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Abstract

We consider the problem of multi-task rein-
forcement learning where the learner is pro-
vided with a set of tasks, for which only a
small number of samples can be generated for
any given policy. As the number of samples
may not be enough to learn an accurate eval-
uation of the policy, it would be necessary to
identify classes of tasks with similar structure
and to learn them jointly. We consider the
case where the tasks share structure in their
value functions, and model this by assuming
that the value functions are all sampled from
a common prior. We adopt the Gaussian pro-
cess temporal-difference value function model
and use a hierarchical Bayesian approach to
model the distribution over the value func-
tions. We study two cases, where all the
value functions belong to the same class and
where they belong to an undefined number
of classes. For each case, we present a hierar-
chical Bayesian model, and derive inference
algorithms for (i) joint learning of the value
functions, and (ii) efficient transfer of the in-
formation gained in (i) to assist learning the
value function of a newly observed task.

1. Introduction

Multi-task learning (MTL) is an important learning
paradigm and has recently been an area of active re-
search in machine learning (e.g., Caruana 1997; Baxter
2000; Yu et al. 2005; Xue et al. 2007; Bonilla et al.
2008). A common setup is that there are multiple
related tasks for which we are interested in improving
the performance over individual learning by sharing
information across the tasks. This transfer of infor-
mation is particularly important when we are provided
with only a limited number of data to learn each task.
Exploiting data from related problems provides more

Appearing in Proceedings of the 27" International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

training samples for the learner and can improve the
performance of the resulting solution.

Most  reinforcement learning (RL) algorithms
(Sutton & Barto, 1998) often need a large num-
ber of samples to solve a problem and cannot directly
take advantage of the information coming from other
similar tasks. Nonetheless, recent work has shown
that transfer and multi-task learning techniques
can be employed in RL to reduce the number of
samples needed to achieve nearly-optimal solutions.
All approaches to multi-task RL (MTRL) assume
that the tasks share similarity in some components
of the problem such as dynamics, reward structure,
or value function. While some methods explicitly
assume that the shared components are drawn from
a common generative model (Wilson et al., 2007;
Mehta et al., 2008), this assumption is more implicit
in others (Taylor et al., 2007; Lazaric et al., 2008).
In Mehta et al. (2008), tasks share the same dynamics
and reward features, and only differ in the weights of
the reward function. The proposed method initializes
the value function for a new task using the previously
learned value functions as a prior. In Wilson et al.
(2007), the distribution over the dynamics and
the reward functions of the tasks is drawn from a
hierarchical Bayesian model (HBM). Due to some
similarity to our work, we discuss this method in more
details in Section 5. Lazaric et al. (2008) implicitly
assume that the tasks are drawn from a common
distribution. They propose a method to selectively
transfer samples from source tasks to a target task
based on the likelihood of the target samples being
generated by the models built for the source tasks.
Finally, in Taylor et al. (2007), learning the value
function of the target task is expedited using the
solution learned in a source task with related, but
different, state and action spaces.

In this paper, we study the MTRL scenario in which
the learner is provided with a number of tasks with
common state and action spaces. For any given pol-
icy, only a small number of samples can be generated
in each task, which may not be enough to accurately
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evaluate the policy. In such a MTRL problem, it is
necessary to identify classes of tasks with similar struc-
ture and to learn them jointly. In our work, we con-
sider a particular class of MTRL problems in which
the tasks share structure in their value functions. To
allow the value functions to share a common struc-
ture, one way would be to assume that they are all
sampled from a common prior. We adopt the Gaus-
sian process temporal-difference (GPTD) value func-
tion model (Engel et al., 2005) for each task, model
the distribution over the value functions using a HBM,
and develop solutions to (i) joint learning of the value
functions, and (ii) efficient transfer of the information
acquired in (i) to facilitate learning the value function
of a newly observed task. We refer to the above prob-
lems as symmetric and asymmetric multi-task learn-
ing, respectively. In Section 3, we present a HBM
for the case in which all the value functions belong
to the same class, and derive an EM algorithm to
find MAP estimates of the value functions and the
model’s hyper-parameters. However, as pointed out
in Caruana (1997) and Baxter (2000), if the functions
do not belong to the same class, simply learning them
together can be detrimental (negative transfer). It is
therefore important to have models that will generally
benefit from related tasks and will not hurt perfor-
mance when the tasks are unrelated. This is particu-
larly important in RL as changing the policy at each
step of the policy iteration algorithm can change the
way tasks are clustered together. This means that even
if we start with value functions belonging to the same
class, after one iteration the new value functions may
be clustered into several classes. In Section 4, we in-
troduce a Dirichlet process (DP) based HBM for the
case that the value functions belong to an undefined
number of classes, and derive inference algorithms for
both the symmetric and asymmetric scenario. In Sec-
tion 5, we discuss the similarities and differences with
closely related work. In Section 6, we report and ana-
lyze experimental results.

2. Preliminaries

The agent-environment interaction in RL is con-
ventionally modelled as a Markov Decision Process
(MDP). A MDP is a tuple M = (X, A, R, P) where X
and A are the state and action spaces, respectively; R
is the probability distribution over rewards R; and P
is the transition probability distribution. A stationary
policy 7 : XxA — [0, 1] is a mapping from states to ac-
tion selection probabilities. The MDP controlled by a
policy 7 induces a Markov chain with transition prob-
ability distribution P7(2'|z) = [, P('|z, a)m(a|z)da.
Given a policy 7, the (possibly discounted, v € [0,1))
return for a state z, D™(x), is a random process de-

fined by D™(z) = >, 7' R(z¢)|xo = z, with 2441 ~
P™(-|z¢). The value function V7 (x) is the expected
value of D™(x) where the expectation is over all pos-
sible trajectories and rewards collected along them.

A key problem in RL is to learn the value func-
tion of a given policy, which is called policy evalu-
ation (Sutton & Barto, 1998). Loosely speaking, in
policy evaluation the goal is to find a “close enough”
approximation V of the value function V™. Unlike
in supervised learning, the target function V7™ is not
known in advance and its values have to be inferred
from the observed rewards. Therefore, it is required
to define a stochastic generative model connecting the
underlying hidden value function with the observed
rewards. In this paper, we adopt the GPTD value
function model proposed in Engel et al. (2005), in
which the discounted return D is decomposed into
its mean V and a random zero-mean residual AV,
D(z) = V(z) + AV(z). Combining this decomposi-
tion with the Bellman equation, we get

R(z) =V(x) -

W) +e(w,a’), o ~PT(lx), (1)

where e(x,2") ef AV (xz) — yAV (2’). Suppose we are
provided with a set of samples D = {(z,,, 2}, 7))},
where 7, and 2, are the reward and the next state
observed by following policy 7 in state x,,, respectively.
By writing the model of Eq. (1) w.r.t. these samples,
we obtain R = HV + &, where H € RV*2V and

1 =4y 0 0 ... 0 0
0 0 1 —y ... 0 O

R' = (Tn)vjj:ﬁ H= . . . ;
0O 0 0 O 1 —x

N .
n=1 "’

ET = (e(@n,2)) V= (Viea), V().

Note that if the samples are generated from a single
trajectory then 2/, = x,1 and H is of the form defined
by Eq. (2.7) in Engel et al. (2005). In order to specify
a complete probabilistic generative model connecting
values and rewards, we need to define a prior distribu-
tion for the value function V' and the distribution of
the noise e. Similar to Engel et al. (2005), we model
the value function as a Gaussian process (GP), and the
noise vector as & ~ N (0,S), where S is the noise co-
variance matrix modelling the correlation of the noise
between different states. In the following we write
S = 2P, where o2 and P are the variance and the cor-
relation matrix of the noise, respectively. For a more
extended discussion about different models of noise we
refer readers to Section 8.4 in Lazaric & Ghavamzadeh
(2010). The value function V' may be represented ei-
ther in parametric or non-parametric form. In this
paper we use the parametric representation to make
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Figure 1. Graphical representations for (a) the single-task model — an extension of GPTD by defining a hyper-prior over
the parameters, (b) the single-class multi-task model of Section 3, and (¢) the multi-class multi-task model of Section 4.

the formulation easier to follow, but all the results can
be extended to the non-parametric case following sim-
ilar steps as in Section 5.2 of Yu et al. (2005). In the
parametric form, the value function is represented by

a finite set of d features ¢(-) = (¢1(~),...,¢d(~))T
and a weight vector w = (wy,...,wq)" as V(:) =
¢(-)"w. The randomness in V is now due to w being
a random vector with Gaussian prior w ~ A (u, X).
The model equation now becomes R = H®'w +
&, where ® = [p(x1),p(z)),...,P(zn), P(zy)] is a
d x 2N matrix. Fig. 1(a) shows the graphical rep-
resentation of this model used for single-task learn-
ing (STL) in the experiments of this paper. It is an
extension of the original GPTD model by defining
Normal-inverse-Wishart and inverse-Gamma hyper-
priors parametrized by vo = (g, ko, Vo, X0, o, Bo)
over the model parameters (u, 3, 02). This allows us
to optimize the model parameters given the data.

In the MTRL setting of this paper, the learner is pro-
vided with M tasks or MDPs with common state and
action spaces M., = (X, A, Ry, Pm), m =1,..., M.
Given a fixed policy, IV samples are generated in each
task, i.e., Dy = {(Tmn, Thpyps Tmn) }_1, which may not
be enough to have an accurate evaluation of the policy.
We consider the case in which the tasks share structure
in their value functions. In the parametric value func-
tion model discussed above, this can be interpreted as
the value functions share the same feature space and
their weight vectors are sampled independently from a
common prior, i.e., Vi, (+) = d(-) "W Wi ~ N(p, 2).
In the next two sections, we study two different sce-
narios: 1) when all the tasks belong to the same class,
i.e., they share the same prior, and 2) when they can
be clustered into an undefined number of classes.

3. Single-class Multi-task Learning

In this section, we consider the case where all the
tasks belong to the same class, i.e., they share the

same distribution over their value functions w,, ~
N(p,X), m = 1,...,M; and the same observation
noise o2. The goal in the symmetric form of this prob-
lem is to estimate {w,,}M_, from the data {D,,}M_,,
whereas in the asymmetric case we are interested in es-
timating the parameters 6§ = (u, X, 0?) from the data
in order to use them as a prior for a newly observed
task (e.g., task Mpsy1). We use a parametric HBM
for this problem. HBMs allow us to model both the
individuality of the tasks and the correlation between
them. In HBMs, individual models with task specific
parameters are usually located at the bottom, and at
the layer above, tasks are connected together via a
common prior placed over those parameters. Learning
the common prior is a part of the training process in
which data from all the tasks contribute to learning,
thus making it possible to share information between
the tasks usually via sufficient statistics. Then given
the learned prior, individual models are learned inde-
pendently. As a result, learning at each task is affected
by both its own data and by data from the other tasks
related through the common prior.

3.1. The Model

We assume a normal-inverse-Wishart and an inverse-
Gamma hyper-priors for (u, 2) and o2, respectively.
p(0l¢o) = p(p, ) x p(o?)

= N po, =/ko) IWV(Z; 10, %0) x TG (%5 0, Bo)- (2)
These distributions are the conjugate priors for
multivariate Gaussian distributions p(w,,|u, X) and
P(Rmn|Wim,0?) = NH® w,,,o°P), respectively.
This leads to the following generative model for the
data, {D,,}. Fig. 1(b) shows the graphical represen-

tation of this model. The details of the model can be
found in Lazaric & Ghavamzadeh (2010).

Single-Class Model: Given the hyper-parameters
1/)0 = (H’Oa kO; o, 205 g, BO))
1. The parameters 0 = (u, X, 0%) are sampled once
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from the hyper-prior as in Eq. (2),

2. For each task My, (value function V), the weight
vector is sampled as W, ~ N (u, ),

3. Given {(xmm, 2z, )IN_|, Rn = H® w,, + &,

where & ~ N(0,0°P), m=1,..., M.

3.2. Inference

This model can be learned by optimizing the penalized
likelihood p({ Rm }{ (Zmn, T}y, ) }> 0)p(0) wr.t. the pa-
rameters 0 = (u,X,0?) using an EM algorithm. In
the rest of the paper, we refer to this algorithm as
SCMTL, for single-class multi-task learning.

E-step: Since the posterior distribution of the latent
variables p({w., } {Dm }, 0) is a product of M Gaussian
posterior distributions p(wi,| Dy, 0) = N (10, 6,5
for each task m, we compute the mean and covariance
as

ll‘é)m = 26m [%‘I’WHTpilRm + 271H:| ’

—1
2o, = [%QMHTP*H@TH +2*1] .
a
M-step: We optimize 6 to maximize the pe-
nalized expected log-likelihood of complete data

log p({Dm}, {wm}|0) over the posterior distribution es-
timated in the E-step and obtain the new parameters

M
1
Hnew = 37— (kOHo + Z N()m) )

m=1
1
MA4vo+d+2

M
+ 37 [l = )l — )" + 2, } :
m=1

new = {kO(H*NU)(M*MO)T + o

M
2 _ 1 Z -1 T/ T
Unew = m Qﬁo + {t[‘ (P H<I>mEOm<I>mH )

m=1

o) e ) ]}

4. Multi-class Multi-task Learning

In this section, we consider the case where the tasks
belong to an undefined number of classes. Tasks in the
same class {M,,| ¢, = ¢} share the same distribution
over their value functions w,, ~ N(p,, 2.), and the
same observation noise o2. We use a nonparametric
HBM for this problem. In the HBM proposed in this
paper, the common prior is drawn from a Dirichlet
process (DP). DP is powerful enough to model the pa-
rameters of individual classes, to fit them well without
any assumption about the functional form of the prior,
and to automatically learn the number of underlying
classes.

4.1. The Model

We place a DP(7, Gg) prior over the class assignment
and the class parameters. The concentration parame-
ter 7 and the base distribution G can be considered as

priors over the number of classes and the class param-
eters 0. = (u,, X, 02), respectively. Gy is the prod-
uct of a d-dimensional normal-inverse-Wishart and a
1-dimensional inverse-Gamma distributions, with pa-
rameters 1o = (1, ko, v0, 20, @0, So), (see Eq. 2). We
employ the stick-breaking representation of the DP
prior (Ishwaran & James, 2001), and define a task-to-
class assignment variable (¢1, . .., ¢moo) for each task
m, whose elements are all zero except that the cth
element is equal to one if task m belongs to class c.
Given the above, the data {D,,} can be seen as drawn
from the following generative model, whose graphical
representation is shown in Fig. 1(¢).

Multi-Class Model: Hyper-parameters (1, 1),

1. Stick-breaking view: Draw v. from the Beta dis-
tribution Be(l,7), m. = v Hf;ll(l —v;), and in-
dependently draw 0. ~ Gy, c=1,...,00,

2. Task-to-class assignment: Draw the indicator

(Cmis- -y Cmoo) from a multinomial distribution
Mo (L, o), m=1,..., M,
3. The weight wvector s sampled as W, ~

N(Ncm7zcm)7 m = 1,...,M,
4. Given {(xmn, 2z, VN_, Ry = H® w,, + &,

where € ~ N (0,02 P), m=1,...,M.
4.2. Inference

We are interested in the posterior distribution of the
latent variables Z = {{wm},{cm},{0c}} given the ob-
served data and the hyper-parameters 7 and vy, i.e.,
P(Z{Du}, 7, 00) x p({Dw}|Z, 7, %0)p(Zl7.%0). In the
following we outline the main steps of the algorithm
used to solve this inference problem, which we refer
to as MCMTL, for multi-class multi-task learning (see
Fig. 2). MCMTL combines the SCMTL algorithm of
Sec. 3.2 for class parameters estimation, with a Gibbs
sampling algorithm for learning the class assignments
(Neal, 2000). The main advantage of such combination
is that at each iteration, given the current estimate of
the weights, we take advantage of the conjugate priors
to derive an efficient Gibbs sampling procedure.

More formally, given an arbitrary initial class assign-
ment {c,,}, a distinct EM algorithm is run on each
class ¢ = 1,...,C (with C the current estimate of
the number of classes) and returns M distributions
N (1, 30,,)- Given the weights estimated at the
previous step, W,, = py,,, the Gibbs sampling solves
the DP inference by drawing samples from the poste-
rior distribution p({cy}[{Rm}, {Wm},7,%0). In par-
ticular, the state of the Markov chain simulated in the
Gibbs sampling is the class assignment {¢,,}, i.e., the
vector of the classes each task belongs to. At each it-
eration, each component c¢,, of the state is updated by
sampling from the following distribution
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MCMTL({Rm}7 T, 1/10)
Initialize {cm }
repeat
forc=1,...,C do
Initialize 0.
repeat
for m : ¢y = cdo
P(Wonl R, 0) = N (11, S5,.,) (E-step)
end for
Optimize 0. (M-step)
until convergence
end for
Set Wp = pg,,, m=1,...,M
p({em{Wm}, {Rm}, 7,%0)
until convergence
return {w,,} and {cm}

Figure 2. The inference algorithm for the multi-class multi-
task learning (MCMTL) scenario.

If c=cp,m’ #m: p(cm =c|{em }y Rmy Wi, T, 1/}())

Mfm,c ~
= bm/p(Rm7Wm|9c)p(0c|{C7n/}7¢0)d9c7
else: p(cm # cprym’ # ml{cm ¥, Ry Wi, T, 1/}())
T ~
— b= [ PR SO0, ()

where M_,, . is the number of tasks in class ¢ except
task m, and b is a normalizing constant. While the
first term in Eq. (3) is the probability of task m to be-
long to an existing class ¢, the second term returns the
probability of assigning task m to a new class. Thanks
to the conjugate base distribution Gy, the integrals in
Eq. (3) can be solved analytically. In fact

p(Rm7 {’\V77L|0)p(9|1/}0) - p(R77L|®7ﬂ7 02)p({’\v7”|p’7 E)
X p(, B, ko, vo, Xo)p(o|ao, Bo)
o< N (s po, B/k0)IW(Z; v, 20) x IG (0500, 85),  (4)

where ¥ = (), kb, v, 24, o, B)) are the posterior
parameters of G given the weight w,, and the re-
wards R, (see Lazaric & Ghavamzadeh 2010 for their
definition). Using the posterior hyper-parameters, the
second integral in Eq. (3) can be written as

/ P(Rom, %1 |8)p(6]00) d6

—N Bg% (g

x(27|P|)

( ko )% o0/ T (U%)

TSl ()
In the first integral of Eq. (3), the density func-
tion p(0c|{cm'},10) is the posterior probability over
the class parameters 6. given the data from all
the tasks belonging to ¢, according to the cur-
rent class assignment {cy, }. Similar to Eq. (4), we
compute the posterior hyper-parameters 1y, of the
normal-inverse-Wishart and inverse-Gamma distribu-
tions given {w,, } and {R,,}, with m’# m and

Cm/ = Cp. Finally, the integral can be analytically
calculated as in Eq. (5), where the hyper-parameters
1o and the posterior hyper-parameters 1), are replaced

by %o and .., respectively.

4.3. Symmetric vs. Asymmetric Learning

The MCMTL algorithm returns both the distribution
over the weights for each task and the learned hierar-
chical model (task-class assignments). While the for-
mer can be used to evaluate the learning performance
in the symmetric case, the latter provides a prior for
learning a new task in the asymmetric scenario.

Symmetric Learning. According to the generative
model in Section 4.1, the task weights are distributed
according to the normal distribution N(uy,,,%6,,),
where p,. and 3, = are the posterior mean and co-
variance of the weight vector w,, returned by the
MCMTL algorithm. Since Vi, (2) = ¢(z) Wy, the

value of V,,, at a test state z, is distributed as

P(Vin (@) |z, 1 Bbom) = N (6(22) T 11, Sa) 6, d(4)).

If MCMTL successfully clusters the task, we expect
the value function prediction to be more accurate than
learning each task independently.

Asymmetric Learning. In the asymmetric set-
ting the class of the new task is not known in
advance. The inference problem is formalized
as p (Wars1|Rars1, %o, {em }A_ ), where wy41 and
Rpr4+1 are the weight vector and rewards of the new
task Ms41, respectively. Similar to Section 4.2, this
inference problem cannot be solved in closed form,
thus, we must apply the MCMTL algorithm to the new
task. The main difference with the symmetric learning
is that the class assignments {c,,} and weights {w,,}
for all the previous tasks are kept fixed, and are used
as a prior over the new task learned by the MCMTL
algorithm. As a result, the Gibbs sampling reduces to
a one-step sampling process assigning the new task ei-
ther to one of the existing classes or to a new class. If
M 41 belongs to a new class, then the inference prob-
lem becomes p (Wasri1|Rar+1,%0), that is exactly the
same as in STL. On the other hand, if M ;41 belongs
to class ¢, the rewards and weights { R, }, {W} of
the tasks in class ¢ can be used to compute the poste-
rior hyper-parameters 1, as in Eq. (4), and to solve
the inference problem p(was+1|Rar+41, ¥i.)-

5. Related Work

In RL, the approach of this paper is mainly related
to Wilson et al. (2007). Although we both use a DP-
based HBM to model the distribution over the com-
mon structure of the tasks, in Wilson et al. (2007) the
tasks share structure in their dynamics and reward
function, while we consider the case that the similar-
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ity is in the value function. There are scenarios in
which significantly different MDPs and policies may
lead to very similar value functions. In such scenar-
ios, the method proposed in this paper would still be
able to leverage on the commonality of the value func-
tions, thus performing better than single-task learning.
Moreover in Wilson et al. (2007), the setting is incre-
mental, i.e., the tasks are observed as a sequence, and
there is no restriction on the number of samples gen-
erated by each task. The focus is not on joint learning
with finite number of samples, it is on using the in-
formation gained from the previous tasks to facilitate
learning in a new one. This setting is similar to the
asymmetric learning considered in our work.

In supervised learning, our work is related to Yu et al.
(2005) and Xue et al. (2007). In Yu et al. (2005), the
authors present a single-class HBM for learning mul-
tiple related functions using GPs. Our single-class
model of Section 3 is an adaptation of this work for
RL using GPTD. Besides, our multi-class model of
Section 4 extends this method to the case with an
undefined number of classes. In Xue et al. (2007), a
DP-based HBM is used to learn the extent of simi-
larity between classification problems. The problem
considered in our paper is regression, the multi-class
model of Section 4 is more complex than the one used
in Xue et al. (2007), and the inference algorithms of
Section 4 are based on Gibbs sampling, where a varia-
tional method is used for inference in Xue et al. (2007).

6. Experiments

In this section, we report empirical results applying
the Bayesian multi-task learning (BMTL) algorithms
presented in this paper to a regression problem and
a benchmark RL problem, inverted pendulum. We
compare the performance of single-task learning (STL)
with single-class multi-task learning (SCMTL), i.e., all
tasks are assumed to belong to the same class, and
multi-class multi-task learning (MCMTL), i.e., tasks
belong to a number of classes not known in advance.
By STL, we refer to running the EM algorithm of Sec-
tion 3.2 for each task separately. The reason to use
the regression problem in our experiments is that it
allows us to evaluate our BMTL algorithms when the
tasks are generated exactly according to the generative
models of Sections 3 and 4.

6.1. A Regression Problem

In this problem, tasks are functions in the linear space
spanned by a feature space ¢(z) = (1,z,2°, 2%, 2,2°)"
on the domain X = [—1,1]. The weights for the tasks
are drawn from four different classes, i.e., four 6-dim
multivariate Gaussian distributions, with the parame-
ters shown in Fig. 3(a). The noise covariance matrix

S = diag(c?) for all the algorithms. We evaluate the
performance of each BMTL algorithm by computing
its relative mean squared error (MSE) improvement
over STL : (MSESTL—MSEBMTL)/MSESTL. The MSES
are computed over N’ = 1000 test samples. All the re-
ported results are averaged over 200 independent runs.

In the first experiment, we draw all the tasks from
class co. Fig. 3(c) shows the performance of SCMTL
for different number of tasks (M) and samples per task
(N). SCMTL achieves an improvement over STL that
varies from 29.86% + 0.9 for N = 100 and 20 tasks to
67.64% + 0.8 for 100 tasks with only 20 samples each.
The results indicate that SCMTL successfully takes
advantage of the samples coming from all the tasks
to build a more accurate prior than the one obtained
by considering each task separately as in STL. How-
ever, the advantage of SCMTL over STL declines as N
is increased. In fact, as STL converges, SCMTL can-
not make further improvement. We repeated the same
experiment for the other classes. The minimum and
maximum performance of SCMTL for all the classes
(all obtained for N = 100, M = 20 and N = 20, M = 100,
respectively) are summarized in Fig. 3(b).

In the second experiment, we draw the tasks ran-
domly from the four classes. We first apply SCMTL
to this problem. Fig. 4(a) shows the SCMTL’s perfor-
mance. As it can be seen, the results are worse than
those in the first experiment (Fig. 3(¢)), varying from
30.15%+4.8 to 54.05%+1.2. By clustering all the tasks
together, SCMTL takes advantage of all the available
samples, thus, performs better than STL. However,
when the tasks are drawn from significantly differ-
ent distributions, it learns a very general prior which
does not allow a significant improvement over STL.
We then apply MCMTL to this problem. MCMTL’s
performance (Fig. 4(b)) varies from 45.64% + 5.6 to
77.65% 4 0.8 and is significantly better than SCMTL’s
(Fig. 4(a)). In order to evaluate how well MCMTL
classifies the tasks, we also compare its performance
to a version of MCMTL in which each task is assigned
to the right class in advance. The difference between
the two algorithms is statistically significant only for
N = 20 (with the maximum of 5.08% for M = 20),
where the noise on the samples makes it more difficult
to discriminate between the distributions generating
the tasks, and thus, to classify them correctly.

Finally, we compare SCMTL and MCMTL in the
asymmetric setting. At the end of each run, we draw
100 new test tasks at random from the same four
classes used to generate the training tasks. We run the
asymmetric algorithm described in Section 4.3 on each
of the test tasks separately. Fig. 4(¢) shows the perfor-
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Figure 3. (a) class parameters, (b) minimum and maximum improvement of SCMTL over STL in each class, (¢) relative
MSE improvement of SCMTL over STL when all the tasks are drawn from class ca.

mance of SCMTL and MCMTL for different number of
training tasks and N fixed to 20. The results indicate
that MCMTL performs relatively better than SCMTL
as the number of training tasks increases.

6.2. Inverted Pendulum

The experiments of Section 6.1 indicate that when the
tasks are generated exactly according to the generative
models of Sections 3 and 4, the BMTL methods can
significantly improve the performance of a regression
problem w.r.t. STL. As discussed in Section 2, the
policy evaluation step of policy iteration can be casted
as a regression problem, thus, similar improvement can
be expected. In this section, we compare our BMTL al-
gorithms with STL in the problem of learning a control
policy for balancing an inverted pendulum. Dynam-
ics, reward function, and basis functions are the same
as in Lagoudakis & Parr (2003). Each task is gener-
ated by drawing the parameters of the dynamics (pole
mass, pole length, cart mass, and noise on the actions)
from Gaussian distributions with means and variances
summarized in Fig. 5(a). The distribution over the
two classes is uniform. It is worth noting that, unlike
the regression experiments, here we have no guaran-
tee that the weights of the value functions will follow
the generative models assumed by the BMTL methods.
We use policy iteration with 10 iterations and the noise
correlation matrix P~! = &, (®,,®,, ") ' ®,, for all
the algorithms (see Lazaric & Ghavamzadeh 2010 for
details). In STL, each policy evaluation step is solved
using the EM algorithm of Section 3.2 for each task
separately, where in BMTL, it is solved by running
SCMTL or MCMTL over all the tasks. All the results
are averaged over 150 independent runs.

Fig. 5(b) shows the performance of the policy learned
by STL, SCMTL, and MCMTL for M = 10 tasks and
different (up to 500) number of samples per task. Note
that STL converges at about 1200 samples per task
with an average performance of 2473 4+ 61.9 balanced
steps. As it can be seen, both BMTL methods outper-
form STL, and MCMTL achieves a better performance

than SCMTL as the number of samples is increased.
Since SCMTL forces all the tasks to belong to a com-
mon distribution, it learns a very general prior, and
thus, it cannot approximate the value functions as ac-
curate as MCMTL, which is able to correctly discrimi-
nate between class ¢; and ¢2. In order to show how the
performance changes with different number of tasks,
we compute the area ratio (Taylor et al., 2007) on the
first 500 samples as ppyTL = M, where Agry,
(ApyTL) is the area under the learning curve of STL
(BMTL) from 100 to 500 samples. Fig. 5(¢c) shows
that MCMTL has significantly better area ratio than
SCMTL for all values of M except very small ones.

7. Conclusions

We presented hierarchical Bayesian models (HBMs)
and inference algorithms for multi-task reinforcement
learning (RL) where the tasks share structure in their
value functions. To the best of our knowledge, this
is the first work that models value function similar-
ity using HBMs. In particular, we considered two
cases, where all the value functions belong to the same
class, and where they belong to an undefined number
of classes. In these cases, we modelled the distribution
over the value functions using a parametric HBM and
a Dirichlet process (DP) based non-parametric HBM,
respectively. For each case, we derived inference algo-
rithms for learning the value functions jointly and to
transfer the knowledge acquired in the joint learning to
improve the performance of learning the value function
of a new task. We first applied our proposed Bayesian
multi-task learning (BMTL) algorithms to a regres-
sion problem, in which the tasks are drawn from the
generative models used by the BMTL methods. The
results indicate that BMTL algorithms achieve signif-
icant improvement over single-task learning (STL) in
both symmetric and asymmetric settings. We then ap-
plied our BMTL algorithms to a benchmark RL prob-
lem, inverted pendulum. Although the tasks are no
longer generated according to the models used by the
BMTL algorithms, they still outperform STL.
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Figure 5. Results for the inverted pendulum problem: (a) distributions of the parameters of the dynamics, (b) comparing
the performance of STL, SCMTL, and MCMTL in terms of the number of balanced steps for M = 10, (¢) comparing
the performance of SCMTL and MCMTYL in terms of the area ratio on the first 500 samples.
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