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Abstract

The problem of clustering is considered, for
the case when each data point is a sample
generated by a stationary ergodic process.
We propose a very natural asymptotic no-
tion of consistency, and show that simple con-
sistent algorithms exist, under most general
non-parametric assumptions. The notion of
consistency is as follows: two samples should
be put into the same cluster if and only if
they were generated by the same distribu-
tion. With this notion of consistency, cluster-
ing generalizes such classical statistical prob-
lems as homogeneity testing and process clas-
sification. We show that, for the case of a
known number of clusters, consistency can be
achieved under the only assumption that the
joint distribution of the data is stationary er-
godic (no parametric or Markovian assump-
tions, no assumptions of independence, nei-
ther between nor within the samples). If the
number of clusters is unknown, consistency
can be achieved under appropriate assump-
tions on the mixing rates of the processes.
In both cases we give examples of simple (at
most quadratic in each argument) algorithms
which are consistent.

1. Introduction

Given a finite set of objects, the problem is to “cluster”
similar objects together. This intuitively simple goal
is notoriously hard to formalize. Most of the work on
clustering is concerned with particular parametric data
generating models, or particular algorithms, a given
similarity measure, and (very often) a given number
of clusters. It is clear that, as in almost learning prob-
lems, in clustering finding the right similarity measure
is an integral part of the problem. However, even if
one assumes the similarity measure known, it is hard
to define what a good clustering is (Kleinberg, 2002;
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Zadeh & Ben-David, 2009). What is more, even if
one assumes the similarity measure to be simply the
Euclidean distance (on the plane), and the number of
clusters k known, then clustering may still appear in-
tractable for computational reasons. Indeed, in this
case finding k centres (points which minimize the cu-
mulative distance from each point in the sample to
one of the centres) seems to be a natural goal, but this
problem is NP-hard (Mahajan et al., 2009).

In this work we concentrate on a subset of the clus-
tering problem: clustering processes. That is, each
data point is itself a sample generated by a certain
discrete-time stochastic process. This version of the
problem has numerous applications, such as clustering
biological data, financial observations, or behavioural
patterns, and as such it has gained a tremendous at-
tention in the literature.

The main observation that we make in this work is
that, in the case of clustering processes, one can bene-
fit from the notion of ergodicity to define what appears
to be a very natural notion of consistency. This notion
of consistency is shown to be satisfied by simple algo-
rithms that we present, which are polynomial in all ar-
guments. This can be achieved without any modeling
assumptions on the data (e.g. Hidden Markov, Gaus-
sian, etc.), without assuming independence of any kind
within or between the samples. The only assumption
that we make is that the joint distribution of the data
is stationary ergodic. The assumption of stationar-
ity means, intuitively, that the time index itself bares
no information: it does not matter whether we have
started recording observations at time 0 or at time
100. By virtue of the ergodic theorem, any stationary
process can be represented as a mixture of stationary
ergodic processes. In other words, a stationary pro-
cess can be thought of as first selecting a stationary
ergodic process (according to some prior distribution)
and then observing its outcomes. Thus, the assump-
tion that the data is stationary ergodic is both very
natural and rather weak. At the same time, ergodic-
ity means that, in asymptotic, the properties of the
process can be learned from observation.

This allows us to define the clustering prob-
lem as follows. N samples are given: x1 =
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(x11, . . . , x
1
n1

), . . . ,xN = (xN1 , . . . , x
N
nN

). Each sam-
ple is drawn by one out of k different stationary er-
godic distributions. The samples are not assumed to
be drawn independently; rather, it is assumed that
the joint distribution of the samples is stationary er-
godic. The target clustering is as follows: those and
only those samples are put into the same cluster that
were generated by the same distribution. The number
k of target clusters can be either known or unknown
(different consistency results can be obtained in these
cases). A clustering algorithm is called asymptotically
consistent if the probability that it outputs the target
clustering converges to 1, as the lengths (n1, . . . , nN )
of the samples tend to infinity (a variant of this def-
inition is to require the algorithm to stabilize on the
correct answer with probability 1). Note the particular
regime of asymptotic: not with respect to the number
of samples N , but with respect to the length of the
samples n1, . . . , nN .

Similar formulations have appeared in the literature
before. Perhaps the most close approach is mixture
models (Smyth, 1997; Zhong & Ghosh, 2003): it is
assumed that there are k different distributions that
have a particular known form (such as Gaussian, Hid-
den Markov models, or graphical models) and each one
out of N samples is generated independently according
to one of these k distributions (with some fixed prob-
ability). Since the model of the data is specified quite
well, one can use likelihood-based distances (and then,
for example, the k-means algorithm), or Bayesian in-
ference, to cluster the data. Clearly, the main differ-
ence from our setting is in that we do not assume any
known model of the data; not even between-sample
independence is assumed.

The problem of clustering in our formulation gener-
alizes two classical problems of mathematical statis-
tics. The first one is homogeneity testing, or the two-
sample problem. Two samples x1 = (x11, . . . , x

1
n1

) and
x2 = (x21, . . . , x

2
n2

) are given, and it is required to test
whether they were generated by the same distribution,
or by different distributions. This corresponds to clus-
tering just two data points (N = 2) with the num-
ber k of clusters unknown: either k = 1 or k = 2.
The second problem is process classification, or the
three-sample problem. Three samples x1,x2,x3 are
given, it is known that two of them were generated
by the same distribution, while the third one was gen-
erated by a different distribution. It is required to
find out which two were generated by the same dis-
tribution. This corresponds to clustering three data
points, with the number of clusters known: k = 2.
The classical approach is of course to consider Gaus-
sian i.i.d. data, but general non-parametric solutions

exist not only for i.i.d. data (Lehmann, 1986), but
also for Markov chains (Gutman, 1989), and under
certain mixing rates conditions. What is important
for us here, is that the three-sample problem is eas-
ier than the two-sample problem; the reason is that
k is known in the latter case but not in the former.
Indeed, in (Ryabko, 2010b) it is shown that in gen-
eral, for stationary ergodic (binary-valued) processes,
there is no solution to the two-sample problem, even
in the weakest asymptotic sense. However, a solution
to the three-sample problem, for (real-valued) station-
ary ergodic processes was given in (Ryabko & Ryabko,
2010).

In this work we demonstrate that, if the number k of
clusters is known, then there is an asymptotically con-
sistent clustering algorithm, under the only assump-
tion that the joint distribution of data is stationary
ergodic. If k is unknown, then in this general case there
is no consistent clustering algorithm (as follows from
the mentioned result for the two-sample problem).
However, if an upper-bound αn on the α-mixing rates
of the joint distribution of the processes is known, and
αn → 0, then there is a consistent clustering algorithm.
Both algorithms are rather simple, and are based on
the empirical estimates of the so-called distributional
distance. For two processes ρ1, ρ2 a distributional dis-
tance d is defined as

∑∞
k=1 wk|ρ1(Bk)−ρ2(Bk)|, where

wk are positive summable real weights, e.g. wk = 2−k,
and Bk range over a countable field that generates the
sigma-algebra of the underlying probability space. For
example, if we are talking about finite-alphabet pro-
cesses with the binary alphabet A = {0, 1}, Bk would
range over the set A∗ = ∪k∈NAk; that is, over all tu-
ples 0, 1, 00, 01, 10, 11, 000, 001, . . . (of course, we could
just as well omit, say, 1 and 11); therefore, the distri-
butional distance in this case is the weighted sum of
differences of probabilities of all possible tuples. In this
work we consider real-valued processes, so Bk have to
range through a suitable sequence of intervals, all pairs
of such intervals, triples, etc. (see the formal defini-
tions below). This distance has proved a useful tool for
solving various statistical problems concerning ergodic
processes (Ryabko & Ryabko, 2010; Ryabko, 2010a).

Although this distance involves infinite summation, we
show that its empirical approximations can be easily
calculated. For the case of a known number of clusters,
the proposed algorithm (which is shown to be consis-
tent) is as follows. (The distance in the algorithms is
a suitable empirical estimate of d.) The first sample
is assigned to the first cluster. For each j = 2..k, find
a point that maximizes the minimal distance to those
points already assigned to clusters, and assign it to the
cluster j. Thus we have one point in each of the k clus-
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ters. Next, assign each of the remaining points to the
cluster that contains the closest points from those k al-
ready assigned. For the case of an unknown number of
clusters k, the algorithm simply puts those samples to-
gether that are not farther away from each other than
a certain threshold level, where the threshold is calcu-
lated based on the known bound on the mixing rates.
In this case, besides the asymptotic result, finite-time
bounds on the probability of outputting an incorrect
clustering can be obtained. Each of the algorithms is
shown to be at most quadratic in each argument.

Therefore, we show that for the proposed notion of
consistency, there are simple algorithms that are con-
sistent under most general assumptions. While these
algorithms can be easily implemented, we have left
the problem of trying them out on particular applica-
tions, as well as optimizing the parameters, for future
research. It may also be suggested that the empir-
ical distributional distance can be replaced by other
distances, for which similar theoretical results can be
obtained. An interesting direction, that could preserve
the theoretical generality, would be to use data com-
pressors. These were used in (Ryabko & Astola, 2006)
for the related problems of hypotheses testing, lead-
ing both to theoretical and practical results. As far
as clustering is concerned, compression-based methods
were used (without asymptotic consistency analysis)
in (Cilibrasi & Vitanyi, 2005), and (in a different way)
in (Bagnall et al., 2006). Combining our consistency
framework with these compression-based methods is a
promising direction for further research.

2. Preliminaries

Let A be an alphabet, and denote A∗ the set of tuples
∪∞i=1A

i. In this work we consider the case A = R;
extensions to the multidimensional case, as well as
to more general spaces, are straightforward. Distri-
butions, or (stochastic) processes, are measures on
the space (A∞,FA∞), where FA∞ is the Borel sigma-
algebra of A∞. When talking about joint distribu-
tions of N samples, we mean distributions on the space
((AN )∞,F(AN )∞).

For each k, l ∈ N, let Bk,l be the partition of the set Ak

into k-dimensional cubes with volume hkl = (1/l)k (the
cubes start at 0). Moreover, define Bk = ∪l∈NBk,l and
B = ∪∞k=1B

k. The set {B × A∞ : B ∈ Bk,l, k, l ∈ N}
generates the Borel σ-algebra on R∞ = A∞. For a set
B ∈ B let |B| be the index k of the set Bk that B
comes from: |B| = k : B ∈ Bk.

We use the abbreviation X1..k for X1, . . . , Xk. For a
sequence x ∈ An and a set B ∈ B denote ν(x, B) the

frequency with which the sequence x falls in the set B.

ν(x, B) :={
1

n−|B|+1

∑n−|B|+1
i=1 I{(Xi,...,Xi+|B|−1)∈B} if n ≥ |B|,

0 otherwise.

A process ρ is stationary if ρ(X1..|B| = B) =
ρ(Xt..t+|B|−1 = B) for any B ∈ A∗ and t ∈ N. We fur-
ther abbreviate ρ(B) := ρ(X1..|B| = B). A stationary
process ρ is called (stationary) ergodic if the frequency
of occurrence of each word B in a sequence X1, X2, . . .
generated by ρ tends to its a priori (or limiting) proba-
bility a.s.: ρ(limn→∞ ν(X1..n, B) = ρ(B)) = 1. Denote
E the set of all stationary ergodic processes.

Definition 1 (distributional distance). The distribu-
tional distance is defined for a pair of processes ρ1, ρ2
as follows (e.g. (Gray, 1988))

d(ρ1, ρ2) =

∞∑
m,l=1

wmwl
∑

B∈Bm,l

|ρ1(B)− ρ2(B)|,

where wj = 2−j.

(The weights in the definition are fixed for the sake of
concreteness only; we could take any other summable
sequence of positive weights instead.) In words, we are
taking a sum over a series of partitions into cubes of
decreasing volume (indexed by l) of all sets Ak, k ∈ N,
and count the differences in probabilities of all cubes in
all these partitions. These differences in probabilities
are weighted: smaller weights are given to larger k and
finer partitions. It is easy to see that d is a metric.
We refer to (Gray, 1988) for more information on this
metric and its properties.

The clustering algorithms presented below are based
on empirical estimates of the distance d:

d̂(X1
1..n1

, X2
1..n2

) =
∞∑

m,l=1

wmwl
∑

B∈Bm,l

|ν(X1
1..n1

, B)− ν(X2
1..n2

, B)|, (1)

where n1, n2 ∈ N, ρ ∈ S, Xi
1..ni

∈ Ani .

Although the expression (1) involves taking three infi-
nite sums, it will be shown below that it can be easily
calculated.

Lemma 1 (d̂ is consistent). Let ρ1, ρ2 ∈ E and let two
samples x1 = X1

1..n1
and x2 = X2

1..n2
be generated by

a distribution ρ such that the marginal distribution of
Xi

1..n1
is ρi, i = 1, 2, and the joint distribution ρ is

stationary ergodic. Then

lim
n1,n2→∞

d̂(X1
1..n1

, X2
1..n2

) = d(ρ1, ρ2) ρ–a.s.
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Proof. The idea of the proof is simple: for each set
B ∈ B, the frequency with which the sample x1 falls
into B converges to the probability ρ1(B), and analo-
gously for the second sample. When the sample sizes
grow, there will be more and more sets B ∈ B whose
frequencies have already converged to the probabili-
ties, so that the cumulative weight of those sets whose
frequencies have not converged yet, will tend to 0.

For any ε > 0 we can find an index J such that∑∞
i,j=J wiwj < ε/3. Moreover, for each m, l we can

find such elements Bm,l1 , . . . , Bm,ltm,l
, for some tm,l ∈

N, of the partition Bm,l that ρi(∪
tm,l

i=1B
m,l
i ) ≥ 1 −

ε/6Jwmwl. For each Bm,lj , where m, l ≤ J and

j ≤ tm,l, we have ν((X1
1 , . . . , X

1
n1

), Bm,lj ) → ρ1(Bm,lj )
a.s., so that

|ν((X1
1 , . . . , X

1
n1

), Bm,lj )− ρ1(Bm,lj )|

< ρ1(Bm,lj )ε/(6Jwj)

for all n1 ≥ u, for some u ∈ N; define Um,lj := u.

Let U := maxm,l≤J,j≤tm,l
Um,lj (U depends on the re-

alization X1
1 , X

1
2 , . . . ). Define analogously V for the

sequence (X2
1 , X

2
2 , . . . ). Thus for n1 > U and n2 > V

we have

|d̂(x1,x2)− d(ρ1, ρ2)| =∣∣∣∣∣∣
∞∑

m,l=1

wmwl

∑
B∈Bk,l

(
|ν(x1, B)− ν(x2, B)| − |ρ1(B)− ρ2(B)|

)∣∣∣∣∣∣
≤

∞∑
m,l=1

wmwl

∑
B∈Bk,l

wi

(
|ν(x1, B)− ρ1(B)|+ |ν(x2, B)− ρ2(B)|

)

≤
J∑

m,l=1

wmwl

tk,l∑
i=1

(
|ν(x1, B

m,l
i )− ρ1(Bm,l

i )|

+ |ν(x2, B
m,l
i )− ρ2(Bm,l

i )|
)
+ 2ε/3

≤
J∑

m,l=1

wmwl

tk,l∑
i=1

(ρ1(B
m,l
i )ε/(6Jwmwl)

+ ρ2(B
m,l
i )ε/(6Jwmwl)) + 2ε/3 ≤ ε,

which proves the statement.

3. Main results

The clustering problem can be defined as follows. We
are given N samples x1, . . . ,xN , where each sample xi
is a string of length ni of symbols from A: xi = Xi

1..ni
.

Each sample is generated by one out of k different
unknown stationary ergodic distributions ρ1, . . . , ρk ∈
E . Thus, there is a partitioning I = {I1, . . . , Ik} of the
set {1..N} into k disjoint subsets Ij , j = 1..k

{1..N} = ∪kj=1Ij ,

such that xj , 1 ≤ j ≤ N is generated by ρj if and only
if j ∈ Ij . The partitioning I is called the target clus-
tering and the sets Ii, 1 ≤ i ≤ k, are called the target
clusters. Given samples x1, . . . ,xN and a target clus-
tering I, let I(x) denote the cluster that contains x.

A clustering function F takes a finite number of sam-
ples x1, . . . ,xN and an optional parameter k (the
target number of clusters) and outputs a partition
F (x1, . . . ,xN , (k)) = {T1, . . . , Tk} of the set {1..N}.
Definition 2 (asymptotic consistency). Let a finite
number N of samples be given, and let the target clus-
tering partition be I. Define n = min{n1, . . . , nN}. A
clustering function F is strongly asymptotically con-
sistent if F (x1, . . . ,xN , (k)) = I from some n on with
probability 1. A clustering function is weakly asymp-
totically consistent if P (F (x1, . . . ,xN , (k)) = I)→ 1.

Note that the consistency is asymptotic with respect to
the minimal length of the sample, and not with respect
to the number of samples.

3.1. Known number of clusters

Algorithm 1 is a simple clustering algorithm, which,
given the number k of clusters, will be shown to be
consistent under most general assumptions. It works
as follows. The point x1 is assigned to the first clus-
ter. Next, find the point that is farthest away from x1

in the empirical distributional distance d̂, and assign
this point to the second cluster. For each j = 3..k,
find a point that maximizes the minimal distance to
those points already assigned to clusters, and assign
it to the cluster j. Thus we have one point in each
of the k clusters. Next simply assign each of the re-
maining points to the cluster that contains the closest
points from those k already assigned. One can notice
that Algorithm 1 is just one iteration of the k-means
algorithm, with so-called farthest-point initialization
(Katsavounidis et al., 1994), and a specially designed
distance.

Algorithm 1 The case of known number of clusters k

INPUT: The number of clusters k, samples
x1, . . . , xN .
Initialize: j := 1, c1 := 1, T1 := {xc1}.
for j := 2 to k do
cj := argmax{i = 1, . . . , N : minj−1t=1 d̂(xi,xct)}
Tj := {xcj}

end for
for i = 1 to N do

Put xi into the set Targmink
j=1 d̂(xi,xcj

)

end for
OUTPUT: the sets Tj , j = 1..k.
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Proposition 1 (calculating d̂(x1,x2)). For two sam-
ples x1 = X1

1..n1
and x2 = X2

1..n2
the compu-

tational complexity (time and space) of calculating

the empirical distributional distance d̂(x1,x2) (1) is
O(n2 log s−1min), where n = max(n1, n2) and

smin = min
i=1..n1,j=1..n2,X1

i 6=X2
j

|X1
i −X2

j |.

Proof. First, observe that for fixed m and l, the sum

Tm,l :=
∑

B∈Bm,l

|ν(X1
1..n1

, B)− ν(X2
1..n2

, B)| (2)

has not more than n1+n2−2m+2 non-zero terms (as-
suming m ≤ n1, n2; the other case is obvious). Indeed,
for each i = 0, 1, in the sample xi there are ni −m+
1 tuples of size k: Xi

1..m, X
i
2..m+1, . . . , X

i
n1−m+1..n1

.

Therefore, the complexity of calculating Tm,l is O(n1+
n2 − 2m + 2) = O(n). Furthermore, observe that
for each m, for all l > log s−1min the term Tm,l

is constant. Therefore, it is enough to calculate

Tm,1, . . . , Tm,log s
−1
min , since for fixed m

∞∑
l=1

wmwlT
m,l

= wmwlog s
−1
min

T
m,log s

−1
min +

log s
−1
min∑

l=1

wmwlT
m,l

(that is, we double the weight of the last non-
zero term). Thus, the complexity of calculating∑∞
l=1 wmwlT

m,l is O(n log s−1min). Finally, for all

m > n we have Tm,l = 0. Since d̂(x1,x2) =∑∞
m,l=1 wm, wlT

m,l, the statement is proven.

Theorem 1. Let N ∈ N and suppose that the sam-
ples x1, . . . ,xN are generated in such a way that the
joint distribution is stationary ergodic. If the cor-
rect number of clusters k is known, then Algorithm 1
is strongly asymptotically consistent. Algorithm 1
makes O(kN) calculations of d̂(·, ·), so that its com-
putational complexity is O(kNn2

max log s−1min), where
nmax = maxki=1 ni and

smin = min
u,v=1..N,u6=v,i=1..nu,j=1..nv,Xu

i 6=Xv
j

|Xu
i −Xv

j |.

Observe that the samples are not required to be gen-
erated independently. The only requirement on the
distribution of samples is that the joint distribution is
stationary ergodic. This is perhaps one of the mildest
possible probabilistic assumptions.

Proof. By Lemma 1, d̂(xi,xj), i, j ∈ {1..N} converges
to 0 if and only if xi and xj are in the same clus-
ter. Since there are only finitely many samples xi,
there exists some δ > 0 such that, from some n on,
we will have d̂(xi,xj) < δ if xi,xj belong to the same

target cluster (I(xi) = I(xj)), and d̂(xi,xj) > δ oth-
erwise (I(xi) 6= I(xj)). Therefore, from some n on,
for every j ≤ k we will have max{i = 1, . . . , N :

minj−1t=1 d̂(xi,xct)} > δ and the sample xcj , where

cj = argmax{i = 1, . . . , N : minj−1t=1 d̂(xi,xct)}, will
be selected from a target cluster that does not contain
any xci , i < j. The consistency statement follows.

Next, let us find how many pairwise distance estimates
d̂(xi,xj) the algorithm has to make. On the first it-

eration of the loop, it has to calculate d̂(xi,xc1) for
all i = 1..N . On the second iteration, it needs again
d̂(xi,xc1) for all i = 1..N , which are already calcu-

lated, and also d̂(xi,xc2) for all i = 1..N , and so on: on
jth iteration of the loop we need to calculate d(xi,xcj ),
i = 1..N , which gives at most kN pairwise distance
calculations in total. The statement about computa-
tional complexity follows from this and Proposition 1:
indeed, apart from the calculation of d̂, the rest of the
computations is of order O(kN).

Complexity–precision trade–off. The bound on
the computational complexity of Algorithm 1, given in
Theorem 1, is given for the case of precisely calculated
distance estimates d̂(·, ·). However, precise estimates
are not needed if we only want to have an asymptoti-
cally consistent algorithm. Indeed, following the proof
of Lemma 1, it is easy to check that if we replace in (1)
the infinite sums with sums over any number of terms
mn, ln that grows to infinity with n = min(n1, n2),
and if we replace partitions Bm,l by their (finite) sub-
sets Bm,l,n which increase to Bm,l, then we still have
a consistent estimate of d(·, ·).
Definition 3 (ď). Let mn, ln be some sequences of
numbers, Bm,l,n ⊂ Bm,l for all m, l, n ∈ N, and denote
n := min{n1, n2}. Define

ď(X1
1..n1

, X2
1..n2

) :=

mn∑
m=1

ln∑
l=1

wmwl∑
B∈Bm,l,n

|ν(X1
1..n1

, B)− ν(X2
1..n2

, B)|. (3)

Lemma 2 (ď is consistent). Assume the conditions of
Lemma 1. Let ln and mn be any sequences of integers
that go to infinity with n, and let, for each m, l ∈ N,
the sets Bm,l,n, n ∈ N be an increasing sequence of
subsets of Bm,l, such that ∪n∈NBm,l,n = Bm,l. Then

lim
n1,n2→∞

ď(X1
1..n1

, X2
1..n2

) = d(ρ1, ρ2) ρ–a.s..

The proof is analogous to that of Lemma 1.
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If we use the estimate ď(·, ·) in Algorithm 1 (instead

of d̂(·, ·)), then we still get an asymptotically consis-
tent clustering function. Thus the following statement
holds true.

Proposition 2. Assume the conditions of Theorem 1.
For all sequences mn, ln of numbers that increase to in-
finity with n, there is a strongly asymptotically consis-
tent clustering algorithm, whose computational com-
plexity is O(kNnmaxmnmax

lnmax
).

On the one hand, Proposition 2 can be thought of as an
artifact of the asymptotic definition of consistency; on
the other hand, in practice precise calculation of d̂(·, ·)
is hardly necessary. What we get from Proposition 2
is the possibility to select the appropriate trade–off
between the computational burden, and the precision
of clustering before asymptotic.

Note that the bound in Proposition 2 does not involve
the sizes of the sets Bm,l,n; in particular, one can take
Bm,l,n = Bm,l for all n. This is because, for every
two samples X1

1..n and X2
1..n, this sum has no more

than 2n non-zero terms, whatever are m, l. However,
in the following section, where we are after clustering
with an unknown number of clusters k, and thus after
controlled rates of convergence, the sizes of the sets
Bm,l,n will appear in the bounds.

3.2. Unknown number of clusters

So far we have shown that when the number of clusters
is known in advance, consistent clustering is possible
under the only assumption that the joint distribution
of the samples is stationary ergodic. However, under
this assumption, in general, consistent clustering with
unknown number of clusters is impossible. Indeed, as
was shown in (Ryabko, 2010b), when we have only two
binary-valued samples, generated independently by two
stationary ergodic distributions, it is impossible to de-
cide whether they have been generated by the same
or by different distributions, even in the sense of weak
asymptotic consistency (this holds even if the distri-
butions come from a smaller class: the set of all B-
processes). Therefore, if the number of clusters is un-
known, we have to settle for less, which means that we
have to make stronger assumptions on the data. What
we need is known rates of convergence of frequencies to
their expectations. Such rates are provided by assump-
tions on the mixing rates of the distribution generating
the data. Here we will show that under rather mild
assumptions on the mixing rates (and, again, with-
out any modeling assumptions or assumptions of inde-
pendence), consistent clustering is possible when the
number of clusters is unknown.

In this section we assume that all the samples are [0, 1]-
valued (that is, Xj

i ∈ [0, 1]); extension to arbitrary
bounded (multidimensional) ranges is straightforward.
Next we introduce mixing coefficients, mainly follow-
ing (Bosq, 1996) in formulations. Informally, mix-
ing coefficients of a stochastic process measure how
fast the process forgets about its past. Any one-
way infinite stationary process X1, X2, . . . can be ex-
tended backwards to make a two-way infinite process
. . . , X−1, X0, X1, . . . with the same distribution. In
the definition below we assume such an extension. De-
fine the α mixing coefficients as

α(n) = sup
A∈σ(...,X−1,X0),B∈σ(Xn,Xn+1,... ))

|P (A ∩B)− P (A)P (B)|, (4)

where σ(..) stays for the sigma-algebra generated by
random variables in brackets. These coefficients are
non-increasing. A process is called strongly α-mixing
if α(n)→ 0. Many important classes of processes sat-
isfy the mixing conditions. For example, if a process
is a stationary irreducible aperiodic Hidden Markov
process, then it is α-mixing. If the underlying Markov
chain is finite-state, then the coefficients decrease ex-
ponentially fast. Other probabilistic assumptions can
be used to obtain bounds on the mixing coefficients,
see e.g. (Bradley, 2005) and references therein.

Algorithm 2 is very simple. Its inputs are: samples
x1, . . . , xN ; the threshold level δ ∈ (0, 1), the param-
eters m, l ∈ N, Bm,l,n. The algorithm assigns to the
same cluster all samples which are at most δ-far from
each other, as measured by ď(·, ·). The estimate ď(·, ·)
can be calculated in the same way as d̂(·, ·) (see Propo-
sition 1 and its proof). We do not give a pseudo code
implementation of this algorithm, since it’s rather ob-
vious.

The idea is that the threshold level δ is selected accord-
ing to the minimal length of a sample and the (known
bounds on) mixing rates of the process ρ generating
the samples (see Theorem 2).

The next theorem shows that, if the joint distribution
of the samples satisfies α(n) ≤ αn → 0, where αn are
known, then one can select (based on αn only) the pa-
rameters of Algorithm 2 in such a way that it is weakly
asymptotically consistent. Moreover, a bound on the
probability of error before asymptotic is provided.

Theorem 2 (Algorithm 2 is consistent, unknown k).
Fix sequences αn ∈ (0, 1), mn, ln, bn ∈ N, and let
Bm,l,n ⊂ Bm,l be an increasing sequence of finite sets,
for each m, l ∈ N. Set bn := maxl≤ln,m≤mn |Bm,l,n|.
Let also δn ∈ (0, 1). Let N ∈ N and suppose that
the samples x1, . . . ,xN are generated in such a way
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that the (unknown) joint distribution ρ is stationary
ergodic, and satisfies αn(ρ) ≤ αn, for all n ∈ N. Then
for every sequence qn ∈ [0..n/2], Algorithm 2, with the
above parameters, satisfies

ρ(T 6= I) ≤ 2N(N + 1)(mnlnbnγn(δn) + γn(ερ)) (5)

where

γ(δ) = (2e−qnδ
2/32 + 11(1 + 4/δ)1/2qnα(n−2mn)/2qn),

T is the partition output by the algorithm, I is the
target clustering, ερ is a constant that depends only on
ρ, and n = mini=1..N ni.

In particular, if αn = o(1), then, selecting the param-
eters in such a way that δn = o(1), qn,mn, ln, bn =
o(n), qn,mn, ln →∞, ∪k∈NBm,l,k = Bm,l, bm,ln →∞,
for all m, l ∈ N, and, finally,

mnlnbn(e−qnδ
2
n + δ−1/2n qnα(n−2mn)/2qn) = o(1),

as is always possible, Algorithm 2 is weakly asymp-
totically consistent (with the number of clusters k
unknown). The computational complexity of Algo-
rithm 2 is O(N2mnmax

lnmax
bnmax

), and is bounded by
O(N2n2max log s−1min), where nmax and log s−1min are de-
fined as in Theorem 1.

Proof. We use the following bound from (Bosq, 1996):
for any zero-mean random process Y1, Y2, . . . , every
n ∈ N and every q ∈ [1..n/2] we have

P

(
|
n∑
i=1

Yi| > nε

)
≤ 4 exp(−qε2/8) + 22(1 + 4/ε)1/2qα(n/2q).

For every j = 1..N , every m < n, l ∈ N, and B ∈ Bm,l,
define the processes Y j1 , Y

j
2 , . . . , where

Y jt := I(Xj
t ,...,X

j
t+m−1)∈B

− ρ(Xj
1..m ∈ B).

It is easy to see that α-mixing coefficients for this pro-
cess satisfy α(n) ≤ αn−2m. Thus,

ρ(|ν(Xj
1..nj

, B)−ρ(Xj
1..m ∈ B)| > ε/2) ≤ γn(ε) (6)

Then for every i, j ∈ [1..N ] such that I(xi) = I(xj)
(that is, xi and xj are in the same cluster) we have

ρ(|ν(Xi
1..ni

, B)− ν(Xj
1..nj

, B)| > ε) ≤ 2γn(ε).

Using the union bound, summing over m, l, and B, we
obtain

ρ(ď(xi,xj) > ε) ≤ 2mnlnbnγn(ε). (7)

Next, let i, j be such that I(xi) 6= I(xj). Then, for
some mi,j , li,j ∈ N there is Bi,j ∈ Bmi,j ,li,j such that

|ρ(Xi
1..|Bi,j | ∈ Bi,j) − ρ(Xj

1..|Bi,j | ∈ Bi,j)| > 2τi,j for

some τi,j > 0. Then for every ε < τi,j/2 we have

ρ(|ν(Xi
1..ni

, Bi,j)− ν(Xj
1..nj

, Bi,j)| < ε) ≤

ρ(|ν(Xi
1..ni

, Bi,j)− ρ(Xi
1..|B| ∈ Bi,j)| > τi,j)

+ ρ(|ν(Xj
1..nj

, Bi,j)− ρ(Xj
1..|Bi,j | ∈ Bi,j)| > τi,j)

≤ 2γn(τi,j). (8)

Moreover, for ε < wmi,j
wli,jτi,j/2

ρ(ď(xi,xj) > ε) ≤ 2γn(wmi,j
wli,jτi,j). (9)

Define ερ := mini,j=1..N :I(xi)6=I(xj) wmi,j
wli,jτi,j/2.

Clearly, from this and (8), for every ε < 2ερ we ob-
tain

ρ(ď(xi,xj) > ε) ≤ 2γn(ερ). (10)

If, for every pair i, j of samples, ď(xi,xj) < δn if and
only if I(xi) = I(xj), then Algorithm 2 gives a correct
answer. Therefore, taking the bounds (7) and (10) to-
gether for each of the N(N +1)/2 pairs of samples, we
obtain (5). The complexity statement can be estab-
lished analogously to that in Theorem 1.

While Theorem 2 shows that α-mixing with a known
bound on the coefficients is sufficient to achieve asymp-
totic consistency, the bound (5) on the probability of
error includes as multiplicative terms all the parame-
ters mn, ln and bn of the algorithm, which can make it
large for practically useful choices of the parameters.
The multiplicative factors are due to the fact that we
take a bound on the divergence of each individual fre-
quency of each cell of each partition from its expecta-
tion, and then take a union bound over all of these.
To obtain a more realistic performance guarantee, we
would like to have a bound on the divergence of all the
frequencies of all cells of a given partition from their
expectations. Such uniform divergence estimates are
possible under stronger assumptions; namely, they can
be established under some assumptions on β-mixing
coefficients, which are defined as follows

β(n) = E sup
B∈σ(Xn,... ))

|P (B) − P (B|σ(. . . , X0))|.

These coefficients satisfy 2α(n) ≤ β(n) (see e.g. (Bosq,
1996)), so assumptions on the speed of decrease of β-
coefficients are stronger. Using the uniform bounds
given in (Karandikara & Vidyasagar, 2002), one can
obtain a statement similarto that in Theorem 2, with
α-mixing replaced by β-mixing, and without the mul-
tiplicative factor bn.
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4. Conclusion

We have proposed a framework for defining consis-
tency of clustering algorithms, when the data comes
as a set of samples drawn from stationary processes.
The main advantage of this framework is its generality:
no assumptions have to be made on the distribution of
the data, beyond stationarity and ergodicity. The pro-
posed notion of consistency is so simple and natural,
that it may be suggested to be used as a basic sanity-
check for all clustering algorithms that are used on
sequence-like data. For example, it is easy to see that
the k-means algorithm will be consistent with some
initializations (e.g. with the one used in Algorithm 1)
but not with others (e.g. not with the random one).

While the algorithms that we presented to demon-
strate the existence of consistent clustering methods
are computationally efficient and easy to implement,
the main value of the established results is theoreti-
cal. As it was mentioned in the introduction, it can be
suggested that for practical applications empirical es-
timates of the distributional distance can be replaced
with distances based on data compression, in the spirit
of (Ryabko & Astola, 2006; Cilibrasi & Vitanyi, 2005;
Ryabko, 2009).

Another direction for future research concerns optimal
bounds on the speed of convergence: while we show
that such bounds can be obtained (of course, only in
the case of known mixing rates), finding practical and
tight bounds, for different notions of mixing rates, re-
mains open.

Finally, here we have only considered the setting in
which the number N of samples is fixed, while the
asymptotic is with respect to the lengths of the sam-
ples. For on-line clustering problems, it would be in-
teresting to consider the formulation where both N
and the lengths of the samples grow.
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