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Abstract

We analyze computational aspects of varia-
tional approximate inference techniques for
sparse linear models, which have to be un-
derstood to allow for large scale applica-
tions.  Gaussian covariances play a key
role, whose approximation is computation-
ally hard. While most previous methods gain
scalability by not even representing most pos-
terior dependencies, harmful factorization as-
sumptions can be avoided by employing data-
dependent low-rank approximations instead.
We provide theoretical and empirical insights
into algorithmic and statistical consequences
of low-rank covariance approximation errors
on decision outcomes in nonlinear sequential
Bayesian experimental design.

1. Introduction

Sparse linear models (SLMs) enjoy enormous popu-
larity in high-dimensional statistics, signal and image
processing, and machine learning. A large part of this
success story is due to regard for computational de-
tails: mazimum a posteriori (MAP) estimation is for-
mulated in terms of convex problems, which are re-
duced to standard primitives of numerical mathemat-
ics and digital signal processing. In such point esti-
mation techniques, the Bayesian posterior is used as a
criterion to be maximized rather than a distribution
to be approximated and queried. Many applications
require posterior information beyond its mode’s loca-
tion. Decision theory and Bayesian experimental de-
sign can be used to optimize sampling patterns (Seeger
et al., 2009) or data acquisition, and sparse bilinear
model reconstruction is greatly improved by Bayesian
averaging (Levin et al., 2009). However, today’s ap-
proximate inference technology lags far behind MAP
estimation in terms of scalability, robustness, and the-
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oretical understanding.

In this paper, we focus on computational aspects of
scalable variational inference for large SLMs. Bayesian
inference is hard and useful for the same underlying
reason: the emergence of very many nonlocal depen-
dencies in the posterior distribution. In the large scale
continuous-variable context, these are approximated
by Gaussian covariances of restricted structure and di-
mensionality. The choice of these restrictions not only
impacts the final best fit to the posterior, but also the
optimization process leading there. By far most meth-
ods to date attain scalability through factorization as-
sumptions, whereby all dependencies are forced into a
predetermined form, and most of them are ruled out
up front. In contrast, Seeger et al. (2009) show how to
avoid factorizations entirely, using low-rank covariance
approximations such as PCA or the Lanczos algorithm
(Schneider & Willsky, 2001) instead. The latter con-
cept of tracking a limited number of principal covari-
ance directions alongside the variational optimization
has advantages in practice, since most Bayesian de-
cision making or experimental design applications are
driven by dominating modes of posterior dependencies.

We point out the fundamental role of Gaussian
(co)variance computations for large scale variational
inference and experimental design in Section 2, and re-
view approximation methods in Section 3. Our main
contribution is an analysis of how low-rank Gaussian
covariance approximations affect inference outcomes in
the framework of Seeger et al. (2009). First, we prove
that if covariances are approximated by PCA rather
than computed exactly, their algorithm remains con-
vergent. Our argument is based on convexity of spec-
tral functions (Davis, 1957). Second, we show that
in the context of SLM inference, PCA approximation
errors lead to a systematic strengthening of the spar-
sity regularization. A running example in this paper
is optimizing real-world image acquisition (adaptive
compressive sensing) by Bayesian experimental design
(Seeger et al., 2009). We discuss the impact of PCA
approximations on design score computations and se-
quential decisions, and provide experimental results on
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real-world images in Section 5.

2. Variational Inference for Sparse
Linear Models

We are interested in sparse linear models (SLMs) ap-
plied to image reconstruction (see (Seeger, 2008) for a
detailed exposition). A latent image u € R™ (n pix-
els) is sampled by way of a design matrix X € R™*".
Observations y € R™ are modelled as y = Xu + €,
where € ~ N(0,0%1) is noise of variance 2. For ex-
ample, X is a partial discrete Fourier transform in
MRI reconstruction applications (Seeger et al., 2009).
The sparsity of filter coefficients s = Bu € R? (such
as wavelet coefficients or spatial derivatives) is en-
couraged by way of a Laplacian prior distribution
P(u) x ngl e~7il%i/7l We are interested in sparse
inference, for example to approximate the posterior
covariance in order to optimize the design X (see Sec-
tion 2.2). Even for modest image resolutions, n (num-
ber pixels) is beyond 100000, with m (number samples)
and ¢ (number sparsity coefficients) of the same order.
Note that in many image reconstruction applications,
X is neither sparse, nor has simple graphical model
structure.

The posterior distribution has the form

Pluly) = Z'N(y|Xu, o’ [’

s o
i© ilsilel (1)
s = Bwu, which we would like to integrate against and
obtain moments of. This is hard for two reasons com-
ing together. First, P(u|y) is highly coupled, since
X is neither diagonal nor sparse. Second, it is non-
Gaussian due to the Laplacian prior potentials. In
large scale regimes, a third problem is the sheer size
even of basic moments such as the covariance matrix.
In cases of interest here, inference is practically in-
tractable even for linear models with Gaussian prior.

2.1. Scalable Algorithms

How can P(u|y) be approximated at large scales?
Most methods make use of a Gaussian approxima-
tion Q(ul|y;~y), either fitting @ to P globally, or us-
ing @ as carrier for self-consistency equations between
marginals. The rationale is that global covariances can
still be represented this way, while Gaussian integrals
are tractable to compute. In this section, we show that
large scale variational inference crucially relies on bulk
computation of Gaussian variances.

Most algorithms to date can be grouped into two
classes: either [1] Q(uly) is restricted to factorize,
with factors ranging over small disjoint subsets of wu,
or [2] updates are done based on marginals Q(s;|y),

7 =1,...,q, kept up-to-date by message passing. Both
notions lead to easily implementable algorithms, iter-
ating between local factor or node updates and Gaus-
sian message passing. Unfortunately, none of these ap-
proaches result in scalable algorithms in general. Both
factorization assumptions and single-marginal updat-
ing lead to non-convex inference relaxations in all cases
we know of. More important, while each single update
is easy to do, far too many of them are required un-
til convergence. For [2], we require ¢ updates to even
visit each marginal, and the absence of a sparsity or
graph structure of X precludes fast message passing
in between: an n x n linear system has to be solved
for each update. In order to be applied at very large
scales, a variational algorithm has to do few global it-
erations! until convergence, which in turn have to be
reducible to scalable computational problems.

A scalable variational inference method has been pro-
posed by Seeger et al. (2009), see also (Nickisch
& Seeger, 2009). We sketch some details to out-
line computational demands and prepare the ground
for further analysis. Variational methods target the
log partition function logZ of (1), the cumulant-
generating function of the posterior. It is lower
bounded by plugging in the representation e~ 71%/71 =
max,, o e~ (51/9)*/(29))=737/2 for Laplacian sites, then
interchanging max~s with the integral over u. The
variational problem constitutes finding the closest
bound over variational parameters «: minyyo ¢(7)
with

o(y) =log|A| + (7*)"v + miny R(u,7),

2
Ri=0"?(|ly — Xu|?+s"T's), @)

where T' := diag~y. The posterior P(u|y) is fitted by
a Gaussian approximation Q(u|y) = N(u|u.,c>A™")
parameterized in terms of ~, in that A = X7TX +
BT 'B and uw, = UL (7y). Denote posterior
marginals by Q(s;|y) = N(h;,0%p;) in the sequel, p =
(pj). It is easy to see that p; = o 2Varg[s;|y] < v;:
the variational parameters directly control the vari-
ances. SLMs implement selective shrinkage, in that
most |s;| are strongly forced to small values, while
some (the “relevant” ones) are shrunken little at all.
The key statistic for sorting coefficients in this way is
posterior variance, and the role of the v; is to imple-
ment selective shrinkage within the Gaussian approx-
imation Q(u|y).

! In principle, methods from [1] and [2] can be run do-
ing parallel updates, which would look like “global” steps.
However, single components of such parallel updates are
derived by assuming the rest of Q(u|y) remains static:
they are not coupled themselves. To our knowledge, par-
allel updating for [1] or [2] has not been reported to run
faster for SLMs than simpler sequential variants.



Gaussian Covariance and Scalable Inference

The variances are not only statistically decisive,
but also computationally. For gradient-based mini-
mization of ¢, we certainly require V.- log|A] =
diag™*(BA™'B”) = p. While all marginal means
(hj) can be computed solving a single linear system by
conjugate gradients (Golub & Van Loan, 1996), bulk
variances computation is much more difficult. A key
property of the scalable algorithm is that Gaussian
variances have to be computed few times only until
convergence. By affinely upper-bounding the coupling
term log |A| in (2), we iterate between the following
two steps (called outer loop update and inner loop min-
imization):

z — p=diag ' (BA™'BT),

Sx,5 12
’ |,s*:Bu*7

. 1
Uy —— argming,, y; < —
u

Zj"‘

b2 =0 Ny = Xul®+23 ] /7 + (Isil/0)*.
3)

Updating (u.,y) is a standard penalized least squares
problem, which can be solved at large scales. Vari-
ance computations are required only for computing z,
which happens few times until convergence.

To sum up, the main computational primitives of
large scale SLM variational inference are Gaussian
means and variances, the latter are much more dif-
ficult to approximate. Gaussian mean computations
(least squares) are bread-and-butter in any compu-
tational discipline, while variance computations, not
required for point estimation, are less frequently ad-
dressed. Among inference algorithms aiming at large
scales, those stand out which require Gaussian vari-
ances as seldomly as possible. Note that variances
are not required in MAP and most other sparse es-
timation methods. In the context of large scale sparse
linear models, the requirement of Gaussian variances
is the most important computational difference be-
tween variational sparse inference and sparse estima-
tion. Since they can in general not be approximated to
close relative accuracy, it is important to understand
effects of Gaussian variance errors on variational infer-
ence outcomes.

2.2. Sequential Bayesian Experimental Design

Approximating a SLM posterior P(u|y) by a Gaus-
sian Q(u|y) is hard at large scales. But how accurate
do we have to be? Which additional structural restric-
tions on () can be tolerated? Fortunately, while a uni-
formly close approximation of P(u|y) or its marginals
P(s;|y) is presently unattainable at large scales, this
is too much to ask for in typical applications, such as

the image acquisition optimization problem. In this
section, we argue that in many such decision making
scenarios, the critical information are the mazimum
covariance directions of the posterior, a fact which di-
rectly motivates PCA and Lanczos covariance approx-
imations discussed in Section 3.

In Bayesian experimental design (ED), the design ma-
trix X is optimized sequentially, appending parts X .
which maximize an information gain score, in this
case A(X,) := log|I + X.Covgluly]XT| (Seeger
et al., 2009). Considering {A(X )} over many can-
didates X, it is the posterior covariance Covg[u|y]
these score values depend upon: the mode or mean of
Q(uly) are irrelevant. A(X,) measures the overlap
of X, with leading eigendirections of Covgluly], the
directions of maximum posterior covariance. In order
to drive Bayesian ED successfully, it is not necessary
to closely approximate all of P(uly): decision mak-
ing depends mainly on its leading covariance eigendi-
rections. Consider the extreme case, where X, is a
single row and all unit norm vectors are candidates:
the score maximizer is the single maximal eigenvec-
tor of Covgluly] = 0?A~". While all of A cannot
even be stored, let alone inverted, its leading eigenvec-
tor can be obtained tractably (see Section 3). On the
other hand, it is not enough to approximate posterior
marginals only, or to fit any factorized distribution to
P(uly): neither give sufficient information about the
leading covariance eigenmodes in general.

3. Approximating Gaussian Variances

We exposed Gaussian variances computation as gen-
eral bottleneck for scalable variational inference, no
matter which specific method is used. As discussed in
Section 2.1, most previous algorithms are not scalable
up front, since variances are computed one by one, and
consequently there has been little machine learning in-
terest in Gaussian variances so far. Still, their domi-
nant role in (Seeger et al., 2009) and scalable inference
in general motivates closer attention.

Methods have been proposed in spatial statistics (Will-
sky, 2002), often exploiting graph structure or sparsity
of X, neither of which is present in our case. A general
idea for approximating variances is to estimate them
from a number L < n of linear projections, thus to
approximate Covg[u|y] by a low-rank matrix. In spe-
cial cases, good projections can be constructed based
on prior knowledge about signal structure (Malioutov
et al., 2008). Perhaps the most promising general
approach is to choose projections that capture as
much covariance as possible: the L principal com-
ponents. Namely, if A ~ UAUT (L smallest
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eigenvalues/-vectors), then Covgluly] ~ c2UA™'U”
and p ~ pM) := diag” (BUA'UTBT). Of course,
L-PCA remains an academic exercise without a scal-
able way of computing U, A for L sufficiently large.
Fortunately, this can often be done by way of the Lanc-
zos algorithm (Schneider & Willsky, 2001).

Details about the Lanczos algorithm are found in
(Golub & Van Loan, 1996). At one matrix-vector mul-
tiplication (MVM) with A per iteration, we obtain
QT AQ, =T, Q, € R"** orthonormal, T, tridiago-
nal. A’s extremal eigenvalues/-vectors are closely ap-
proximated by those of Q, T+ Q% (the latter are called
Ritz values/vectors). Eigenconvergence can easily be
monitored inside the method: the SVD of Ty can be
done in O(k?). For example, the maximum eigenvec-
tor of A is typically obtained to high accuracy af-
ter few iterations (see Section 2.2). In practice, L-
PCA is approximated by running Lanczos for K > L
steps, until the L smallest eigenvalues of A have con-
verged. Whether this is feasible or not, depends on
the spectral structure of A. Lanczos convergence the-
ory (Golub & Van Loan, 1996) states that eigenval-
ues converge from the fringe of the spectrum inwards,
roughly ordered by the gap size between neighbouring
entries. For example, if spec(A) decreases geomet-
rically, eigenvalues converge from largest to smallest.
However, precision matrices in typical SLM scenarios
show roughly linear spectral decay (Seeger, 2009), so
that largest and smallest eigenvalues converge even for
K <« n. At present, it may well be the best gen-
eral method for variance approximations in the con-
text of SLM variational inference. Of course, rather
than settling for L-PCA after K Lanczos steps, we
may as well make use of the complete Lanczos repre-
sentation, approximating A~! by Qlele;‘g instead
of UATIUT, referred to as K -Lanczos approximation
in the sequel. The corresponding variance estimator is
p, = diag” (BQ, T, ' Qi B").

The Lanczos algorithm is not easy to implement or
analyze, and comes with a higher cost than conju-
gate gradients. Iromically, the convergence of Ritz
values causes the difficulties: they continue to con-
taminate subsequent steps by way of numerical round-
off, avoided only by orthogonalizing each new vector
against all previously converged Ritz vectors (or all
columns of Q). Therefore, Q, has to be stored at
O(n K), and orthogonalization costs up to O(n K?).
Can accurate variances be obtained with few itera-
tions? In general, this is possible only if A’s spec-
trum decays geometrically, which does not happen for
typical system matrices in our case. The part of the
spectrum we miss out on with moderate K carries sub-
stantial mass. A ™! is not closely approximated by any

matrix of low rank in terms of (co)variance explained,
and relative errors of p;, tend to be substantial. This
uniformly bleak picture will be constrasted with a fine-
grained analysis in Section 4.1, exposing structure in
Lanczos variance errors which can be beneficial for
SLM inference applications.

Can the Lanczos algorithm be improved in the context
of variance approximation? After all, we do not require
eigenvectors/-values as such, but a specific estimate
based on them only. First, reorthogonalization cannot
be skipped. Doing so renders the Lanczos algorithm
practically useless if more than the leading eigendirec-
tion is required. Deflation time can be saved by se-
lective orthogonalization (Golub & Van Loan, 1996),
whereby Ritz vector convergence is monitored during
the course of the algorithm. Unfortunately, this re-
quires even more memory, and in some comparisons of
ours did not lead to substantial speed-ups.

4. Consequences of Lanczos/PCA
Approximations

In this section, we analyze effects of Lanczos variance
approximation errors on SLM variational inference,
within the double loop algorithm of Seeger et al. (2009)
sketched in (3). First, we highlight the overall statis-
tical role played by structures in these errors. Second,
by using a result on convexity of spectral functions,
we show that the convergence proof of the algorithm
is retained with L-PCA variance approximation.

4.1. Lanczos Approximations and Sparsity

Gaussian variances are fundamental for sparse
Bayesian inference (Section 2.1) and experimental de-
sign (Section 2.2), yet cannot be obtained to high rel-
ative accuracy for large scale models of interest (Sec-
tion 3). Why can we still obtain sensible results? In
this section, we aim to understand the statistical role
of Lanczos variance approximation errors. Recalling
from Section 2.1 that sparsity priors enforce selective
shrinkage, we show that this effect is strengthened by
variance errors.

First, both p(*) (L-PCA) and pg (K-Lanczos) are
monotonically nondecreasing (w.r.t. L, K) and lower-
bound p in each component. This is immediate for
p') (since eigenvalues are positive) and easy to show
for py. Interestingly, the ratio of underestimation
pK.;/p; has a clear structure. In (Seeger, 2009),
p; — pK,j/p; are plotted for different values of K. The
error is smallest for those coefficients whose true vari-
ance p; is large, while coefficients with moderate true
p; are most strongly damped. As K grows, these worst
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ratios are lifted towards 1, while the errors for the
largest p;, smallish to begin with, are affected least.
In summary, there is a stable structure in the Lanczos
variance errors, coming from the algorithm’s working.
The largest eigenvalues of A™! converge rapidly, even
for small K. In general, the largest p; depend most
strongly on these largest eigenvalue contributions.

Still, we run inner loop optimizations, plugging in val-
ues for z which are overall substantially too small
(since z « p is replaced by z <« pg). In (3), the
z; feature in the penalty term (z; + |s;/o|?)1/2, whose
strength (in terms of enforcing |s;| — 0) grows with
shrinking? zj. The effect of Lanczos variance errors
within this framework is to strengthen soft sparsity pe-
nalization. This does not happen uniformly across s;:
if the true z; < p; is among the largest coefficients,
shrinkage by Lanczos is least pronounced, while mod-
erately small true z; are strongly diminished. The
selective shrinkage effect discussed in Section 2.1 is
strengthened by Lanczos variance errors. Those coeffi-
cients most relevant under exact computation are least
affected by Lanczos variance errors, but the damping
of less relevant ones is amplified. While there is no
proof that Lanczos errors do not hurt SLM variational
inference in general, they do not work against this de-
cisive effect.

4.2. Convergence of Double-Loop Algorithm

Recall from Section 2.1 that the inference relaxation
of interest here is a convex optimization problem for
Laplacian potentials, and its double loop algorithm is
provably convergent in general (Seeger et al., 2009).
These statements hold if Gaussian variances are com-
puted exactly, which is impossible at large scales. It
is natural to ask which of these beneficial properties
are provably retained if variances are approximated by
L-PCA. Similar questions should be asked more fre-
quently in machine learning. It is often the case that
desirable properties like convexity or guaranteed con-
vergence are proven assuming exact computations, yet
real-world experiments are run based on low-rank or
subsampling approximations. In all cases we are aware
of, the effects of such approximations on former prop-
erties remain unanalyzed.

In order to lift “exact” properties for methods with
embedded approximations, the challenge is to charac-
terize the latter in a strong way, so that even with
the approximation in place, crucial steps in the “exact
computation” proof remain valid. This is possible for
L-PCA, using a result on convexity of spectral func-

2 If z; = 0 throughout, this becomes |s;|/o, and the
inner loop minimization reduces to MAP estimation.

tions (Davis, 1957), as summarized in the following
theorem.

Theorem 1 Consider the tractable variant of the
method of (Seeger et al., 2009), replacing outer loop
updates in (3) by z «— p') (L-PCA wvariance approz-
imation). This modified algorithm is provably conver-
gent, in the general setting given by Nickisch € Seeger
(2009). However, the convezity of the modified relaz-
ation may be compromised.

Proof. Inspecting the convergence proof in (Seeger
et al., 2009), crucial points are the concavity of
v~ !+ log |A|, and that z is updated as V-1 log |A]|.
This ensures that ¢ and the inner loop criterion
¢. meet tangentially at current points -, see also
(Wipf & Nagarajan, 2008). For L-PCA approxima-
tions A ~ UAU” (U € R™ orthonormal, A
the L smallest eigenvalues), log|A| is replaced by
log|A|, and p by pF) = diag"'(BUA'U"B"),
where A, U, A are mappings of v > 0. We have
to show that y=! +— log|A| is concave, and that
V,-1log|A| = pB). We assume that at each v >~ 0
of interest, the smallest L eigenvalues of A are sep-
arated (by continuity, this holds in a small environ-
ment as well), so that eigenvalue derivatives are well-
defined. If X is an eigenvalue at v with unit eigen-
vector u, then (du)Tu = 0 (since u’u = 1 around
~), thus d\ = uT (dA)u + 2u” A(du) = u” (dA)u +
22u’ (du) = u”(dA)u. Therefore, V,-1log|A| =
Zi>n—L A;l(BuZ)2 = p(L)

Proving the concavity of 4~! — log |A| is harder, due
to the implicit definition of A. We draw on results
for spectral functions. Such f(A) are induced from
symmetric functions f : R® — R (f(Pzx) = f(x)
for any coefficient permutation P € P,) by way of
f(A) := f(spec(A)), where spec(A) are the eigen-
values of A. Clearly, A — log|A| =", ; \(A)
is a spectral function. It is shown in (Davis, 1957)
that if f is symmetric, convex, and lower semicontin-
uous, then its induced spectral function is convex and
lower semicontinuous over Hermitian matrices. Let
h(x) = —ZiLzl log(z;) for & > 0, h(z) := oo else-
where, and f(z) := maxpep, h(Px). Since —log is
convex and decreasing, so is h. f is convex as maxi-
mum over convex functions, and since h is decreasing,
it is the L smallest entries of @ that f(x) depends on:
f(A) = —log|A|. Therefore, the modified algorithm
remains provably convergent.

1

The convexity of ¢(7) hinges on the convexity of
v + log|A| (Nickisch & Seeger, 2009). However,
v — log|A| is not convex in general, as the follow-
ing counter-example shows: n = ¢ = 2, L = 1,
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XTX =1I,, B = I, so that log |A| = log |[I +T!|.
Then, log A2 = min; log(1 + 1/v;), convex at each ~
with 71 # v. But for v = (11)T +tp, f(t) =
min; log(1 + 1/(1 + p;t)) is not convex at ¢ = 0 if
p1 # p2. If 0 < p1 < po, the argmin is 2 for t > 0, 1
for t < 0. The derivative of a component at t = 0 is
—pi/2, so that f'(t) - —p1/2 for t — 0, t < 0, and
f'(t) = —pa/2fort — 0,t > 0. Since —p1/2 > —pa/2,
f(t) is not convex at ¢ = 0. Note that v — log|A|
is locally convex in regions where eigenvalues do not
cross over. However, it fails to be globally convex in
general. This concludes the proof.

Even if variances are approximated by L-PCA with
any L > 1, the double loop algorithm is guaranteed to
converge. Of course, we optimize the wrong criterion
in this case, but the method is self-consistent and en-
joys the same convergence properties. Our proof does
not extend to K-Lanczos variance approximations. If
log|A| is replaced by log |T'k|, then V,-:log|Tx| =
pr - However, we are lacking a description of v +— T
strong enough in order to prove (or disprove) global
concavity of y7! +— log|Tk|. Finally, the concav-
ity of A — log|A| may be more generally useful for
analyzing PCA approximations embedded in machine
learning methods. For example, there is recent inter-
est in estimating Gaussian model structure by way of
penalized maximum likelihood with [; potentials on
the entries of the precision matrix P (Banerjee et al.,
2008). The likelihood part of the criterion has the form
tr ETP —log |P|: a convex function in P or some lin-
ear parameterization. If P is large, a natural approxi-
mation would be L-PCA. In this case, our result above
implies that the problem remains convex if log |P]| is
replaced by log|A|, A the L smallest eigenvalues of P.

4.3. Evaluations of Approximate Inference

Arguments in this section are developed for SLM vari-
ational inference with the double loop algorithm dis-
cussed above, but may have wider significance. Besides
computational tractability, it is important to under-
stand differences in robustness to variance errors across
algorithms: does the double loop algorithm stand out,
or are other methods (see Section 2.1) equally toler-
ant (while much slower)? In our view, it does not
make much sense to relate approximate Bayesian tech-
niques to the inherently intractable ideas they tend to
be motivated with, or to grant too much value to such
a motivation in the first place. After all, inference
is used to drive real-world problems, and approxima-
tion errors have to understand in these contexts (see
Section 2.2). Moreover, variational inference methods
should be compared against today’s feasible alterna-
tives for these decision making problems. For example,

switching to a model of simpler graphical structure,
we risk to optimize acquisitions for the wrong recon-
struction setup, thus to solve the wrong problem more
accurately. As noted in Section 2.1, we can opt for
variational mean field Bayes (Attias, 2000), tractable
at large scales only with many factorization assump-
tions. However, most covariances are not represented
in a factorized Q(u|y). The choice of which dependen-
cies to suppress is typically done beforehand, without
even looking at data. Factorization assumptions seem
disadvantageous in decision scenarios like experimen-
tal design, where the dominant posterior covariances
are all that matters. While more difficult to imple-
ment, Lanczos (PCA) approximations provide a supe-
rior alternative in this context, since leading posterior
covariances can be tracked in a data-dependent man-
ner.

Our arguments have implications for how (variational)
approximate inference methods should be evaluated.
At present, the quality of a new technique is evalu-
ated by comparing the relative accuracy of marginals
on small regular graphs, where brute force exact com-
putations can still be done. But virtually no applica-
tions of approximate Bayesian inference rely crucially
on highly accurate marginal numbers. Typically, de-
cision scenarios such as in Section 2.2 are faced: what
matters is that the highest scoring candidates come out
on top for the approximation as well. When Lanczos
approximations are used for moderate K, almost all
variances are underestimated substantially (Section 3),
but special structure in these errors implies that they
do not adversely affect selective shrinkage in SLM in-
ference (Section 4.1). Similar to marginal variances,
Lanczos approximations of design score curves A(X )
are globally much too small, but its maximum points
tend to stick out even for small K (see Section 2.2).
There are many other practically relevant properties
of a method, such as computational efficiency, robust-
ness, uniqueness, guaranteed convergence, ease of use,
and some of these may well be more important than
accuracy of marginals. A main message of this pa-
per is that variational inference techniques should be
analyzed and compared on real-world decision scenar-
ios. Testing them on artificial problems may paint a
misleading picture.

5. Experiments

Recall the image acquisition optimization setup from
Section 2.2. The underlying assumption is that with
good posterior approximations, highly informative de-
signs will be found (taylored to the reconstruction
model), and MAP reconstruction results on a test
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set will be improved. The goal of our study® is to
test how reconstruction quality varies with different
levels of Gaussian variance errors. In line with Sec-
tion 4.3, we choose a realistic setup: image recon-
struction from noisy Fourier measurements (required
for magnetic resonance imaging). We use the model
setup previously employed in (Seeger et al., 2009;
Seeger & Nickisch, 2008): B consists of an orthonor-
mal wavelet transform B, and horizontal/vertical dif-
ferences B,., corresponding prior parameters are 7, T;.
We adopt the “Cartesian” variant of (Seeger, 2009):
candidates X . are “phase encodes” (complete columns
in Fourier space). MRI data has additional complex-
ities (complex-valued u, phase noise) which would
interfere with our goals here: we employ a dataset
of conventional natural images (the 75 images pre-
viously used in (Seeger & Nickisch, 2008)), at res-
olution 256 x 256. Measurement noise is fixed to
0% = 1073, the hyperparameters 7,, 7, adjusted based
on MAP reconstructions with a fixed design picked ad-
hoc (7, = 0.08, 7 = 0.16). We split the data into five
blocks, each containing one image for design optimiza-
tion (Figure 1) and 5 test images drawn randomly from
the pool. Sequential experimental design is run as pre-
viously done in (Seeger et al., 2009), both inference and
MAP estimation use the same hyperparameters. Our
test error measure is (||[us — Ugruel|/|| T — Utruel]), Us
the MAP estimate in question, w the MAP image for
a low-frequency-only design®. (-) denotes test set and
block averaging.

Figure 1. Training set for image acquisition optimization.

Recall K-Lanczos and L-PCA from Section 3. For in-
ference with L-PCA, we can prove desirable properties
(Section 4.2), yet it is not very practical for a number
of reasons. First, there is no good reason for not us-
ing the full Lanczos representation after K steps: for
L-PCA, we throw part of it away. Second, running
Lanczos for K steps, we observe a significant fluctua-
tion of the number of converged eigenvalues, certainly
as long as designs are small. Finally, it is not obvious
how to separate smallest and largest converged eigen-
values: the true spectrum of A’s encountered tends to

3 QOur goal is not compare the method of Seeger et al.
(2009) against others, but to analyze effects of variance
errors for the same method.

4 The central 32 columns in Fourier space. Note that
design optimization starts with this basis: it is contained
in all other designs used here.

have gaps at both ends. We give L-PCA results here
for comparison, but note that K-Lanczos will typically
be used in practice.
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Figure 2. Relative test reconstruction errors for designs
found with variational inference based on different-quality
Gaussian variance approximations.
Top: K-Lanczos (Kvar/Kscore)-
(Lvar/Lscore)-

Bottom: L-PCA

Results are shown in Figure 2. First, K-Lanczos does
much better than L-PCA?®: the latter cannot be recom-
mended. Results for K-Lanczos are remarkably robust
across a wide range of Lanczos steps done. The curves
between K = 200 and K = 800 differ insignificantly
only (we show the most variable part). However, for
too few Lanczos steps, results deteriorate (see also er-
ror images in Figure 3). Can we evaluate scores with
less Lanczos iterations? We repeated the experiment

with Ky, = {500,800} (variances p at OL updates),

5 Rather than trying to spot the “true central gap”, we
run Lanczos for ~

K =~ 6L steps, obtaining N converged eigenvalues, then
use the min{L, N} smallest of these.
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but Kgeore = 200, obtaining virtually the same results.
For L-PCA, a similar maneuvre leads to further degra-
dation (Figure 2, lower panel).

Figure 3. MAP reconstructions of training image under de-
signs of 70, 80, 90, 100, 110 columns. Shown are residu-

als w.r.t. true image. Top: 200-Lanczos. Middle: 100-

Lanczos. Bottom: 50-Lanczos.

These results underline our comments in Section 4.3.
It should be noted that relative variance errors for K-
Lanczos are of very different size between K = 200
and K = 800: the average relative error across all co-
efficients scales somewhat linearly in K (Seeger (2009),
Sect. 5.1), a sizeable number of variance coefficients are
orders of magnitude too small at K = 200. However, if
posterior variances are used within a decision scenario,
such as Bayesian experimental design for natural im-
ages, outcomes can be entirely robust in the presence
of such errors.

6. Discussion

We have highlighted the significance of Gaussian vari-
ances approximation for variational (sparse) Bayesian
inference and provided novel analyses about effects of
PCA/Lanczos variance approximation errors on out-
comes of nonlinear Bayesian experimental design. Our
results show that outcomes can be robust in the pres-
ence of substantial overall marginal variance errors,
at least for methods aiming to track dominating pos-
terior covariances rather than imposing factorization
constraints up front. While variational Bayesian meth-
ods are used in diverse applications, most evaluations
of novel technology to date concentrate almost solely
on closeness of marginals to the true posterior, a single
point of merit which may often be of minor importance
in practice. In order to understand real-world impact
of Bayesian technology, theoretical analyses and em-
pirical evaluations may have to broaden their focus.
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