi(x, q) is the score
assigned to the ith object in x—and is positive oth-
erwise. We make the assumption that L is edgewise,
meaning that L depends only on the relative order of
fi(x, q) rather than on its values. Such losses are nat-
ural in settings with feedback in the form of ordered
preferences, for example when learning from click data.

Although we might wish to base a learning algorithm
on the direct minimization of the loss L, this is gener-
ally infeasible due to the non-convexity and discontinu-
ity of L. In practice one instead employs a surrogate
loss that lends itself to more efficient minimization.
This issue is of course familiar from the classification
literature, where a deep theoretical understanding of
the statistical and computational consequences of the
choices of various surrogate losses has emerged (Zhang,
2004; Bartlett et al., 2006). There is a relative paucity
of such understanding for ranking. In the current pa-
per we aim to fill this gap, taking a step toward bring-
ing the ranking literature into line with that for clas-
sification. We provide a general theoretical analysis of
the consistency of ranking algorithms that are based
on a surrogate loss function.
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The paper is organized as follows. In Section 1, we
define the consistency problem formally and present
a theorem that provides conditions under which con-
sistency is achieved for ranking algorithms. In Sec-
tion 2 we show that finding consistent surrogate losses
is difficult in general, and we establish results showing
that many commonly used ranking loss functions are
inconsistent, even in low-noise settings. We comple-
ment this in Section 3 by presenting losses that are
consistent in these low-noise settings. We finish with
experiments and conclusions in Sections 4 and 5.

1. Consistency for Surrogate Losses

Our task is to minimize the risk of the scoring function
f . The risk is the expected loss of f across all queries
q, result sets x, and preference DAGs G:

R(f) = EX,Q,GL(f(X, Q), G). (1)

Given a query q and result set x, we define G to be
the set of possible preference DAGs and p to be (a
version of) the vector of conditional probabilities of
each DAG. That is, p = [pG]G∈G = [P(G | x, q)]G∈G .
In what follows, we suppress dependence of p, G, and
G on the query q and results x, as they should be clear
from context. We assume that the cardinality of any
result set x is bounded above by M < ∞. We further
define the conditional risk of f given x and q to be

ℓ(p,f(x, q)) =
∑

G∈G

pGL(f(x, q), G)

=
∑

G∈G

P(G | x, q)L(f(x, q), G). (2)

With this definition, we see the risk of f is equal to

EX,Q

[
∑

G∈G

P(G | X, Q)L(f(X, Q), G)

]
= EX,Qℓ(p,f).

We overload notation so that α takes the value of
f(x, q) in ℓ(p,α). The minimal risk, or Bayes’ risk, is
the minimal risk over all measurable functions,

R∗ = inf
f

R(f) = EX,Q inf
α

ℓ(p,α).

It is infeasible to directly minimize the true risk in
Eq. (1), as it is non-convex and discontinuous. As
is done in classification (Zhang, 2004; Bartlett et al.,
2006), we thus consider a bounded-below surrogate
ϕ to minimize in place of L. For each G, we write
ϕ(·, G) : R|G| → R. The ϕ-risk of the function f is

Rϕ(f) = EX,Q,G [ϕ(f(X, Q), G)]

= EX,Q

[
∑

G∈G

P(G | X, Q)ϕ(f(X, Q), G)

]
,

while the optimal ϕ-risk is R∗
ϕ = inff Rϕ(f).

To develop a theory of consistency for ranking meth-
ods, we pursue a treatment that parallels that of Zhang
(2004) for classification. Using the conditional risk in
Eq. (2), we define a function to measure the discrim-
inating ability of the surrogate ϕ. Let G(m) denote
the set of possible DAGs G over m results, noting that

|G(m)| ≤ 3(
m

2 ). Let ∆|G(m)| ⊂ R
|G(m)| denote the prob-

ability simplex. For α,α′ ∈ R
m we define

Hm(ε) = inf
p∈∆,α

{ ∑

G∈G(m)

pGϕ(α, G)− inf
α′

∑

G∈G(m)

pGϕ(α
′, G)

: ℓ(p,α)− inf
α′

ℓ(p,α′) ≥ ε
}
. (3)

Hm measures surrogate risk suboptimality as a func-
tion of true risk suboptimality. A reasonable surrogate
loss should declare any setting of {p,α} suboptimal
that the true loss declares suboptimal, which corre-
sponds to Hm(ε) > 0 whenever ε > 0. We will see
soon that this condition is the key to consistency.

Define H(ε) = minm≤M Hm(ε). We immediately have
H ≥ 0, H(0) = 0, and H(ε) is non-decreasing on 0 ≤
ε < ∞, since individualHm(ε) are non-decreasing in ε.
We have the following lemma (a simple consequence of
Jensen’s inequality; see Duchi et al., 2010, for proof).

Lemma 1. Let ζ be a convex function such that ζ(ε) ≤
H(ε). Then for all f , ζ(R(f)−R∗) ≤ Rϕ(f)−R∗

ϕ.

Corollary 26 from Zhang (2004) then shows as a conse-
quence of Lemma 1 that if H(ε) > 0 for all ε > 0, there
is a nonnegative concave function ξ, right continuous
at 0 with ξ(0) = 0, such that

R(f)−R∗ ≤ ξ(Rϕ(f)−R∗
ϕ). (4)

Clearly, if limn Rϕ(fn) = R∗
ϕ, we have consistency:

limn R(fn) = R∗. Though it is not our focus, it is
possible to use Eq. (4) to get strong rates of conver-
gence if ξ grows slowly. The remainder of this paper
concentrates on finding conditions relating the surro-
gate loss ϕ to the risk ℓ to make H(ε) > 0 for ε > 0.

We achieve this goal by using conditions based on the
edge structure of the observed DAGs. Given a proba-
bility vector p ∈ R

|G| over a set of DAGs G, we recall
Eq. (2) and define the set of optimal result scores A(p)
to be all α attaining the infimum of ℓ(p,α),

A(p) = {α : ℓ(p,α) = inf
α′

ℓ(p,α′)}. (5)

The infimum is attained since ℓ is edgewise as de-
scribed earlier, so A(p) is not empty. The following
definition captures the intuition that the surrogate loss
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ϕ should maintain ordering information. For this def-
inition and the remainder of the paper, we use the
following shorthand for the conditional ϕ-risk:

W (p,α) ,
∑

G∈G

pGϕ(α, G). (6)

Definition 2. Let ϕ be a bounded-below surrogate loss
with ϕ(·, G) continuous for all G. ϕ is edge-consistent
with respect to the loss L if for all p,

W ∗(p) , inf
α

W (p,α) < inf
α

{W (p,α) : α 6∈ A(p)} .

Definition 2 captures an essential property for the sur-
rogate loss ϕ: if α induces an edge (i → j) via αi > αj

so that the conditional risk ℓ(p,α) is not minimal, then
the conditional surrogate risk W (p,α) is not minimal.

We now provide three lemmas and a theorem that
show that if the surrogate loss ϕ satisfies edge-
consistency, then its minimizer asymptotically mini-
mizes the Bayes risk. As the lemmas are direct analogs
of results in Tewari & Bartlett (2007) and Zhang
(2004), we put their proofs in Duchi et al. (2010).

Lemma 3. W ∗(p) is continuous on ∆.

Lemma 4. Let ϕ be edge-consistent. Then
W (p,α(n)) → W ∗(p) implies that ℓ(p,α(n)) →
infα ℓ(p,α) and α(n) ∈ A(p) eventually.

Lemma 5. Let ϕ be edge-consistent. For every ε > 0
there exists a δ > 0 such that if p ∈ ∆, ℓ(p,α) −
infα′ ℓ(p,α′) ≥ ε implies W (p,α)−W ∗(p) ≥ δ.

Theorem 6. Let ϕ be a continuous, bounded-below
loss function and assume that the size of the result sets
is upper bounded by a constant M . Then ϕ is edge-
consistent if and only the following holds: Whenever
fn is a sequence of scoring functions such that

Rϕ(fn)
p
→ R∗

ϕ, then R(fn)
p
→ R∗.

Proof We begin by proving that if ϕ is edge-
consistent, the implication holds. By Lemma 5 and
the definition of Hm in Eq. (3), we have that if ε > 0,
then there is some δ > 0 such that Hm(ε) ≥ δ > 0.
Thus H(ε) = minm≤M Hm(ε) > 0, and Eq. (4) then

immediately implies that R(fn)
p
→ R∗.

Now suppose that ϕ is not edge-consistent, that is,
there is some p so that W ∗(p) = infα{W (p,α) : α 6∈
A(p)}. Let α(n) 6∈ A(p) be a sequence such that
W (p,α(n)) → W ∗(p). If we simply define the risk
to be the expected loss on one particular example x

and set fn(x) = α(n), then Rϕ(fn) = W (p,α(n)).
Further, by assumption there is some ε > 0 such
that ℓ(p,α(n)) ≥ infα ℓ(p,α) + ε for all n. Thus
R(fn) = ℓ(p,α(n)) 6→ R∗ = infα ℓ(p,α).

2. The Difficulty of Consistency

In this section, we explore the difficulty of finding edge-
consistent ranking losses in practice. We first show
that unless P = NP many useful losses cannot be
edge-consistent in general. We then show that even in
low-noise settings, common losses used for ranking are
not edge-consistent. We focus our attention on pair-
wise losses, which impose a separate penalty for each
edge that is ordered incorrectly; this generalizes the
disagreement error described by Dekel et al. (2004).
We assume we have a set of non-negative penalties aGij
indexed by edge (i → j) and graph G so that

L(α, G) =
∑

i<j

aGij1(αi≤αj) +
∑

i>j

aGij1(αi<αj). (7)

We distinguish the cases i < j and i > j to avoid minor
technical issues created by doubly penalizing 1(αi=αj).

If we define aij ,
∑

G∈G aGijpG, then

ℓ(p,α) =
∑

i<j

aij1(αi≤αj) +
∑

i>j

aij1(αi<αj). (8)

2.1. General inconsistency results

Finding an efficiently minimizable surrogate loss that
is also consistent for Eq. (8) for all p is unlikely, as
indicated by the next lemma. The result is a conse-
quence of the fact that the feedback arc-set problem is
NP -complete (Karp, 1972); see Duchi et al. (2010).

Lemma 7. Define ℓ(p,α) as in Eq. (8). Finding an
α minimizing ℓ is NP -hard.

Since many convex functions are minimizable in
polynomial time or can be straightforwardly trans-
formed into a formulation that is minimizable in poly-
logarithmic time (Ben-Tal & Nemirovski, 2001), most
convex surrogates are inconsistent unless P = NP .

2.2. Low-noise inconsistency

In this section we show that, surprisingly, many com-
mon convex surrogates are inconsistent even in low-
noise settings. Inspecting Eq. (7), a natural choice
for a surrogate loss is one of the form (Herbrich et al.,
2000; Freund et al., 2003; Dekel et al., 2004)

ϕ(α, G) =
∑

(i→j)∈G

h(aGij)φ(αi − αj) (9)

where φ ≥ 0 is a non-increasing function, and h is a
function of the penalties aGij . In this case, the condi-
tional surrogate risk is W (p,α) =

∑
i6=j hijφ(αi−αj),

where we define hij ,
∑

G∈G h(aGij)pG.
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If ϕ from Eq. (9) is edge-consistent, then φmust be dif-
ferentiable at 0 with φ′(0) < 0. This is a consequence
of Bartlett et al.’s (2006) analysis of binary classifica-
tion and the correspondence between binary classifi-
cation and pairwise ranking; for the binary case, con-
sistency requires φ′(0) < 0. Similarly, we must have
h ≥ 0 on R+ and strictly increasing. For the remainder
of this section, we make the unrestrictive assumption
that φ decreases more slowly in the positive direction
than it increases in the negative. Formally, we use the
recession function (Rockafellar, 1970, Thm. 8.5) of φ,

φ′
∞(d) , sup

t>0

φ(td)− φ(0)

t
= lim

t→∞

φ(td)− φ(0)

t
.

The assumption, satisfied for bounded below φ, is

Assumption A. φ′
∞(1) ≥ 0 or φ′

∞(−1) = ∞.

We now define precisely what we mean by a low-noise
setting. For any (G,p), let G̃ be the difference graph,
that is, the graph with edge weights max{aij − aji, 0}
on edges (i → j), where aij =

∑
G∈G aGijpG, and if

aij ≤ aji then the edge (i → j) 6∈ G̃ (see Fig. 1).
We define the following low-noise condition based on
self-reinforcement of edges in the difference graph.

Definition 8. We say (G,p) is low-noise when the

corresponding difference graph G̃ satisfies the following
reverse triangle inequality: whenever there is an edge
(i → j) and an edge (j → k) in G̃, then the weight
aik − aki on (i → k) is greater than or equal to the
path weight aij − aji + ajk − akj on (i → j → k).

It is not difficult to see that if (G,p) satisfies Def. 8,

its difference graph G̃ is a DAG. Indeed, the definition
ensures that all global preference information in G̃ (the
sum of weights along any path) conforms with and
reinforces local preference information (the weight on
a single edge). Reasonable ranking methods should be
consistent in this setting, but this is not trivial.

In the lemmas to follow, we consider simple 3-node
DAGs that admit unique minimizers for their condi-
tional risks. In particular, we consider DAGs on nodes
1, 2, and 3 that induce only the four penalty values
a12, a13, a23, and a31 (see Fig. 1). In this case, if
a13 > a31, any α minimizing ℓ(p,α) clearly will have
α1 > α2 > α3. We now show under some very general
conditions that if ϕ is edge-consistent, φ is non-convex.

Let φ′(x) denote an element of the subgradient set
∂φ(x). The subgradient conditions for optimality of

W (p,α) = h12φ(α1 − α2) + h13φ(α1 − α3) (10)

+ h23φ(α2 − α3) + h31φ(α3 − α1)

1

32

2a
12

2a
13

2a
23

1

32

2a
31

1

32

a
12

a
13 
- a
31

a
23

Figure 1. The two DAGs
above occur with proba-
bility 1

2
, giving the differ-

ence graph G̃ on the left,
assuming that a13 > a31.

are that

0 = h12φ
′(α1 − α2) + h13φ

′(α1 − α3)− h31φ
′(α3 − α1)

0 = −h12φ
′(α1 − α2) + h23φ

′(α2 − α3). (11)

We begin by showing that under Assumption A on φ,
there is a finite minimizer of W (p,α). The lemma is
technical and its proof is in Duchi et al. (2010).

Lemma 9. There is a constant C < ∞ and a vector
α∗ minimizing W (p,α) with ‖α∗‖∞ ≤ C.

We use the following lemma to prove our main theorem
about inconsistency of pairwise convex losses.

Lemma 10 (Inconsistency of convex losses). Suppose
that a13 > a31 > 0, a12 > 0, a23 > 0. Let ℓ(p,α) be

a121(α1≤α2) + a131(α1≤α3) + a231(α2≤α3) + a311(α3<α1)

and W (p,α) be defined as in Eq. (10). For convex φ
with φ′(0) < 0, W ∗(p) = infα {W (p,α) : α /∈ A(p)}
whenever either of the following conditions is satisfied:

Cond 1: h23 <
h31h12

h13 + h12
Cond 2: h12 <

h31h23

h13 + h23
.

Proof Lemma 9 shows that the optimal W ∗(p) is
attained by some finite α. Thus, we fix an α∗ satisfy-
ing Eq. (11), and let δij = α∗

i − α∗
j and gij = φ′(δij)

for i 6= j. We make strong use of the monotonicity of
subgradients, that is, δij > δkl implies gij ≥ gkl (e.g.
Rockafellar, 1970, Theorem 24.1). By Eq. (11),

g13 − g12 =
h31

h13
g31 −

(
1 +

h12

h13

)
g12 (12a)

g13 − g23 =
h31

h13
g31 −

(
1 +

h23

h13

)
g23. (12b)
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Suppose for the sake of contradiction that α∗ ∈ A(p).
As δ13 = δ12 + δ23, we have that δ13 > δ12 and δ13 >
δ23. The convexity of φ implies that if δ13 > δ12, then
g13 ≥ g12. If g12 ≥ 0, we thus have that g13 ≥ 0 and by
Eq. (11), g31 ≥ 0. This is a contradiction since δ31 < 0
gives g31 ≤ φ′(0) < 0. Hence, g12 < 0. By identical
reasoning, we also have that g23 < 0.

Now, δ23 > 0 > δ31 implies that g23 ≥ g31, which
combined with Eq. (12a) and the fact that g23 =
(h12/h23)g12 (by Eq. (11)) gives

g13 − g12 ≤
h31

h13
g23 −

(
1 +

h12

h13

)
g12

=

(
h31h12

h23
− h13 − h12

)
g12
h13

.

Since g12/h13 < 0, we have that g13−g12 < 0 whenever
h31h12/h23 > h13 + h12. But when δ13 > δ12, we must
have g13 ≥ g12, which yields a contradiction under
Condition 1.

Similarly, δ12 > 0 > δ31 implies that g12 ≥ g31, which
with g12 = (h23/h12)g23 and Eq. (12b) gives

g13 − g23 ≤
h31

h13
g12 −

(
1 +

h23

h13

)
g23

=

(
h31h23

h12
− h13 − h23

)
g23
h13

.

Since g23/h13 < 0, we further have that g13 − g23 < 0
whenever h31h23/h12 > h13 + h23. This contradicts
δ13 > δ23 under Condition 2.
Lemma 10 allows us to construct scenarios under
which arbitrary pairwise surrogate losses with convex
φ are inconsistent. Assumption A only to specify an
optimal α with ‖α‖∞ < ∞, and can be weakened to
W (p,α) → ∞ as (αi−αj) → ∞. The next theorem is
our main negative result on the consistency of pairwise
surrogate losses.

Theorem 11. Let ϕ be a loss that can be written as

ϕ(α, G) =
∑

(i→j)∈G

h(aGij)φ(αi − αj)

for h continuous and increasing with h(0) = 0. Even
in the low-noise setting, for φ convex and satisfying
Assumption A, ϕ is not edge-consistent.

Proof Assume for the sake of contradiction that
ϕ is edge-consistent. Recall that for φ convex,
φ′(0) < 0, and we can construct graphs G1 and
G2 so that the resulting expected loss satisfies
Condition 1 of Lemma 10. Let G = {G1, G2}
where G1 = ({1, 2, 3}, {(1 → 2) , (1 → 3)}) and
G2 = ({1, 2, 3}, {(2 → 3) , (3 → 1)}). Fix any weights

aG1

12 , a
G1

13 , a
G2

31 with aG1

13 > aG1

12 > 0 and aG1

13 > aG2

31 > 0,
and let p = (.5, .5). As h is continuous with
h(0) = 0, there exists some ε > 0 such that h(ε) <
2h31h12/(h13 + h12), where hij =

∑
G∈G h(aGij)pG.

Take aG2

23 = min{ε, (aG1

13 − aG1

12 )/2}. Then we have
h23 = h(aG2

23 )/2 ≤ h(ε)/2 < h31h12/(h13 + h12).
Hence Condition 1 of Lemma 10 is satis-
fied, so ϕ is not edge-consistent. Moreover,
aG2

23 ≤ (aG1

13 − aG1

12 )/2 < aG1

13 − aG1

12 implies that

G̃ is a DAG satisfying the low-noise condition.

2.3. Margin-based inconsistency

Given the difficulties encountered in the previous sec-
tion, it is reasonable to consider a reformulation of
our surrogate loss. A natural alternative is a margin-
based loss, which encodes a desire to separate ranking
scores by a large margins dependent on the prefer-
ences in a graph. Similar losses have been proposed,
e.g., by Shashua & Levin (2002). In particular, we
now consider losses of the form

ϕ(α, G) =
∑

(i→j)∈G

φ
(
αi − αj − h(aGij)

)
, (13)

where h is continuous and h(0) = 0. It is clear from
the reduction to binary classification that h must be
increasing for the loss in Eq. (13) to be edge-consistent.
When φ is a decreasing function, this intuitively says
that the larger aij is, the larger αi should be when
compared to αj . Nonetheless, as we show below, such
a loss is inconsistent even in low-noise settings.

Theorem 12. Let ϕ be a loss that can be written as

ϕ(α, G) =
∑

(i→j)∈G

φ(αi − αj − h(aGij))

for h continuous and increasing with h(0) = 0. Even
in the low-noise setting, for φ convex and satisfying
Assumption A, ϕ is not edge-consistent.

Proof Assume for the sake of contradiction that ϕ is
edge-consistent. As noted before, φ′(0) < 0, and since
φ is differentiable almost everywhere (Rockafellar,
1970, Theorem 25.3), φ is differentiable at −c
for some c > 0 in the range of h. Consider-
ing the four-graph setting with graphs containing
one edge each, G1 = ({1, 2, 3}, {(1 → 2)}), G2 =
({1, 2, 3}, {(2 → 3)}), G3 = ({1, 2, 3}, {(1 → 3)}), and
G4 = ({1, 2, 3}, {(3 → 1)}), choose constant edge
weights aG1

12 = aG2

13 = aG3

23 = aG4

31 = h−1(c) > 0, and
set p = (.25, .01, .5, .24). In this setting,

W (p,α) = pG1
φ̃(α1 − α2) + pG2

φ̃(α2 − α3)

+ pG3
φ̃(α1 − α3) + pG4

φ̃(α3 − α1),
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for φ̃(x) = φ(x − c). Notably, φ̃ is convex, satisfies
Assumption A, and φ̃′(0) = φ′(−c) < 0. Moreover,
a13 − a31 = h−1(c)(pG3

− pG4
) ≥ h−1(c)(pG1

+ pG2
) =

a12 + a23 > 0, so G̃ is a DAG satisfying the low-noise
condition. However, pG2

<
pG4

pG1

pG3
+pG1

. Hence, by

Lemma 10, W ∗(p) = infα {W (p,α) : α /∈ A(p)}, a
contradiction.

3. Conditions for Consistency

The prospects for consistent surrogate ranking appear
bleak given the results of the previous section. Never-
theless, we demonstrate in this section that there exist
surrogate losses that yield consistency under some re-
strictions on problem noise. We consider a new loss—
specifically, a linear loss in which we penalize (αj−αi)
proportional to the weight aij in the given graph G.
To keep the loss well-behaved and disallow wild fluc-
tuations, we also regularize the α values. That is, our
loss takes the form

ϕ(α, G) =
∑

(i→j)∈G

aGij(αj − αi) + ν
∑

i

r(αi). (14)

We assume that r is strictly convex and 1-coercive,
that is, that r asymptotically grows faster than any
linear function. These conditions imply that the loss
of Eq. (14) is bounded below. Moreover, we have the
basis for consistency:

Theorem 13. Let the loss take the form of a gener-
alized disagreement error of Eq. (7) and the surrogate
loss take the form of Eq. (14) where ν > 0 and r is
strictly convex and 1-coercive. If the pair (G,p) in-

duces a difference graph G̃ that is a DAG, then

W ∗(p) < inf
α

{W (p,α) : α /∈ A(p)} ⇔
∑

j

aij − aji >
∑

j

akj − ajk for i, k s.t. aik > aki.

Proof We first note that G̃ is a DAG if and only if

A(p) = {α : αi > αj for i < j with aij > aji,

αi ≥ αj for i > j with aij > aji}.

(See Lemma 16 of Duchi et al. (2010), though essen-
tially all we do is write out ℓ(p,α).) We have that

W (p,α) =
∑

i

(
αi

∑

j

(aji − aij) + νr(αi)
)
.

Standard subgradient calculus gives that at optimum,

r′(αi) =

∑
j aij − aji

ν
.

Since r is strictly convex, r′ is a strictly increasing set-
valued map with increasing inverse s(g) = {α : g ∈
∂r(α)}. Optimality is therefore attained uniquely at

α∗
i = s

(∑
j aij − aji

ν

)
. (15)

Note that for any i, k, α∗
i > α∗

k if and only if

s
(∑

j aij−aji

ν

)
> s

(∑
j akj−ajk

ν

)
, which in turn occurs

if and only if
∑

j aij−aji

ν
>

∑
j akj−ajk

ν
. Hence, the op-

timal α∗ of Eq. (15) is in A(p) if and only if
∑

j aij − aji

ν
>

∑
j akj − ajk

ν
when aik > aki. (16)

Thus, W ∗(p) = infα {W (p,α) : α /∈ A(p)} whenever
Eq. (16) is violated. On the other hand, suppose
Eq. (16) is satisfied. Then for all α satisfying

‖α−α∗‖∞ < min
{i,k:aik>aki}

1

2
(α∗

i − α∗
k),

we have α ∈ A(p), and infα {W (p,α) : α /∈ A(p)} >
W ∗(p) since α∗ is the unique global minimum.
We now prove a simple lemma showing that low-noise
settings satisfy the conditions of Theorem 13.

Lemma 14. If (G,p) is low noise, then for the asso-

ciated difference graph G̃, whenever aik > aki,
∑

j

aij − aji >
∑

j

akj − ajk.

Proof Fix (i, k) with aik > aki. There are two cases
for a third node j: either aij −aji > 0 or aij −aji ≤ 0.

In the first case, there is an edge (i → j) ∈ G̃. If

(k → j) ∈ G̃, the low-noise condition implies aij −
aji ≥ akj − ajk + aik − aki > akj − ajk. Otherwise,
akj−ajk ≤ 0 < aij−aji. In the other case, aij−aji ≤

0. If the inequality is strict, then (j → i) ∈ G̃, so the
low-noise condition implies that aji−aij < aji−aij +
aik−aki ≤ ajk−akj , or akj−ajk < aij−aji. Otherwise,
aij = aji, and the low-noise condition guarantees that

(j → k) /∈ G̃, so akj − ajk ≤ 0 = aij − aji.

The inequality in the statement of the lemma is strict,
because aik − aki > 0 = akk − akk.
The converse of the lemma is, in general, false. Com-
bining the above lemma with Theorem 13, we have

Corollary 15. The linear loss of Eq. (14) is consis-
tent if (G,p) is low noise for all query-result pairs.

With the above corollary, we have a consistent loss:
the value-regularized linear loss is edge (and hence
asymptotically) consistent in low-noise settings. It is
not difficult to see that the value regularization from
r is necessary; if r is not in the objective in Eq. (14),
then ϕ(·, G) can be sent to −∞ with α 6∈ A(p).
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3.1. Relationship to prior work

One of the main results on consistency to date is
due to Cossock & Zhang (2008), who work in a set-
ting in which each item xi to be ranked is associ-
ated with a score yi. In this setting we can show
that the resulting graphs (G,p) satisfy our low-noise
condition. Indeed, for every observed pair of results
and scores 〈(xi, yi), (xj , yj)〉, we can construct a graph
G = ({xi, xj}, {(i → j)}) and set aGij = yi − yj . Then
in the limit, we have aij = ȳi− ȳj , where ȳi is the true

score of item xi, and clearly aik = aij + ajk so that G̃
satisfies the low-noise condition.

Another related line of work is due to Xia et al. (2008),
who introduce a notion of order-preserving probability
spaces. These are inherently different from our work,
which we show by considering graphs on nodes 1, 2,
and 3. First, consider a low-noise setting in which
the difference graph G̃ consists of edges (1 → 2) and
(1 → 3). Our losses are indifferent to whether we or-
der result 2 ahead of or behind 3, and this cannot be
captured by an order-preserving probability space.

Conversely, consider an order-preserving probability
space over the three nodes, where the data we receive
consists of full orderings of 1, 2, 3. To translate this
into our framework, we must convert each of these or-
derings into a DAG G with associated edge weights.
We assume that the weight on each edge is only a func-
tion of the distance between the entries in the ordering.
Suppose we observe two orderings π = {1 → 2 → 3}
and π̂ = {2 → 3 → 1} with probabilities pπ > pπ̂ ≥ 0
and pπ + pπ̂ = 1, which is an order preserving prob-
ability space (see Def. 3 and Theorem 5 in Xia et al.,
2008). If we assume w.l.o.g. that any adjacent pair in
the list has edge weight equal to one and that pairs of
distance equal to two in the list have edge weight w2,
then there is no way to set w2 so that the resulting
(G,p) satisfies the low-noise condition in Def. 8. The

associated difference graph G̃ will have edge weights
a12 = pπ −w2pπ̂, a13 = w2pπ − pπ̂, and a23 = pπ + pπ̂.
To satisfy the low-noise condition in Def. 8 and have
the ordering π minimize the true loss, we must have
w2pπ − pπ̂ = a13 ≥ a12 + a23 = pπ − w2pπ̂ + pπ + pπ̂
so that w2pπ + w2pπ̂ ≥ 2pπ + 2pπ̂. That is, w2 ≥ 2.
On the other hand, we must have a12 > 0 so that
pπ > w2pπ̂ or w2 < pπ/pπ̂; taking pπ ↓ .5 and
pπ̂ ↑ .5, we have w2 ≤ 1. Thus no construction that
assigns a fixed weight to edges associated with permu-
tations can transform an order-preserving probability
space into graphs satisfying the low-noise conditions
here. Nonetheless, our general consistency result, The-
orem 6, implicitly handles order-preserving probability
spaces, which assume that graphs G contain all results

and the loss L(f(x, q), G) = 0 if f agrees with G on
all orderings and is 1 otherwise.

4. Experiments

While the focus of this work is a theoretical investi-
gation of consistency, we have also conducted experi-
ments that study the value-regularized linear loss our
analysis suggests. We perform experiments on a col-
laborative filtering task in which the goal is to rec-
ommend movies to a user based on the user’s and
other users’ movie ratings. We use one of the Movie-
Lens datasets (GroupLens Lab, 2008), which consists
of 100,000 ratings, on a scale of 1 to 5, for 1682 dif-
ferent movies by 943 users. In this case, our “query”
is a user u, and the set of possible results consists
of all 1682 movies. We learn a linear model so that
fi(x, u) = wT d(xi, u), where d is a mapping from
movie xi and user u to a feature vector. We use fea-
tures that have proven successful in settings such as
the Netflix challenge, including the age of the movie,
its genre(s), the average rating of the user for other
movies in the same genre(s), the average rating of the
movie, and ratings given to the movie by users similar
to and dissimilar from u in rating of other movies.

To create pairs to train our models, we randomly sam-
ple pairs (xi, xj) of movies rated by a user. Each sam-
pled pair of rated movies then gets a per-user weight
auij that we set to be the difference in their ratings.
As discussed in Sec. 3.1, this guarantees that (G,p) is
low noise. We sample across users to get n samples
total. We then learn the weight vector w using one
of three methods: the value-regularized linear method
in this paper, a pairwise hinge loss (Herbrich et al.,
2000), and a pairwise logistic loss (Dekel et al., 2004).
Specifically, the surrogates are

∑

i,j,u

auijw
T (d(xj , u)− d(xi, u)) + θ

∑

i,u

(wT d(xi, u))
2

∑

i,j,u

auij
[
1− wT (d(xi, u)− d(xj , u))

]
+

∑

i,j,u

auij log
(
1 + ew

T (d(xj ,u)−d(xi,u))
)
,

where [z]+ = max{z, 0}. We set θ = 10−4 (it
needed simply be a small number), and also added ℓ2-
regularization in the form of λ‖w‖2 to each problem.
We cross-validated λ separately for each loss.

We partitioned the data into five subsets, and, in each
of 15 experiments, we used one subset for validation,
one for testing, and three for training. In every exper-
iment, we subsampled 40,000 rated movie pairs from
the test set for final evaluation. Once we had learned
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Table 1. Test losses for different surrogate losses.

Train pairs Hinge Logistic Linear
20000 .478 (.008) .479 (.010) .465 (.006)
40000 .477 (.008) .478 (.010) .464 (.006)
80000 .480 (.007) .478 (.009) .462 (.005)
120000 .477 (.008) .477 (.009) .463 (.006)
160000 .474 (.007) .474 (.007) .461 (.004)

a vector w for each of the three methods, we com-
puted its average generalized pairwise loss (Eq. (7)).
We show the results in Table 1. The leftmost col-
umn contains the number of pairs that were subsam-
pled for training, and the remaining columns show the
average pairwise loss on the test set for each of the
methods (with standard error in parentheses). Each
number is the mean of 15 independent training runs,
and bold denotes the lowest loss. It is interesting to
note that the linear loss always achieves the lowest test
loss averaged across all tests. In fact, it achieved the
lowest test loss of all three methods in all but one of
our experimental runs. (We use these three losses to
focus exclusively on learning in a pairwise setting—
Cossock & Zhang (2008) learn using relevance scores,
while Xia et al. (2008) require full ordered lists of re-
sults as training data rather than pairs.) Finally, we
note that there is a closed form for the minimizer of the
linear loss, which makes it computationally attractive.

5. Discussion

In this paper we have presented results on both the
difficulty and the feasibility of surrogate loss consis-
tency for ranking. We presented the negative result
that many natural candidates for surrogate ranking
are not consistent in general or even under low-noise
restrictions, and we have given a class of surrogate
losses that achieve consistency under reasonable noise
restrictions. We have also demonstrated the potential
usefulness of the new loss functions in practice. This
work thus takes a step toward bringing the consistency
literature for ranking in line with that for classifica-
tion. A natural next step in this agenda is to establish
rates for ranking algorithms; we believe that our anal-
ysis can be extended to the analysis of rates.
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