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Abstract

A new procedure for learning cost-sensitive

SVM classifiers is proposed. The SVM hinge

loss is extended to the cost sensitive setting, and

the cost-sensitive SVM is derived as the mini-

mizer of the associated risk. The extension of

the hinge loss draws on recent connections be-

tween risk minimization and probability elicita-

tion. These connections are generalized to cost-

sensitive classification, in a manner that guar-

antees consistency with the cost-sensitive Bayes

risk, and associated Bayes decision rule. This en-

sures that optimal decision rules, under the new

hinge loss, implement the Bayes-optimal cost-

sensitive classification boundary. Minimization

of the new hinge loss is shown to be a general-

ization of the classic SVM optimization problem,

and can be solved by identical procedures. The

resulting algorithm avoids the shortcomings of

previous approaches to cost-sensitive SVM de-

sign, and has superior experimental performance.

1. Introduction

The most popular strategy for the design of classification

algorithms is to minimize the probability of error, assuming

that all misclassifications have the same cost. The result-

ing decision rules are usually denoted as cost-insensitive.

However, in many important applications of machine learn-

ing, such as medical diagnosis, fraud detection, or busi-

ness decision making, certain types of error are much

more costly than others. Other applications involve signifi-

cantly unbalanced datasets, where examples from different

classes appear with substantially different probability. It

is well known, from Bayesian decision theory, that under

any of these two situations (uneven costs or probabilities),

the optimal decision rule deviates from the optimal cost-

insensitive rule in the same manner. In both cases, reliance
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on cost insensitive algorithms for classifier design can be

highly sub-optimal. While this makes it obviously impor-

tant to develop cost-sensitive extensions of state-of-the-art

machine learning techniques, the current understanding of

such extensions is limited.

In this work we consider the support vector machine

(SVM) architecture (Cortes & Vapnik, 1995). Although

SVMs are based on a very solid learning-theoretic foun-

dation, and have been successfully applied to many classi-

fication problems, it is not well understood how to design

cost-sensitive extensions of the SVM learning algorithm.

The standard, or cost-insensitive, SVM is based on the

minimization of a symmetric loss function (the hinge loss)

that does not have an obvious cost-sensitive generalization.

In the literature, this problem has been addressed by var-

ious approaches, which can be grouped into three general

categories. The first is to address the problem as one of

data processing, by adopting resampling techniques that

under-sample the majority class and/or over-sample the mi-

nority class (Kubat & Matwin, 1997; Chawla et al., 2002;

Akbani et al., 2004). Resampling is not easy when the clas-

sification unbalance is due to either different misclassifica-

tion costs (not clear what the class probabilities should be)

or an extreme unbalance in class probabilities (sample star-

vation for classes of very low probability). It also does not

guarantee that the learned SVM will change, since it could

have no effect on the support vectors. The second class

of approaches (Amari & Wu, 1999; Wu & Chang, 2003;

2005) involves kernel modifications. These methods are

based on conformal transformations of the input or feature

space, by modifying the kernel used by the SVM. They

are somewhat unsatisfactory, due to the implicit assump-

tion that a linear SVM cannot be made cost-sensitive. It is

unclear why this should be the case.

The third, and most widely researched, approach is to mod-

ify the SVM algorithm in order to achieve cost sensitivity.

This is done in one of two ways. The first is a naive method,

known as boundary movement (BM-SVM), which shifts the

decision boundary by simply adjusting the threshold of the

standard SVM (Karakoulas & Shawe-Taylor, 1999). Un-

der Bayesian decision theory, this would be the optimal
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strategy if the class posterior probabilities were available.

However, it is well known that SVMs do not predict these

probabilities accurately. While a literature has developed

in the area of probability calibration (Platt, 2000; Elkan,

2001), calibration techniques do not aid the cost-sensitive

performance of threshold manipulation. This follows from

the fact that all calibration techniques rely on an invertible

(monotonic and one-to-one) transformation of the SVM

output. Because the manipulation of a threshold at either

the input or output of such a transformation produces the

same receiver-operating-characteristic (ROC) curve, cali-

bration does not change cost-sensitive classification perfor-

mance. The boundary movement method is also obviously

flawed when the data is non-separable, in which case cost-

sensitive optimality is expected to require a modification of

both the normal of the separating plane w and the classifier

threshold b. The second proposal to modify SVM learn-

ing is known as the biased penalties (BP-SVM) method

(Bach et al., 2006; Lin et al., 2002; Davenport et al., 2006;

Wu & Srihari, 2003; Chang & Lin, 2001). This consists of

introducing different penalty factors C1 and C−1 for the

positive and negative SVM slack variables during training.

It is implemented by transforming the primal SVM prob-

lem into

arg min
w,b,ξ

1

2
||w||2 + C



C1

∑

{i|yi=1}

ξi + C−1

∑

{i|yi=−1}

ξi





s.t. yi(w
T x + b) ≥ 1 − ξi. (1)

The biased penalties method also suffers from an obvious

flaw, which is converse to that of the boundary movement

method: it has limited ability to enforce cost-sensitivity

when the training data is separable. For large slack penalty

C, the slack variables ξi are zero-valued and the opti-

mization above degenerates into that of the standard SVM,

where the decision boundary is placed midway between the

two classes (rather than assigning a larger margin to one of

them).

In this work we propose an alternative strategy for the de-

sign of cost-sensitive SVMs. This strategy is fundamen-

tally different from previous attempts, in the sense that

is does not directly manipulate the standard SVM learn-

ing algorithm. Instead, we extend the SVM hinge loss,

and derive the optimal cost-sensitive learning algorithm

as the minimizer of the associated risk. The derivation

of the new cost-sensitive hinge loss draws on recent con-

nections between risk minimization and probability elici-

tation (Masnadi-Shirazi & Vasconcelos, 2009). Such con-

nections are generalized to the case of cost-sensitive classi-

fication.

It is shown that it is always possible to specify the pre-

dictor and conditional risk functions desired for the SVM

classifier, and derive the loss for which these are opti-

mal. A sufficient condition for the cost-sensitive Bayes-

optimality of the predictor is then provided, as well as nec-

essary conditions for conditional risks that approximate the

cost-sensitive Bayes risk. Together, these conditions enable

the design of a new hinge loss which is minimized by an

SVM that 1) implements the cost-sensitive Bayes decision

rule, and 2) approximates the cost-sensitive Bayes risk. It

is also shown that the minimization of this loss is a gen-

eralization of the classic SVM optimization problem, and

can be solved by identical procedures. The resulting algo-

rithm avoids the shortcomings of previous methods, pro-

ducing cost-sensitive decision rules for both cases of sep-

arable and inseparable training data. Experimental results

show that these advantages result in better cost-sensitive

classification performance than previous solutions.

The paper is organized as follows. Section 2 briefly re-

views the probability elicitation view of loss function de-

sign (Masnadi-Shirazi & Vasconcelos, 2009). Section 3

then generalizes the connections between probability elic-

itation and risk minimization to the cost-sensitive setting.

In Section 4, these connections are used to derive the new

SVM loss and algorithm. Finally, Section 5 presents an ex-

perimental evaluation that demonstrates improved perfor-

mance of the proposed cost sensitive SVM over previous

methods.

2. Probability elicitation and the risk

A classifier h maps a feature vector x ∈ X to a class la-

bel y ∈ {−1, 1}. This mapping can be written as h(x) =
sign[f(x)] for some function f : X → R, which is de-

noted as the classifier predictor. Feature vectors and class

labels are drawn from probability distributions PX(x) and

PY (y) respectively. Given a non-negative loss function

L(x, y), the classifier is optimal if it minimizes the risk

R(f) = EX,Y [L(h(x), y)]. This is equivalent to minimiz-

ing the conditional risk

EY |X[L(h(x), y)|X = x] = PY |X(1|x)L(h, 1)

+(1 − PY |X(1|x))L(h,−1), (2)

for all x ∈ X . Classifiers are frequently designed to be

optimal with respect to the zero-one loss

L0/1(f, y) =
1 − sign(yf)

2

=

{

0, if y = sign(f);
1, if y 6= sign(f),

(3)

where we omit the dependence on x for notational simplic-

ity. The associated conditional risk is

C0/1(η, f) = η
1 − sign(f)

2
+ (1 − η)

1 + sign(f)

2

=

{

1 − η, if f ≥ 0;
η, if f < 0,

(4)



Risk minimization, probability elicitation, and cost-sensitive SVMs

with η(x) = PY |X(1|x). This risk is minimized by any

predictor f such that







f(x) > 0 if η(x) > γ

f(x) = 0 if η(x) = γ

f(x) < 0 if η(x) < γ

(5)

and γ = 1
2 . Examples of optimal predictors include f∗ =

2η−1 and f∗ = log η
1−η . The associated optimal classifier

h∗ = sign[f∗] is the well known Bayes decision rule, and

the associated minimum conditional (zero-one) risk is

C∗
0/1(η) = η

(

1

2
−

1

2
sign(2η − 1)

)

+

(1 − η)

(

1

2
+

1

2
sign(2η − 1)

)

. (6)

A number of other losses have been proposed in the lit-

erature. Popular examples include the exponential loss of

boosting, binomial loss of logistic regression, or hinge loss

of SVMs. These losses are of the form Lφ(f, y) = φ(yf),
for different functions φ(·). The associated conditional risk

Cφ(η, f) = ηφ(f) + (1 − η)φ(−f). (7)

is minimized by the predictor

f∗
φ(η) = arg min

f
Cφ(η, f) (8)

leading to the minimum conditional risk function C∗
φ(η) =

Cφ(η, f∗
φ).

Conditional risk minimization is closely related to classical

probability elicitation in statistics (Savage, 1971). Here, the

goal is to find the probability estimator η̂ that maximizes

the expected reward

I(η, η̂) = ηI1(η̂) + (1 − η)I−1(η̂), (9)

where I1(η̂) is the reward for prediction η̂ when event y =
1 holds and I−1(η̂) the corresponding reward when y =
−1. The functions I1(·), I−1(·) should be such that the

expected reward is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (10)

with equality if and only if η̂ = η. The following theorem

establishes the conditions under which this holds.

Theorem 1. (Savage, 1971) Let I(η, η̂) and J(η) be as

defined in (9) and (10). Then 1) J(η) is convex and 2) (10)

holds if and only if

I1(η) = J(η) + (1 − η)J ′(η) (11)

I−1(η) = J(η) − ηJ ′(η). (12)

It follows from the theorem that, starting from any con-

vex J(η), it is possible to derive I1(·), I−1(·) so that (10)

holds. The next theorem connects this result to the problem

of classifier design.

Theorem 2. (Masnadi-Shirazi & Vasconcelos, 2009) Let

J(η) be as defined in (10) and f a continuous function. If

the following properties hold

1. J(η) = J(1 − η),

2. f is invertible with symmetry

f−1(−v) = 1 − f−1(v), (13)

then the functions I1(·) and I−1(·) derived with (11) and

(12) satisfy the following equalities

I1(η) = −φ(f(η)) (14)

I−1(η) = −φ(−f(η)), (15)

with

φ(v) = −J [f−1(v)] − (1 − f−1(v))J ′[f−1(v)]. (16)

This theorem connects (9) and (7), establishing a new path

for the design of learning algorithms. Rather than spec-

ifying a loss φ and minimizing Cφ(η, f), so as to obtain

whatever optimal predictor f∗
φ and minimum expected risk

C∗
φ(η) results, it is possible to specify f∗

φ and C∗
φ(η) and

derive, from (16) with J(η) = −C∗
φ(η), the underlying

loss φ. The only conditions are that C∗
φ(η) = C∗

φ(1 − η)
and that (13) holds for f∗

φ . Note that 1) the symmetry

of (13) guarantees that f meets the necessary conditions

of (5) for predictor optimality1, and 2) the condition of

C∗
φ(η) = C∗

φ(1 − η) encodes the fact that there is no pref-

erence for different types of errors2.

3. Cost sensitive losses and classifier design

In this section we extend the connections between risk min-

imization and probability elicitation to the cost-sensitive

setting. We start by reviewing cost-sensitive losses.

3.1. Cost-sensitive losses

The cost-sensitive extension of the zero-one loss is

LC1,C
−1

(f, y) =

1 − sign(yf)

2

(

C1
1 − sign(f)

2
+ C−1

1 + sign(f)

2

)

=







0, if y = sign(f);
C1, if y = 1 and sign(f) = −1
C−1, if y = −1 and sign(f) = 1,

(17)

1see Theorem 4.
2the risk, or expected loss, is the same for any two x1 and x2 at

the same distance from the boundary, where distance is measured
is units of posterior probability (|η(x) − 1/2|).
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where C1 is the cost of a false negative, or miss, and C−1

that of a false positive. The associated conditional risk is

CC1,C
−1

(η, f) =

C1η
1 − sign(f)

2
+ (1 − η)C−1

1 + sign(f)

2
=

=

{

C−1(1 − η), if f ≥ 0;
C1η, if f < 0,

(18)

and is minimized by any predictor that satisfies (5) with

γ = C
−1

C1+C
−1

. Examples of optimal predictors include

f∗(η) = (C1 + C−1)η − C−1 and f∗(η) = log ηC1

(1−η)C
−1

.

The associated optimal classifier h∗ = sign[f∗] is the cost-

sensitive Bayes decision rule, and the associated minimum

conditional (cost-sensitive) risk is

C∗
C1,C

−1
(η) = C1η

(

1

2
−

1

2
sign [f∗(η)]

)

+

C−1(1 − η)

(

1

2
+

1

2
sign [f∗(η)]

)

(19)

with f∗(η) = (C1 + C−1)η − C−1. To extend the other

losses used in machine learning to the cost-sensitive set-

ting, we consider the following set of loss functions

Lφ,C1,C
−1

(f, y) = φC1,C
−1

(yf)

=

{

φ1(f), if y = 1
φ−1(−f), if y = −1.

(20)

The associated conditional risk

Cφ,C1,C
−1

(η, f) = ηφ1(f) + (1 − η)φ−1(−f) (21)

is minimized by the predictor

f∗
φ,C1,C

−1
(η) = arg min

f
Cφ,C1,C

−1
(η, f) (22)

leading to the minimum conditional risk

C∗
φ,C1,C

−1
(η) = ηφ1(f

∗
φ,C1,C

−1
(η))

+ (1 − η)φ−1(−f∗
φ,C1,C

−1
(η)). (23)

3.2. Cost-sensitive learning algorithms

It is currently not known which loss functions φi(·)
in (20) best extend the ones used in the design

of cost-insensitive algorithms, so as to produce cost-

sensitive extensions of boosting, or SVM classifiers.

We address this problem by extending the approach

of (Masnadi-Shirazi & Vasconcelos, 2009).

Theorem 3. Let g(η) be any invertible function, J(η) any

convex function, and φi(·) determined by the following

steps:

1. use (11) and (12) to obtain the I1(η) and I−1(η), and

let Cφ,C1,C
−1

(η, f) be defined by (21).

2. set φ1(g(η)) = −I1(η) and φ−1(−g(η)) = −I−1(η).

Then g(η) = f∗
φ,C1,C

−1
(η) if and only if J(η) =

−C∗
φ,C1,C

−1
(η).

The theorem shows that any loss with components φi(·) de-

signed according to steps 1. and 2. satisfies (21)-(23), when

g(η) = f∗
φ,C1,C

−1
(η) and J(η) = −C∗

φ,C1,C
−1

(η). This

implies that it is possible to specify any pair f∗
φ,C1,C

−1
(η),

C∗
φ,C1,C

−1
(η) and derive the underlying loss. The next

question is how to choose the best pair of f∗
φ,C1,C

−1
(η),

and C∗
φ,C1,C

−1
(η).

The following theorem provides a sufficient condition for

the Bayes-optimality of f∗
φ,C1,C

−1
(η).

Theorem 4. Any invertible predictor f(η) with symmetry

f−1(−v) =
2C−1

C1 + C−1
− f−1(v) (24)

satisfies the necessary and sufficient conditions for cost-

sensitive optimality of (5) with γ = C
−1

C1+C
−1

.

Hence, the specification of f∗
φ,C1,C

−1
(η) as any predictor

that satisfies (24) guarantees that the conditional risk is

minimized by the cost-sensitive Bayes decision rule. The

specification of C∗
φ,C1,C

−1
(η) determines the risk of the

optimal classifier. The goal is to approximate as best as

possible the cost-sensitive Bayes risk, given in (19). The

next theorem highlights some fundamental properties of

this risk.

Theorem 5. The risk of (19) has the following properties:

1. a maximum at η∗ = C
−1

C1+C
−1

2. symmetry defined by, ∀ǫ ∈
[

0, 1
C1+C

−1

]

,

C∗ (η∗ − C−1ǫ) = C∗ (η∗ + C1ǫ) , (25)

As noted by the following lemma, property 2. is in fact a

generalization of property 1.

Lemma 6. Any concave function with the symmetry of (25)

also has property 1. of Theorem 5.

Property 1. assigns the largest risk to the locations on

the classification boundary. This can be seen as a mini-

mal requirement for consistency of any C∗
φ,C1,C

−1
(η) with

Bayesian decision theory. Enforcing Property 2. further

guarantees that the optimal risk has the symmetry of the

cost-sensitive Bayes risk. Theorem 5 hence suggests the

following risk taxonomy.

Definition 1. A minimum risk C∗
φ,C1,C

−1
(η) is of
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1. Type-I if it satisfies property 1. but not 2. of Theo-

rem 5.

2. Type-II if it satisfies both properties 1. and 2.

Risks of type-II are closer approximations to the cost-

sensitive Bayes risk than those of type I.

The combination of Theorems 3-5 leads to a generic pro-

cedure for the design of cost-sensitive classification algo-

rithms, consisting of the following steps

1. select a predictor f∗
φ,C1,C

−1
(η) that satisfies (24).

2. select a concave minimum conditional risk

C∗
φ,C1,C

−1
(η) of type-I or type-II, which reduces

to C∗
φ(η) when C1 = C−1 = 1.

3. use (11) and (12) with J(η) = −C∗
φ,C1,C

−1
(η) to ob-

tain I1(η) and I−1(η).

4. find φi(·) so that I1(η) = −φ1(f
∗
φ,C1,C

−1
(η)) and

I−1(η) = −φ−1(−f∗
φ,C1,C

−1
(η)).

5. derive an algorithm to minimize the conditional risk

of (21).

We next illustrate the practical application of this frame-

work by showing that the cost-sensitive exponential loss

of (Masnadi-Shirazi & Vasconcelos, 2007) can be derived

from a minimal conditional risk of Type-I.

3.3. Cost-sensitive exponential loss

We start by recalling that AdaBoost is based on the loss

φ(yf) = exp(−yf), for which it can be shown that

C∗
φ(η) = η

√

1 − η

η
+ (1 − η)

√

η

1 − η

and f∗
φ =

1

2
log

η

1 − η
. (26)

A natural cost-sensitive extension is f∗
φ,C1,C

−1
(η) =

1
C1+C

−1
log ηC1

(1−η)C
−1

, which is easily shown to sat-

isfy (24). Noting that C∗
φ(η) = η exp(−f∗

φ) + (1 −
η) exp(f∗

φ), suggests the cost-sensitive extension

C∗
φ,C1,C

−1
(η) = η

(

ηC1

(1 − η)C−1

)

−C1
C1+C

−1

+

(1 − η)

(

ηC1

(1 − η)C−1)

)

C
−1

C1+C
−1

.(27)

This does not have the symmetry of (25) but satisfies prop-

erty 1. of Theorem 5. Hence, it is a Type-I risk. It is also

equivalent to (26) when C1 = C−1 = 1. Finally, steps 1.

and 2. of Theorem 3 produce the loss

φC1,C
−1

(yf) =

{

exp(−C1f), if y = 1
exp(C−1f), if y = −1

(28)

proposed in (Masnadi-Shirazi & Vasconcelos, 2007). The

resulting cost-sensitive boosting algorithm currently holds

the best performance in the literature.

4. Cost sensitive SVM

We next consider the case of the cost-sensitive SVM. We

start by extending the hinge loss, using the framework

of the previous section, and then derive the cost-sensitive

SVM optimization problem.

4.1. Cost-sensitive hinge-loss

We start by recalling that the SVM minimizes the risk of the

hinge loss φ(yf) = ⌊1− yf⌋+, where ⌊x⌋+ = max(x, 0).
This risk is minimized by (Zhang, 2004)

f∗
φ(η) = sign(2η − 1) (29)

leading to the minimum conditional risk

C∗
φ(η) = 1 − |2η − 1|

= η⌊1 − sign(2η − 1)⌋+ + (1 − η)⌊1 + sign(2η − 1)⌋+.

Again, we replace the optimal cost-insensitive predictor by

its cost-sensitive counterpart

f∗
φ,C1,C

−1
(η) = sign((C1 + C−1)η − C−1). (30)

which is easily shown to satisfy (5). This suggests the cost-

sensitive minimum conditional risk

C∗
φ,C1,C

−1
(η) = (31)

η⌊e − d · sign((C1 + C−1)η − C−1)⌋+ +

(1 − η)⌊b + a · sign((C1 + C−1)η − C−1)⌋+,

which can be shown to satisfy (25) if and only if

d ≥ e a ≥ b and
C−1

C1
=

a + b

d + e
. (32)

After steps 1. and 2. of Theorem 3,

φC1,C
−1

(yf) =

{

⌊e − df⌋+, if y = 1
⌊b + af⌋+, if y = −1.

(33)

This loss has four degrees of freedom, which control the

margin and slope of the hinge components associated with

the two classes: positive examples are classified with mar-

gin e
d and hinge loss slope d, while for negative examples

the margin is b
a and slope a.
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4.2. Cost-sensitive SVM learning

We consider the case where errors in the positive class are

weighted more heavily, leading to the inequalities b
a ≤ e

d
and d ≥ a. Choosing e = d = C1 normalizes the margin

of positive examples to unity ( e
d = 1). Selecting b = 1

then fixes the scale of the negative component of the hinge

loss, leading to a = 2C−1 − 1. The resulting cost sensitive

SVM minimal conditional risk is

C∗
φ,C1,C

−1
(η) = (34)

η⌊C1 − C1 · sign((C1 + C−1)η − C−1)⌋+ +

(1 − η)⌊1 + (2C−1 − 1) · sign((C1 + C−1)η − C−1)⌋+

with C−1 ≥ 1 and C1 ≥ 2C−1 − 1, so as to satisfy (32).

Figure 1 presents plots of (34) and (33), for both C1 = 4,

C−1 = 2 and the cost insensitive case of C1 = 1, C−1 = 1
(standard SVM). Note that, for the cost-sensitive SVM, the

positive class has a unit margin, while the negative class

has a smaller margin of 1
3 . Also, the slope of the positive

component of the loss is 4 while the negative component

has a smaller slope of 3. In this way, the loss assigns a

higher cost to errors in the positive class when the data is

not separable, while enforcing a larger margin for positive

examples when the data is separable.

Replacing the standard hinge loss with (33) in the standard

SVM risk (Moguerza & Munoz, 2006)

arg min
w,b

∑

{i|yi=1}

⌊C1 − C1(w
T xi + b)⌋+ (35)

+
∑

{i|yi=−1}

⌊1 + (2C−1 − 1)(wT xi + b)⌋+ + µ||w||2,

leads to the primal problem

arg min
w,b

1

2
||w||2 + C



β
∑

{i|yi=1}

ξi (36)

+λ
∑

{i|yi=−1}

ξi





s.t. (wT xi + b) ≥ 1 − ξi; yi = 1

(wT xi + b) ≤ −κ + ξi; yi = −1

with

β = C1 λ = 2C−1 − 1 κ =
1

2C−1 − 1
. (37)

This is a quadratic programming problem similar to that of

the standard cost-insensitive SVM with soft margin weight

parameter C. In this case, cost-sensitivity is controlled by

the parameters β, λ, and κ. The parameter κ is responsible

for cost-sensitivity in the separable case. Under the con-

straints C1 ≥ 1, C1 ≥ 2C−1−1 of a type-II risk, it imposes

a smaller margin on negative examples. On the other hand,

β and λ control the relative weights of margin violations,

assigning more weight to positive violations. This allows

control of cost-sensitivity when the data is not separable.

Obviously, this primal problem could be defined through

heuristic arguments. However, it would be difficult to

justify precise choices for the parameters of (37). Fur-

thermore, the derivation above guarantees that the optimal

classifier implements the Bayes decision rule of (5) with

γ = C
−1

C1+C
−1

, and its risk is a type-II approximation to

the cost-sensitive Bayes risk. No such guarantees would be

possible for an heuristic solution.

To obtain some intuition about the cost-sensitive extension,

we consider the synthetic problem of Figure 1, where the

two classes are linearly separable. The figure shows three

separating lines. The green line is an arbitrary separating

line that does not maximize the margin. The red line is

the standard SVM solution, which has maximum margin

and is equally distant from the nearest examples of the two

classes. The blue line is the solution of (36) for C1 = 4
and C−1 = 2 (the C parameter is irrelevant when the data

is separable). It is also a maximum margin solution, but

trades-off the distance to positive and negative examples so

as to enforce a larger positive margin, as specified. Over-

all, an increase in C−1 guarantees a larger positive margin.

For a given C−1, increasing C1 (so that C1 ≥ 2C−1 − 1)

increases the cost of errors on positive examples, enabling

control of the miss rate when the classes are not separable.

Finally, the dual and kernelized formulation of the cost sen-

sitive SVM can be obtained with the standard procedures,

leading to

arg max
αi

∑

i

αi

(

yi + 1

2
−

yi − 1

2(2C−1 − 1)

)

(38)

−
1

2

∑

i

∑

j

αiαjyiyjK(xi, xj)

s.t.
∑

i

αiyi = 0

0 ≤ αi ≤ CC1; yi = 1

0 ≤ αi ≤ C(2C−1 − 1); yi = −1.

This reduces to the standard SVM dual when C1 = C−1 =
1. Note that the derivation of the cost-sensitive SVM from

a suitable loss function leads to an algorithm that performs

regardless of the separability of the data and slack penalty,

unlike the previous BM-SVM and BP-SVM algorithms.

The improved performance of CS-SVM on real world data

sets is demonstrated in the next section.
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Figure 1. Left: concave C∗

φ,C1,C
−1

(η) function and corresponding cost sensitive SVM loss function, top: C1 = 4, C−1 = 2, bottom:

C1 = C−1 = 1. Right: linearly separable cost sensitive SVM.

5. Experimental results

The performance of the CS-SVM was evaluated with two

sets of experiments. The first was based on ten binary UCI

data sets (Newman et al., 1998): Pima-diabetes, breast can-

cer diagnostic, breast cancer prognostic, original Wiscon-

sin breast cancer, liver disorder, sonar, echo-cardiogram,

Cleveland heart disease, tic-tac-toe and Haberman’s sur-

vival. The goal was to learn the SVM of lowest to-

tal error rate, given a target detection rate. In all cases,

leave one out cross validation was used to find the best

cost estimate. We considered detection rates between

80% and 95%, with increments of 2.5%, and set C, C1,

C−1 and b (SVM threshold) for each method so as to

achieve the smallest false positive rate on the validation

set. The total error was computed for each detection rate,

and the mean of these errors is reported in Table-2. Re-

sults are reported for the proposed CS-SVM, the BM-SVM

(Karakoulas & Shawe-Taylor, 1999) and the BP-SVM

(Bach et al., 2006; Lin et al., 2002; Davenport et al., 2006;

Wu & Srihari, 2003; Chang & Lin, 2001). While the table

confirms the previous observation that the BP-SVM out-

performs the BM-SVM (Bach et al., 2006; Lin et al., 2002;

Davenport et al., 2006; Wu & Srihari, 2003; Chang & Lin,

2001), none of them matches the CS-SVM. This is most

interesting given the fact that CS-SVM has the same com-

putational complexity and number of tuning parameters as

the BP-SVM. Overall, CS-SVM has the smallest error on 7
of the 10 datasets, sometimes by a very substantial margin.

CS-SVM and BP-SVM have equal error on 2 datasets, and

BP and BM-SVMs have a slight advantage on Wisconsin.

The second set of experiments was based on the German

Credit data set (Geibel et al., 2004; Newman et al., 1998).

Table 1. Total loss in $ for each method on the German Credit

dataset.

Method CS-SVM BP-SVM SVM

Loss $ 550$ 878$ 878$

This dataset has 700 examples of good credit customers

and 300 examples of bad credit customers. Each example

is described by 24 attributes, and the goal is to identify bad

costumers, to be denied credit. This data set is particularly

interesting for cost-sensitive learning because it provides a

cost matrix for the different types of errors. Classifying a

good credit customer as bad (a false-positive) incurs a loss

of 1. Classifying a bad credit customer as good (a miss)

incurs a loss of 5. Hence, on this dataset, the leave one

out cross validation of CS-SVM and BP-SVM parameters

was subject to the constraint C1

C
−1

= 5. A cost insensitive

SVM was also trained. Table 1 presents the loss achieved

by each method. Note that BP-SVM does not produce any

improvement with respect to the cost insensitive SVM. On

the other hand, the loss achieved with CS-SVM is 328$
smaller, i.e. a substantial reduction of cost by 37.36%.

6. Conclusion

In this work, we have extended the recently introduced

probability elicitation view of loss function design to the

cost sensitive classification problem. This extension was

applied to the SVM problem, so as to produce a cost-

sensitive hinge loss function. A cost-sensitive SVM learn-

ing algorithm was then derived, as the minimizer of the

associated risk. Unlike previous SVM algorithms, the one
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Table 2. mean error for each UCI data set and cost sensitive SVM method.

Dataset Survive Liver Echo Pima Wisc Tic Heart Diag Prag Sonar
CS-SVM 195.8 163.8 40 313.2 33.2 536 68.4 33.8 107.2 65.6
BP-SVM 199.6 167.2 43 416 32.8 536 69.4 33.8 115.2 75.2
BM-SVM 201.8 169.2 45 416 32.8 538 73.2 33.8 126 76.4

now proposed enforces cost sensitivity for both separable

and non-separable training data, enforcing a larger margin

for the preferred class, independent of the choice of slack

penalty. It also offers guarantees of optimality, namely

classifiers that implement the cost-sensitive Bayes decision

rule and approximate the cost-sensitive Bayes risk. Em-

pirical evidence confirms its superior performance, when

compared to previous methods.
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