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Abstract

Multiagent Inductive Learning is the problem
that groups of agents face when they want to
perform inductive learning, but the data of
interest is distributed among them. This pa-
per focuses on concept learning, and presents
A-MAIL, a framework for multiagent induc-
tion integrating ideas from inductive learn-
ing, case-based reasoning and argumentation.
Argumentation is used as a communication
framework with which the agents can com-
municate their inductive inferences to reach
shared and agreed-upon concept definitions.
We also identify the requirements for learning
algorithms to be used in our framework, and
propose an algorithm which satisfies them.

1. Introduction

Inductive learning consists of learning a general hy-
pothesis from a collection of concrete examples. In this
paper we will focus on multiagent inductive learning
(MAIL), where agents are able to perform inductive
learning on their individual (i.e. local) data and, ad-
ditionally, are able to communicate with other agents
in order to learn from those communication processes.

Multiagent inductive learning is related to distributed
induction, where the goal is defining parallel algo-
rithms to increase the efficiency of induction. The
goal in MAIL, however, is to study techniques to allow
autonomous agents with inductive learning capabili-
ties to collaborate in such a way that their individual
learning improves. Specifically, we will propose (1)
an argumentation framework to regulate a process of
information exchange among agents, and (2) an induc-
tion technique that is able to integrate argumentation
with the search process in the space of generalizations.
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There are three approaches to the distributed induc-
tion problem given a set of agents, each one with a
portion of the data (Davies & Edwards, 1995) : a)
centralizing the data and applying standard machine
learning, b) exchanging information whilst learning on
local data (making the agents effectively work as a sin-
gle algorithm over the data) (Sian, 1991), and c) learn
locally and then share and aggregate results (Brazdil
& Torgo, 1990). Our approach is closer to the latter,
but arguing instead of simply aggregating the results.

This paper will present a framework where multiagent
inductive learning (MAIL) can be understood and re-
alized as an integration of ideas from induction, case-
based reasoning (CBR) and argumentation. Specifi-
cally, this integration can be seen as the combination
of three processes: a) individual induction, b) argu-
mentation and c) belief revision. The key ideas are
(1) that argumentation provides a formal communica-
tion framework with which agents can share and dis-
cuss their learned knowledge, and (2) that arguments
can be generated both by using inductive learning and
case-based reasoning ideas. In the following, we will
use “case” and “example” interchangeably. Neverthe-
less, an induction technique to be integrated into our
argumentation framework will have to fulfill some re-
quirements that we will specify later in this paper. Our
current proposal presents a framework for the scenario
of argumentation between 2 agents.

The paper is organized as follows. Section 2 formally
defines the task of multiagent inductive learning. Sec-
tion 3 presents A-MAIL, an argumentation framework
designed for MAIL in the two agents scenario. Next,
we present a specific inductive algorithm that fulfills
the requirements of the argumentation process (Sec-
tion 4) and the method for belief revision (Section 5).
After that, Section 6 presents an interaction protocol
to integrate the previous three processes of induction,
argumentation, and belief revision. Finally, Section 7
presents an experimental evaluation of our framework.
The paper closes with related work and conclusions.
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2. Multiagent Inductive Learning

In this paper, we will focus on concept learning tasks
(i.e. binary inductive learning tasks), where given a
case base E = {e1, ..., en} with examples drawn from
an example space E , a target concept C : E → {+,−},
and a hypotheses space H, the task is to find a hy-
pothesis H ∈ H such that H(e) = C(e) for all e ∈ E.

The task of multiagent inductive learning is defined as
follows. Given a set of agents A = {A1, ..., Am}, each
of them with a different case base E1, ...Em with ex-
amples drawn from an example space E , a target con-
cept C : E → {+,−}, and a shared hypotheses space
H, the task for each agent Ai is to learn a hypothesis
Hi ∈ H such that Hi(e) = C(e) for all e ∈ E1∪ ..∪Em.
In the remainder of this paper we will further restrict
ourselves to the case where there are only two agents.
Moreover, for practical reasons, the learnt hypotheses
are not required to classify the examples perfectly, but
just with a high accuracy. Thus, in the remainder of
this paper we will use the term “consistent” as a syn-
onym of “highly accurate”.

This paper presents the Argumentation for Multia-
gent Inductive Learning (A-MAIL) framework, which
uses argumentation as a communication mechanism
among agents that perform inductive learning. The
main idea behind the A-MAIL framework is that multi-
agent induction can be understood as the combination
of three processes: individual induction, argumenta-
tion and belief revision; namely:

1. Each agent Ai performs induction individually,
obtaining a hypothesis Hi. If the agents agree
in their hypotheses, then the process is over.

2. Otherwise, using an argumentation framework,
the agents argue about the generated hypotheses.

3. Agents revise their beliefs (their hypothesis Hi,
and case base Ei), due to the information in the
arguments being exchanged, and then the argu-
mentation continues.

The goal for an agent is to improve its inductive hy-
pothesis, initially derived locally from its individual
case base Ei, with information derived by other agents
from their case bases and communicated via the argu-
mentation process. This improvement is achieved by
revising its hypothesis so that it is consistent not only
with its individual case base but also with case bases
and hypotheses of the rest of the agents. The pro-
cess ends when the agents achieve individual hypothe-
ses that are consistent with each other’s case base (or
when they are unable to provide new arguments).

3. An Argumentation Framework for
Inductive Learning

This section presents A-MAIL, an Argumentation
Framework for Inductive Learning for two agents; a
more complex framework for n agents is beyond the
scope of this paper. A-MAIL assumes that the hy-
potheses space H consists of the set of hypotheses
that can be represented as a disjunction of rules:
H = h1 ∨ ... ∨ hn, where each rule is a generaliza-
tion of a set of positive examples, in a generalization
language G.

We will assume that a more-general-than (subsump-
tion) relation exists among rules: when a rule h1 is
more general than another rule h2 we write h1 v h2.
Additionally, if a rule h is a generalization of an exam-
ple e, we will also say that h is more general than e, or
that h subsumes or covers e (h v e). If h1 v h2, all the
examples subsumed by h2 are also subsumed by h1. A
hypothesis H = h1 ∨ ... ∨ hn subsumes an example e
(H v e) when at least one of its rules subsumes e.

An argumentation framework AF = 〈Q,R〉 is com-
posed by a finite set of arguments Q and an attack
relation R among the arguments (Dung, 1995). A-
MAIL differs from Dung’s framework in that, since ar-
guments are generated from examples, it also models
the relation between arguments and examples. Let us
define both the kinds of arguments considered by A-
MAIL and their attack relation. There are two kinds
of arguments in A-MAIL:

• An example argument α = 〈e, C〉 is a pair where
e is an example, and C ∈ {+,−}; where C = + if
the example is positive and C = − otherwise.

• A rule argument α = 〈h,C〉 is a pair where h is a
rule and C ∈ {+,−}.

An argument α1 = 〈h1,+〉 states that the rule h1 cov-
ers positive examples, and we say that it is a posi-
tive rule argument (or that it supports +). An ar-
gument α2 = 〈h2,−〉 states that h2 covers negative
examples, we say that it is a negative rule argument
(or that it supports −). In our framework, example
arguments are generated using case-based techniques,
whereas rule arguments are generated using inductive
learning. As discussed in the related work section,
the idea of using examples as arguments to integrate
CBR with argumentation has already been studied
(Ontañón & Plaza, 2007a). Moreover, since rules are
learned through inductive learning techniques, their
validity is not ensured. Thus, only those rule argu-
ments which satisfy some confidence criteria are ac-
cepted into the argumentation framework.
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Figure 1. An illustration of the different argument types,
their confidences and relations.

Definition 1 The confidence of a rule argument
〈h,C〉 for an agent Ai is:

Bi(〈h,C〉) =
|{e ∈ Ei|C(e) = C ∧ h v e}|+ 1

|{e ∈ Ei|h v e}|+ 2

Bi(〈h,C〉) is the ratio of examples covered by h and
supporting the same concept as the argument from
Ai’s case base, divided by the total number exam-
ples from Ai’s case base covered by h. We add 1 to
the numerator and 2 to the denominator following the
Laplace probability estimation procedure (which pre-
vents estimations too close to 0 or 1 when very few
examples are covered).

Definition 2 A rule-argument α = 〈h,C〉 is τ -
acceptable for an agent Ai if Bi(α) ≥ τ , where 0 ≤
τ ≤ 1. All example-arguments are τ -acceptable.

In our framework, given an agreed upon threshold
τ , only those rules and rule-arguments which are τ -
acceptable are allowed. Other confidence measures,
such as entropy and likelihood ratio used by classic
rule learning algorithms, could also be used.

Definition 3 The attack relation (α� β) among two
τ -acceptable arguments α, β holds when:

1. 〈h1, C〉� 〈h2, Ĉ〉 ⇐⇒ C = ¬Ĉ ∧ h2 @ h1

2. 〈e, C〉� 〈h, Ĉ〉 ⇐⇒ C = ¬Ĉ ∧ h v e

A rule argument α = 〈h1, C〉 only attacks another ar-
gument β = 〈h2, Ĉ〉 if h2 @ h1, i.e. when β is a strictly
more general argument than α. This is required since
it implies that all the examples covered by α are also
covered by β, and thus if they support different con-
cepts, they must be in conflict. Moreover, notice that
forcing an argument to be strictly more general than
another prevents cycles in the attack relation.

α1

α3 α7

β2 β6

e4 e5

α7 ! β6 ! α1

e5 ! α3 ! β2 ! α1

e4 ! α3 ! β2 ! α1

Figure 2. Multiple argumentation lines rooted in the same
argument α1 can be composed into an argumentation tree.

Figure 1 shows several arguments generated by an
agent Ai, where positive examples are represented as
⊕, negative examples are represented as 	, and rule
arguments are represented as triangles. When an ar-
gument α subsumes another argument β, we draw β
inside of the triangle representing α. α1 is a positive
rule argument, which covers 3 positive examples and
3 negative examples, and thus has confidence 0.5, and
α2 is a negative rule argument with confidence 0.66,
since it covers 3 negative examples and only one posi-
tive example. Two example arguments are shown: e3
and e4. α2 � α1 because α2 supports −, α1 supports
+ and h1 @ h2. Additionally e3 � α2, since e3 is a
positive example, α2 supports − and h2 v e3.

Let us now explain how given an argumentation frame-
work AF = 〈Q,�〉, we can decide which arguments
defeat other arguments, based on the idea of argumen-
tation lines (Chesñevar et al., 2005).

Definition 4 An Argumentation Line αn � αn−1 �
...� α1 is a sequence of τ -acceptable arguments where
αi attacks αi−1 and α1 is called the root.

Notice that odd-numbered arguments are generated by
the agent whose hypothesis is under attack (the Propo-
nent of the root argument α1) and the even-numbered
arguments are generated by the Opponent agent at-
tacking α1. Moreover, since rule arguments can only
attack other rule arguments, and example arguments
can only attack rule arguments, example arguments
can only appear as the left-most argument (e.g. αn)
in an argumentation line.

Definition 5 An α-rooted argumentation tree T is a
tree where each path from the root node α to one of the
leaves constitutes an argumentation line rooted on α.
The example-free argumentation tree T f corresponding
to T is a tree rooted in α that contains the same rule
arguments of T but no example arguments.

Any set of argumentation lines rooted in the same ar-
gument α1 can be represented as an argumentation
tree. Figure 2 illustrates this idea, where three dif-
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ferent argumentation lines rooted in the same α1 are
shown with their corresponding argumentation tree.
All arguments αi in Figure 2 are generated by the Pro-
ponent, and all the arguments βi are generated by the
Opponent. Notice that in an argumentation tree all
the example arguments appear in the leaves.

In A-MAIL, examples are only used to determine the
confidence of rule arguments, and determine whether
they are τ -acceptable or not. Thus, in order to assess
which arguments are defeated and which ones are war-
ranted, only rule arguments are taken into account.

Definition 6 A rule argument α generated by an
agent Ai, and root of an example-free argumentation
tree T f , is undefeated (or warranted) if all the the
leaves of T f are arguments generated by Ai.

Notice that the previous definition implies that a rule
argument α is undefeated if Ai has been able to de-
feat any of the attacks that the Opponent agent has
produced against α.

4. Generating Arguments Using
Induction

Agents need two kinds of argument generation capa-
bilities: generating a hypothesis from examples, and
generating attacks to arguments. An agent Ai can
generate a hypothesis using any inductive learning al-
gorithm capable of learning concepts as a disjunction
of rules. However, existing induction algorithms can-
not directly be used to produce arguments that attack
or defend other arguments. This section introduces the
Argumentation-based Bottom-up Induction (ABUI) al-
gorithm that can be used for generating both hypothe-
ses and attacks. ABUI is a bottom-up rule induction
algorithm which, in addition to examples, accepts sup-
plemental background knowledge (in the form of argu-
ments) that biases its search for generalizations.

The input parameters of ABUI are a collection of exam-
ples E, a target concept C or ¬C, a set of arguments Q
and a generalization g. The algorithm outputs a rule
h (if it exists) such that: 1) h supports C, 2) h is more
specific than g, 3) h is τ -acceptable with respect to E,
and 4) 〈h,C〉 is not under the attack of any argument
in Q. The parameter g can be used to force ABUI to
search for rules that attack particular arguments.

Specifically, ABUI, shown in Fig. 3, works as follows.
First ABUI computes a set of seeds, which initially con-
tains each positive example in E which is covered by g.
ABUI works on top of a generalization method γ that
is able to generate all the possible generalization re-

Algorithm ABUI(E,C,Q, g)
H = ∅
ForEach e ∈ {e′ ∈ E|C(e′) = C ∧ g v e′} Do

c = e
While (c 6= ⊥) Do

If B(c) ≥ τ Then H = H ∪ {c}
G = γ(c)
G′ = {h ∈ G|g @ h ∧ @α ∈ Q : α� 〈h,+〉}
If G′ = ∅ Then c = ⊥

Else c = argmax
h∈G′

(B(h))

If H = ∅ then return FAIL
Return argmaxh∈H B(h)

Figure 3. Algorithm that finds a hypothesis for concept ei-
ther C or ¬C which is more specific than g, has maximum
confidence B(h) with respect to E, and is not attacked by
any argument in Q; ⊥ is the most general term in G.

finements1 of a given rule in the generalization space
G. Using this method, ABUI generalizes each seed e
step by step in order to generate candidate rules in
the following way. First, the current rule c is initial-
ized to be equal to the seed e. Then, at each step,
all the generalization refinements of the current rule c
are obtained using γ, and those that are more specific
than g but not under the attack of any argument in
Q, are added to the set G′. The rule with highest con-
fidence in G′ is the one selected to be the current rule
in the next step. When G′ becomes empty, the pro-
cess ends, and ABUI moves on to generalize the next
seed. During this process, each time the current rule
is τ -acceptable, it is added to the set H. When all the
seeds have been generalized, the rule h ∈ H with max-
imum confidence is returned by ABUI. If H is empty
then the algorithm returns a failure token.

When an agent Ai wants to generate a hypoth-
esis for C, ABUI is called with the parameters
ABUI(Ei,+, ∅,⊥), where ⊥ represents the most gen-
eral rule in the generalization space. The result will
be a rule that will cover some positive examples in Ei.
After that, ABUI can be called again with the set of
positive examples still not covered. This process can
be iterated until ABUI cannot return any new rule,
or until all the positive examples have been covered.
The result will be a collection of rules {h1, ..., hn} that
forms the hypothesis Hi = h1 ∨ ... ∨ hn for agent Ai.

ABUI can also be used by an agent Ai for generating
an attack β to a rule argument α in the following way:

1A generalization refinement of g ∈ G is another g′ ∈ G
such that g′ @ g and @g′′ ∈ G|g′ @ g′′ @ g.
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• If α = 〈h,+〉, then β = ABUI(Ei,−, Q, h), and if
α = 〈h,−〉, then β = ABUI(Ei,+, Q, h). Passing
h as the last parameter ensures that the generated
argument β will be more specific than α. Also
notice that the target concept is reversed, so that
the generated argument supports the negation of
the concept that α supports. Q is the set of all
the undefeated arguments in the current state of
the argumentation.

• If ABUI returns a τ -acceptable β, then β is the
attacking argument to be used.

• If ABUI fails to find an argument, then Ai looks
for examples attacking α in Ei. If any exist, then
one such example is randomly chosen to be used
as an attacking argument.

Otherwise, Ai is unable to attack α.

5. Belief Revision

An agent Ai, when receiving arguments from another
agent, might change its beliefs. The beliefs of an agent
in A-MAIL correspond to its local case base Ei, and to
the hypothesis Hi that the agent holds for the target
concept C. Given a new argument α, Ai performs
belief revision in the following way:

1. If α is an example argument, then α.e is added to
case base Ei. Then the τ -acceptability of all the
arguments generated by agent Ai are reevaluated
(including the ones in Ai’s hypothesis Hi).

2. Whether the received argument α is an example
or a rule, the agent Ai reassesses which arguments
in Hi are defeated.

3. If any of the rules in the hypothesis Hi becomes
defeated, and Ai is not able to expand the ar-
gumentation tree rooted in α to defend it, or if
any of the rules in the hypothesis becomes non τ -
acceptable, then those rules will be removed from
the hypothesis. This means that some positive ex-
amples in Ei will not be covered by Hi any longer.
ABUI is called again to generate new hypotheses
that cover the newly uncovered examples in the
following way: ABUI(E′i,+, Q,⊥), where E′i is the
set containing all the negative examples in Ei and
the uncovered positive examples in Ei.

6. A-MAIL Interaction Protocol

The A-MAIL interaction protocol is an iterative proto-
col composed of a series of rounds. In the first round,

t = 0, each agent Ai performs individual induction and
generates an initial hypothesis H0

i . After this point,
agents take turns generating more arguments, trying
to defend their arguments from attacks of the other
agent, or trying to attack arguments generated by the
other agent which are not consistent with their local
case bases.

The status of the argumentation among two agents
A1 and A2 at an instant t is defined by the tuple
〈Rt

1, R
t
2, G

t〉, where:

• Rt
i = {〈h,+〉|h ∈ {h1, ..., hn}} is a set containing

one argument for each of the rules that form the
hypothesis Ht

i that Ai is holding at time t.

• Gt contains the arguments generated before t by
either agent, and belonging to one argumentation
tree rooted in an argument in Rt

1 ∪Rt
2.

Additionally, each agent Ai is able determine the fol-
lowing sets: Qt ⊆ Gt is the subset of undefeated ar-
guments generated before t, and It

i ⊆ Qt contains the
collection of undefeated arguments generated before t
by Aj that are not τ -acceptable for Ai.

At each round of the protocol, one agent holds a to-
ken. The agent holding the token can either assert
new arguments, retract arguments, or accept the cur-
rent state of the argumentation; the token then is
passed on to the other agent. This cycle continues
until both agents accept the current state, meaning
that the hypotheses that both agents hold are consis-
tent with both case bases. Additionally, the protocol
also ends if no agent can generate any new argument
—since this situation means that they are not able to
successfully find hypotheses consistent with their case
bases. Specifically, the protocol for two agents A1 and
A2 works as follows.

1. The protocol starts at round t = 0. Each agent
Ai performs induction individually, obtaining a
hypothesis H0

i and communicates it to the other
agent. At that point, the state of the protocol is
〈R0

0, R
0
1, G

0 = R0
0∪R0

1〉. The token is given to one
agent at random, and the protocol moves to 2.

2. Let Ai be the agent with the token; if Ai has
changed any rule in Ht

i due to belief revision dur-
ing the last round, Ai communicates Ht+1

i to the
other agent. The protocol moves to 3.

3. If the agent Ai with the token can generate an
argument β attacking an argument α ∈ It

i , then
Ai will send β to the other agent, and a new round
t+1 starts with the token being given to the other
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Table 1. Precision (P) and recall (R) for the hypothesis
obtained using different methods with τ = 0.75.

Centralized Individual A-MAIL
Data set P R P R P R

Zoology 0.99 0.85 0.99 0.77 0.98 0.86
Soybean 0.95 0.78 0.92 0.61 0.86 0.73

Demospongiae 0.94 0.87 0.93 0.79 0.90 0.85

Table 2. Precision (P) and recall (R) for the hypothesis
obtained using different methods with τ = 0.85.

Centralized Individual A-MAIL
Data set P R P R P R

Zoology 0.99 0.82 0.99 0.68 0.99 0.82
Soybean 0.97 0.74 0.97 0.53 0.96 0.73

Demospongiae 0.97 0.88 0.96 0.84 0.94 0.88

agent, and the protocol moving to 2. Otherwise,
the protocol moves to 4.

4. If there is any example e ∈ Ei such that Ht
j 6v e

(Aj is not covering e), Ai will send 〈e,+〉 to the
other agent Aj , who will incorporate e to its local
case base. A new round t+ 1 starts, the token is
given to the other agent, and the protocol moves
to 2. Otherwise, the protocol moves to 5.

5. If no agent has added any new argument to the
state in the last two rounds (i.e. if Gt = Gt−2)
then the protocol ends. Otherwise a new round
t+ 1 starts, the token is given to the other agent,
and the protocol moves to 2.

In order to ensure termination, no argument is allowed
to be sent twice by the same agent. Moreover, dur-
ing argumentation, agents might have exchanged some
examples (thus enlarging their case bases). In the ex-
perimental results section, we will report how many
examples the agents exchange during the process, and
show that this is a small number.

7. Experimental Evaluation

In order to empirically evaluate A-MAIL we used three
machine learning data sets: zoology, soybean and de-
mospongiae from the UCI Machine Learning Reposi-
tory. The zoology data set is propositional, and con-
tains 101 examples belonging to 7 different classes.
The soybean data set is also propositional and con-
tains 307 examples belonging to 19 different classes.
The demospongiae data set is relational, and contains
280 examples belonging to 3 different classes. To eval-
uate A-MAIL, we used each one of the different solution
classes in the data sets as the target concept using a 10
fold cross validation test. In an experimental run, we

Table 3. Comparison of the cost required to converge using
different methods with τ = 0.75.

C Zoology Soybean Demospongiae
time in seconds

centralized 1.02s 28.02s 91.98s
individual 0.49s 12.44s 40.36s
A-MAIL 0.19s 16.13s 30.93s

Hypothesis size in number of rules
centralized 1.27 2.71 7.91
individual 0.98 1.73 4.68
A-MAIL 2.43 3.71 8.81

Examples (NE) and Rules (NR) exchanged in A-MAIL
NE 18.71% 37.68% 15.48%
NR 0.53 4.90 15.19

Table 4. Comparison of the cost required to converge using
different methods with τ = 0.85.

C Zoology Soybean Demospongiae
time in seconds

centralized 0.97s 24.72s 73.56s
individual 0.46s 9.74s 34.95s
A-MAIL 0.49s 45.88s 37.43s

Hypothesis size in number of rules
centralized 0.84 1.34 4.41
individual 0.55 0.44 2.93
A-MAIL 1.17 1.41 4.70

Examples (NE) and Rules (NR) exchanged in A-MAIL
NE 25.95% 55.98% 14.40%
NR 0.27 1.83 5.26

randomly split the training set among the two agents
and, given a target concept, the goal of the agents was
to find hypotheses for that concept, which will be eval-
uated using the test set. For each dataset, we report
the average results for each of the different classes.

We compared the results of A-MAIL with respect to
agents which simply perform concept learning indi-
vidually (individual), and to the result of centraliz-
ing all the examples and performing centralized con-
cept learning (centralized). Thus, the difference be-
tween the results of individual agents and agents using
A-MAIL should provide a measure of the benefits of
A-MAIL, whereas comparing with centralized gives a
measure of the quality of A-MAIL’s outcome. We per-
formed experiments with τ = 0.75 and with τ = 0.85.
Precision and recall results for A-MAIL and individual
correspond to the average of the precision and recall
achieved by the hypotheses obtained by each agent.

Tables 7 and 7 show a row for each of the data sets we
used in our evaluation. Performance is measured using
precision and recall. Analyzing the results in Table 7
we can see that using τ = 0.75, A-MAIL can greatly
increase the recall over the hypotheses generated by
individual agents, reaching levels close to those of a
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centralized strategy, but precision decreases slightly2.
This occurs because τ = 0.75 is too permissive, allow-
ing rules which cover up to 25% of negative examples.
By increasing the threshold value, τ = 0.85, agents
using A-MAIL manage to obtain hypothesis statisti-
cally undistinguishable to those generated by a cen-
tralized induction method (as shown in Table 7). This
shows that A-MAIL successfully integrates argumenta-
tion and induction, and allows agents to learn highly
accurate hypotheses without requiring the centraliza-
tion of all data. The threshold τ could be increased
even more, in order to boost precision, but it would be
at the cost of decreasing recall.

Tables 7 and 7 show the cost required to learn the con-
cepts with the three strategies. Times shown are the
sum of the CPU times used by each agent. If a parallel
machine were used, times for individual and A-MAIL
would be divided by about 2. The centralized strat-
egy uses more time on average than either individual
or A-MAIL in both Tables 7 and 7 —except for the
soybean dataset when τ = 0.85. Moreover, we can see
that the number of rules composing the final hypothe-
sis generated by A-MAIL is not much larger than that
of a centralized strategy, especially when τ = 0.85.
The average number of rules in hypotheses found by
individual agents is lower than one, since sometimes
individual agents had so few examples that they could
not learn any rule which was τ -acceptable. We also
see that the average number of examples and rule ar-
guments exchanged among the agents in A-MAIL is
small. For instance, agents only share about a 15%
of their examples in the demospongiae dataset. An
exception is the soybean dataset, where some classes
have a very small number of examples, making it hard
to learn rules above the τ -acceptability threshold, and
thus making the agents exchange a larger number of
examples.

In summary, we can conclude that A-MAIL successfully
achieves multiagent concept learning with 2 agents,
since performance is indistinguishable from the cen-
tralized approach. Moreover, this is achieved exchang-
ing a small number of rules and a small portion of the
case base. Additionally, on average, the execution time
of A-MAIL is lower than that of a centralized strategy,
which is interesting since it could be used to acceler-
ate concept learning, by distributing the task among
several agents and later arguing about their concept
descriptions.

2Notice that the recall for the soybean data set is low,
since there are some classes for which there is a single (or
very few) example(s), thus making it impossible to learn a
proper hypothesis for them.

8. Related Work

The areas of work related to our approach are dis-
tributed induction, case-based reasoning and argu-
mentation. Several approaches for distributed induc-
tion have been presented in the literature. One of
the earliest multiagent inductive learning systems was
MALE (Sian, 1991), in which a collection of agents
tightly cooperated during learning, effectively oper-
ating as if there was a single algorithm working on
all data. In MALE, agents propose rules, and other
agents propose modifications to them, which will have
to be accepted or rejected by the other agents, at-
tempting to maximize some accuracy criterion. Sim-
ilar to MALE, DRL (Provost & Hennessy, 1996) is
a distributed rule learning algorithm based on finding
rules locally and then sending them to the other agents
for evaluation. The ways in which multiple theories
learned by different agents, represented as disjunctions
of rules, can be merged has also been explored (Brazdil
& Torgo, 1990). This method is iterative, and rules are
added one by one to a unified theory attempting to
maximize some accuracy measure. The idea of merg-
ing theories for concept learning has been also studied
in the framework of Version Spaces (Hirsh, 1989).

Concerning argumentation, the idea that argumenta-
tion might be useful for machine learning was discussed
in (Gómez & Chesñevar, 2003), since argumentation
could provide a sound formalization for both express-
ing and reasoning with uncertain and incomplete in-
formation. Since the possible hypotheses induced from
data could be considered an argument, and then by
defining a proper attack and defeat relation, a sound
hypotheses can be found. However, they did not de-
velop the idea, or attempted the actual integration
of an argumentation framework with any particular
machine learning technique. Amgoud and Serrurier
elaborated on the same idea, proposing an argumenta-
tion framework for classification (Amgoud & Serrurier,
2007). Their focus is on classifying examples based
on all the possible classification rules (in the form of
arguments) rather than on a single one learned by a
machine learning method.

A related idea (Mozina et al., 2007) is augmenting ex-
amples with a justification or “supporting argument”
and then use them to constrain the search in the hy-
potheses space. However A-MAIL uses the inductive
process itself to generate arguments (as well as attacks
and belief revision).

We previously explored the use of argumentation with
case-based reasoning in multiagent systems (Ontañón
& Plaza, 2007a) in the AMAL framework. Compared
to A-MAIL, AMAL focuses on lazy learning techniques
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where the goal is to argue about the classification of
particular examples, whereas A-MAIL, although it uses
cases and case bases, allows agents to argue about
rules generated through inductive learning techniques.
Moreover, the AMAL framework explored a related
idea to A-MAIL, namely learning from communication
(Ontañón & Plaza, 2007b). An approach similar to
AMAL is PADUA (Wardeh et al., 2009), an argumen-
tation framework that allows agents to use examples to
argue about the classification of particular problems,
but they generate association rules and do not perform
concept learning.

9. Conclusions

This paper has presented A-MAIL, an argumentation
based framework for multiagent inductive learning.
The key idea is that argumentation can be used as
a formal communication framework to exchange and
discuss the hypotheses learnt by agents using induc-
tion. In our framework, multiagent induction is per-
formed by three separated processes: induction, argu-
mentation and belief revision. We have characterized
the requirements for an inductive method to be inte-
grated into an argumentation framework, and we have
presented one such method (ABUI); moreover we have
shown how that inductive method can be used to gen-
erate arguments, attacks, and to revise beliefs.

Moreover, we have focused on concept learning in a
two agent scenario, since current approaches to argu-
mentation focus on two agents arguing (Proponent and
Opponent). Future work will expand our framework
to n-agents and multi-class induction problems; this
scenario will be closer to joint deliberation in commit-
tees (such as initiated with AMAL (Ontañón & Plaza,
2007a)). Our argumentation framework uses argument
confidence as a filter to determine which rules are valid
or not. We would like to explore new frameworks
which would allow handling argument confidence di-
rectly inside of the argumentation framework. Finally,
we’d like to explore the possibilities that A-MAIL offers
to speed-up inductive learning distributing the data
among several agents and later argue about their con-
cept descriptions.

Acknowledgements. This research was partially
supported by projects Next-CBR (TIN2009-13692-
C03-01) and Agreement Technologies (Consolider
CSD2007-0022).

References

Amgoud, L. and Serrurier, M. Arguing and explaining
classifications. In ArgMAS, pp. 164–177, 2007.

Brazdil, Pavel B. and Torgo, Lus. Knowledge acquisi-
tion via knowledge integration. In in Current Trends
in AI, B. Wielenga et al.(eds.), IOS. Press, 1990.
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