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Abstract

We study the problem of uncertainty in the
entries of the Kernel matrix, arising in SVM
formulation. Using Chance Constraint Pro-
gramming and a novel large deviation in-
equality we derive a formulation which is ro-
bust to such noise. The resulting formulation
applies when the noise is Gaussian, or has fi-
nite support. The formulation in general is
non-convex, but in several cases of interest
it reduces to a convex program. The prob-
lem of uncertainty in kernel matrix is moti-
vated from the real world problem of classi-
fying proteins when the structures are pro-
vided with some uncertainty. The formula-
tion derived here naturally incorporates such
uncertainty in a principled manner leading to
significant improvements over the state of the
art.

1. Introduction

Given a dataset D = {(xi, yi)|i = 1, . . . , n} the SVM
dual formulation (Vapnik, 1998) can be written as:

max
α∈Sn,t

α⊤e − 1
2 t s.t. α⊤Y KY α ≤ t (1)

where Sn = {α|0 ≤ αi ≤ C,
∑n

i=1 αiyi = 0} and
Y = diag(yi). The kernel matrix, K, is a n×n matrix,
where Kij can be understood as dot product between
implicitly defined feature map over examples xi, xj ∈
X . In this paper, we study the problem of designing
robust classifiers when the entries of K are uncertain.
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To the best of our knowledge there is no such study of
this important problem in the existing literature.

We treat the impact of uncertainty in individual ex-
amples as an additive uncertainty Z. We consider the
following chance constraint setting:

max
t,α∈Sn

α⊤e − 1

2
t (2)

s.t. Prob
(

α⊤Y (K + Z)Y α ≤ t
)

≥ 1 − ǫ (3)

where ǫ < 0.5. In this setting the inequality (3), en-
sures that the event α⊤Y (K + Z)Y α ≤ t holds with
high probability (1 − ǫ) for any instantiation of the
random variate Z. It is assumed that K is a specified
kernel matrix, and is symmetric, positive semidefinite.
The random matrix K + Z is not necessarily psd and
symmetric.

Optimization problems involving chance constraints
often turn out to be NP-hard and is an ac-
tive area of study (Nemirovski & Shapiro, 2006;
Ben-Tal & Nemirovski, 2007). Chance constraints
were previously used in handling uncertainty in
the context of linear classifiers (Ghaoui et al., 2003;
Bhattacharyya et al., 2004; Shivaswamy et al., 2006).
Assuming a full knowledge of Covariance structure of
the data uncertainty and using Chebychev inequality
they (Bhattacharyya et al., 2004; Shivaswamy et al.,
2006) formulated the problem as a Second Order Cone
Program(SOCP). Instead of using a full covariance
matrix, which is difficult to estimate, an alternative
based only on the support information was proposed
in (Ghaoui et al., 2003). However the application of
these methods to (3) is not straightforward and re-
quires further investigation.

The problem studied here is motivated from the prob-
lem of classifying protein structures where kernel
methods have been highly successful (Qiu et al., 2007;
Bhattacharya et al., 2007). They designed kernels are
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based on similarity scores, like Root mean square devi-
ation(RMSD) obtained from structural alignment al-
gorithms e.g. DALI(Holm & Sander, 1996). Exist-
ing methods assume that protein structures are de-
termined exactly, without any uncertainty. However
in reality, coordinates of atoms of protein structures
are determined with uncertainty, governed by the res-
olution of X-ray diffraction experiment. 1 When the
uncertainty becomes comparable to RMSD then the
similarity scores becomes suspect. For example, con-
sider the two SCOP domains d1biaa1 and d1repc1
belonging to different families, but same superfamily:
Winged helix DNA-binding domain. The struc-
tures for these have been determined at resolutions
2.3Å and 2.6Å and Dali gives a structural alignment
with RMSD 2.2 between these domains. So, the uncer-
tainty in the kernel value for these structures is higher
than the scores themselves, which could be detrimental
to discriminating between the two classes.

We study the problem of solving (2) assuming that
Zij are centered and independent. We study the two
cases namely a.) Zij is Gaussian, and b.) Zij has
finite support. For case of Gaussian distribution we
derive a novel formulation which can be interpreted
as a robust version of SVM. A major contribution of
this paper is a novel large deviation inequality which
applies to (3) which applies to the finite support case.
Using this inequality, we derive a formulation similar
to Gaussian case for solving (2). The optimization
problem in a general setting turns out to be instance
of non-convex program. However under certain as-
sumptions the problem can be solved as a convex conic
quadratic. It is interesting to note that under i.i.d as-
sumption the formulation reduces to a SVM with a
modified kernel function. Extensive experimentation
on synthetic datasets show that current formulation is
more robust than standard SVM. The formulation de-
veloped here incorporates resolution information avail-
able in protein structures in a principled way yielding
to substantially better design of classifiers. Experi-
mental results show that this resulted in significant
improvements in classification accuracy over existing
state of the art methods and their obvious extensions.
Also, as expected, the new classifiers are more robust
than existing ones.

The paper is organized as follows: The main contri-
butions are described in section 2. Section 3 presents
algorithms to solve such problems, and section 4 dis-
cusses metrics for measuring the performance of resul-
tant classifiers. Section 5 reports experimental results.

1http://www.rcsb.org/pdb/

2. Robust formulations for handling

uncertainty in Kernel matrices

In this section we study (3) when Zij is independent
with zero mean. We begin the study by assuming that
the entries are Gaussian distributed and in subsection
2.2 we consider the more general case when the entries
have finite support. To this end we derive a large devi-
ation inequality on the inner product of a matrix with
Z which is later used in (3).

Notation: We denote the Hadamard product of
A, B ∈ R

n×n by (A ∗ B) a n × n matrix with entries
(A ∗ B)ij = aijbij . The frobenius norm of C ∈ R

n×n,

is given by ‖C‖F =
√

∑n

i=1

∑n

j=1 c2
ij . Trace of square

matrix A is denoted by Tr(A).

2.1. Kernel matrix is Gaussian distributed

We begin with the following Lemma.

Lemma 1. Let Z be an n×n random matrix with en-
tries Zij independently distributed as Zij ∼ N(0, σ2

ij).
For every W, A ∈ R

n×n the constraint

Prob(Tr{(Z + W )A} ≥ t) ≤ ǫ (4)

is satisfied if the following holds.

Tr(WA) ≤ t + Φ−1(ǫ)‖Σ ∗ A‖F (5)

where Σij = σij.

Proof. Observe that Tr(ZA) ∼ N(0, ‖Σ ∗ A‖2
F ). This

is true because Tr(ZA) can be written as a weighted
sum of independently distributed normal random vari-
ables. Using a standardized normal random variate,
U ∼ N(0, 1), one can write Tr(ZA) = U‖Σ∗A‖F . Us-
ing the CDF of U, defined as Prob(U ≤ u) = Φ(u) =
∫ u

−∞
1√
2π

e
−s2

2 ds we get,

Prob (Tr{(Z + W )A} ≥ t)

= Prob (U‖Σ ∗ A‖F ≥ t − Tr(WA))

= Φ(−u) where u =
t − Tr(WA)

‖Σ ∗ A‖F

(6)

The second equality follows because U is standard nor-
mal. This derivation shows that equation (4) can be
restated as Φ(−u) ≤ ǫ Noting that Φ is an increas-
ing function of its argument one obtains u ≥ −Φ−1(ǫ)
where Φ−1 is the inverse function of Φ. Substituting
the value of u completes the proof of the theorem.

A direct application of the above Lemma leads to the
following theorem, which is the first result of the paper.

http://www.rcsb.org/pdb/
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Theorem 1. Let Z be an n × n matrix whose en-
tries are independently distributed with entries Zij ∼
N(0, σ2

ij). Let K = K+Z be a noise corrupted matrix

where K is n× n known kernel matrix. For such a K
the constraint (3) in the formulation (2) is satisfied if
the following holds.

∑

ij

yiyjαiαjKij − Φ−1(ǫ)‖Σ ∗ (αα⊤)‖F ≤ t (7)

Proof. Substituting W = K and Aij = αiyiαjyj in
Lemma 1 proves the theorem

This theorem points to a deterministic equivalent to
the problem stated in (2). Note that for cases of in-
terest ǫ < 0.5, which implies that Φ−1(ǫ) < 0. In
a later section we will discuss algorithmic approaches
for solving such programs.

2.2. Uncertainty with finite support

In this section we study the case where uncertainty
in the kernel entries has finite support. We state and
prove a novel large deviation inequality, and exploit it
to obtain a deterministic constraint similar to the one
obtained in the Gaussian case (see Theorem 1).

We begin by proving a novel large deviation inequality,

Theorem 2. Let Z be a n × n random matrix with
entries Zij independently distributed along with finite
support, Prob(aij ≤ Zij ≤ bij) = 1, and E(Zij) = 0.
For every V ∈ R

n×n, and u > 0

Prob(Tr(ZV ) ≥ u) ≤ exp

{

−1

2

u2

‖β′ ∗ V ‖2
F

}

(8)

lij =
bij−aij

2 , cij =
bij+aij

2 , µ̂ij = − cij

lij
, βij = l2ijγ

2
ij ,

β′
ij = β

1
2
ij

and γij = min{σ ≥ 0 | σ2

2 z2 + µ̂ijz − log(cosh(z) +

µ̂ij sinh(z)) ≥ 0, ∀ z ∈ R.} (9)

Proof. As a consequence of Markov inequality and in-
dependence of entries of Z, the following holds ∀ s ≥ 0.

Prob (Tr(ZV ) ≥ u) ≤ e
{−su}

Y

i,j

E
“

e
{sVijZij}

”

(10)

Exploiting the convexity of the function, ex, one can
upperbound the moment generating function of Zij .
More importantly for any r ∈ R the following is true.

E(erZij ) ≤
bij

bij − aij

e
raij −

aij

bij − aij

e
rbij = e

rcij+fij(rlij)

(11)

where, fij(ω) = log (cosh(ω) + µ̂ijsinh(ω)). By us-
ing Taylor expansion around 0 we obtain the following

bound fij(ω) ≤ 1
2ω2 + µ̂ijω. which could be further

tightened by considering fij(ω) ≤ 1
2γ2

ijω
2+µ̂ijω where

γij is given in (9).

Substituting ω = rlij the bound (11) can be written
as logE(erZij ) ≤ r(cij + lij µ̂ij)+ 1

2r2γ2
ij l

2
ij = 1

2r2γ2
ij l

2
ij .

This bound holds for all r, and for the problem at hand
by putting r = sVij we get E(esVijZij ) ≤ 1

2s2V 2
ijγ

2
ij l

2
ij .

In light of this result the relation (10) can now be
upperbounded as follows

log [Prob (Tr(ZV ) ≥ u)] ≤

mins≥0 − su +
s2

2
‖β′ ∗ V ‖2

F = −1

2

u2

‖β′ ∗ V ‖2
F

The proof is completed by noting that minimization
is attained at s∗ = u

‖β′∗V ‖F
, obtained by solving an

univariate quadratic optimization problem.

The values γij (9) can be calculated numerically and
is not presented here because of space constraints.

The inequality is of independent interest, but we do
not study it further. Instead we apply the inequality
to the problem at hand. Consider the theorem

Theorem 3. Let Z be a n×n matrix whose entries are
independently distributed, given that P (aij ≤ Zij ≤
bij) = 1 and E(Zij) = 0. Let K = K + Z be a noise
corrupted matrix where K is n×n specified kernel ma-
trix. For such a K the constraint (3) in formulation
(2) is satisfied if the following holds.

∑

ij

yiyjαiαjKij+
√

2 log(1/ǫ)

√

∑

ij

βijα2
i α

2
j ≤ t (12)

where βij is defined as in Theorem 2.

Proof. We begin by noting that the constraint (3) can
be stated as

Prob(Tr{(Z + K)V } ≥ t) ≤ ǫ (13)

where Vij = αiyiαjyj . A necessary condition for satis-
fying the above inequality can be obtained by exploit-
ing the large deviation inequality stated in Theorem 2.
In particular a direct application of the bound yields
the following constraint

√

2 log(1/ǫ)‖β′ ∗ V ‖F ≤ t − Tr(KV ) (14)

Substituting V in the above equation proves the theo-
rem
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2.3. A deterministic optimization problem

In light of the Theorem 1 and Theorem 3 one can mo-
tivate the following deterministic counterpart of (2).

min
t,α∈Sn

1

2
t −

∑

i

αi

s.t.
∑

ij

yiyjαiαjKij + κ

√

∑

ij

βijα2
i α

2
j ≤ t (15)

where, κ =
√

2 log(1/ǫ) when uncertainty has fi-
nite support. This formulation is robust to uncer-
tainty in the kernel entries and will be referred as Ro-
bust SVM (RSVM). In case of Gaussian uncertainty,
κ = −Φ−1(ǫ) and βij = σ2

ij and this formulation will
be referred as Robust SVM for Gaussian distribution
(RSVM(g)).

3. Algorithms for solving the robust

formulation

In this section we consider algorithms for solving (15).
In general these problems are instances of non-convex
programs. Here we observe that in several cases of
interest the problems can be reduced to convex conic
quadratic programs.

Case 1 - β is rank one: For this case the formu-
lation is equivalent of solving SVM. It is interesting
to note that this case arises when the uncertainty is
independent and identically distributed (i.i.d.).

Theorem 4. Let β be a rank one matrix, i.e. βij =
ρiρj where ρ is a vector with non-negative components.
The formulation (15) is equivalent to a SVM with ker-
nel K + κdiag(ρ).

Proof. Noting that,
√

∑

ij βijα2
i α

2
j =

∑

i ρiα
2
i and

eliminating t the result follows. By design βij ≥ 0
which implies that ρi > 0 (Minc, 1970)

We will denote the corresponding formulation by

RSVMQP (RSVM
(g)
QP for Gaussian uncertainty).

As a corollary to the previous theorem one can prove

Theorem 5. Let entries of the random matrix Z be
i.i.d. and K = K + Z In such a case formulation
(15) is equivalent of solving a SVM with Kernel matrix
K = K + σκI

Proof. Note that for i.i.d. case ρi = σ in the previous
theorem and the proof follows.

Case 2 - β is psd: If the matrix β is positive semi-
definite then the formulation can be posed as SOCP.
To this end consider the following theorem.

Theorem 6. If both K, β are symmetric psd matrices
then the following formulation is equivalent to formu-
lation (15).

mint,ν,t′,α∈Sn

1
2 t − ∑

i αi

s.t. κ‖β 1
2 ν‖ ≤ t − t′

‖Y (K)
1
2 α‖2

2 ≤ t′

α2
i ≤ νi

(16)

Proof. As β,K are psd matrices their matrix square

roots, β
1
2 ,K

1
2 , exist. At optimality α2

i = νi and the
theorem follows.

Note that this formulation is second order cone rep-
resentable and hence can be solved as an Second
Order Cone Program (SOCP). This will be denoted

by RSVMSOCP (RSVM
(g)
SOCP for Gaussian uncer-

tainty).

Case 3- The case of general β: The case of gen-
eral β (βij ≥ 0), is an instance of non-convex program.
We do not study this setting in detail here but propose
a general descent algorithm to solve this. In particular
we use a modified Newton Method (Luenberger & Ye,
2008) with square penalty function leading to the fol-
lowing unconstrained approximation of (15).

min
α

L(α)

0

@= f(α) +
P

2
[(

X

i

αiyi)
2 +

X

i:αi>C

(αi − C)2 +
X

i:αi<0

α
2
i ]

1

A

(17)

where,

f(α) = 1
2

∑

ij yiyjαiαjKij + 1
2κ

√

∑

ij βijα2
i α

2
j −

∑

i αi

and P is a user defined cost for penalty function.

We minimize L with the Quasi Newton type method
with DFP updation as follows αt+1 = αt − ηtHt∇αL
Where, ηt is step size, Ht is approximate inverse of
Hessian of L obtained by DFP procedure, and ∇αL is
the gradient of L w.r.t α.

This will be referred as RSVMQN (RSVM
(g)
QN for

Gaussian uncertainty). The algorithm suffers from the
problem of local minimum. To alleviate the problem
we have used multiple starting points.

The decision function for the classifier can be ex-
pressed as f(w, b) = sign(

∑

i∈SV yiαiKi. + b), where
SV is an index set of support vectors. In order to
get robust performance and to reduce the effect of
uncertainty in kernel, the bias b can be computed as
b = 1

# SV
[
∑

j∈SV yj −
∑

i,j∈SV yiαiKij ].
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4. Error metrics

For each test data, Pt, for all the training data points
Pi, we have the mean K̄ti of the kernel entry Kti,
and either variance σ2

ti (in Gaussian case) or range
[ati, bti] (finite support case) for the uncertainty. In
both cases, we test by generating multiple samples
Ks

ti, s = 1, . . . , ns, for each kernel entry Kti, where
ns is the number of samples.

For each of these test values, κ = 0 (15) and K̄ti = Ks
ti.

Hence, the decision function obtained from equation
(15) can be written as fs

t = sign(
∑

j∈SV αjyjK
s
tj + b).

One way to assign a label ypr
t to Pt is by majority votes

from fs
t , s = 1, . . . , ns. So, ypr

t = sign(
∑ns

s=1 fs
t ).

Let D = {Pt, t = 1, . . . , n} be a test dataset which
is tested according to the majority vote scheme. The
overall classification error can be calculated as:

MajErr(ME) :

Pn

t=1 1(y
pr
t 6=yt)

n
× 100 (18)

where, yt is the true label for Pt.

While the above scheme is intuitive for labeling an
uncertain data point, a robust classifier is expected
to classify all the ns samples generated for each un-
certain data point Pt correctly. To capture this no-
tion of robustness, we propose another error measure
(RobustErr) which counts the fraction of data points
in D for which all the samples are classified correctly.

RobustErr(RE) :

Pn

t=1 1(∃s|fs
t 6=yt)

n
× 100 (19)

We can also treat each of the samples generated from
uncertain data points as individual data points, and
define a standard classification error (NomErr), as:

NomErr(NE) :

P

st
1(fs

t 6=yt)

nns

× 100 (20)

In the following section, we report experimental re-
sults for the techniques developed here and state of
the art methods with respect to the above mentioned
metrics.

5. Experiments

This section presents experimental results to compare
the proposed RSVM (15), RSVM(g), and Nominal-
SVM (SVM with specified kernel) in terms of accu-
racy and robustness on the task of binary classifica-
tion. All the three algorithms for RSVM: RSV MQP ,
RSV MSOCP and RSV MQN , were implemented in
Matlab with the help of a standard QP solver and Se-
dumi2. We report results for both synthetic data and
resolution aware protein structure classification prob-
lem. The results demonstrate that the proposed for-
mulations outperform state of the art techniques with
respect to both traditional error measures and new
metrics defined in section 4.

2http://sedumi.ie.lehigh.edu/

5.1. Experiment with Synthetic data

We performed a thorough experimental analysis of
the proposed formulations measuring its generaliza-
tion performance, robustness, and performance of the
bounds. For this, we created a synthetic dataset of 2
classes and 100 data points per class, using a Gaussian
mixture. A linear kernel was computed for these data
points. Let Ks

ij = Kij + Zs
ij , where Kij is computed

from original datapoints and 100 uncertain samples
Zs

ij for each kernel entry Kij was generated using: a)
Gaussian (0,1) b) Uniform [-0.5,0.5] c) centered
Beta (0.5,0.5) distributions and multiplied by a ran-
dom lij (lij = lji). The support parameters are es-
timated as aij = mins Ks

ij and bij = maxs Ks
ij. For

the Gaussian case the parameter β is estimated as
βij = σ2

ij = var(Ks
ij). For non-Gaussian case β is

calculated from (9).

For RSV MQP , we approximated β by β̂ =
√

vmaxρρ⊤,
where vmax and ρ are principal eigenvalue and eigen-
vector of ββ⊤ respectively. For RSV MSOCP we ap-
proximated β by β̂ =

∑

r,vr ≥0 vrere
⊤
r , where vr and

er are corresponding eigenvlaues and eigenvectors of β
respectively.

5.1.1. Comparison of Generalization error

All six formulations proposed here are compared with
Nominal SVM using the three metrics described in sec-
tion 4. For all the metrics, we performed 5-fold cross-
validation on 20 different datasets. The hyperparame-
ters (C and/or ǫ) for each classifier, were chosen using
a grid search from the set C = {0.1, 1, 5, 10, 50, 100}
and ǫ = {0.05 : 0.05 : 0.5}. For each metric, the best
cross-validation accuracy averaged over 20 dataset is
reported in table 1.

We observe that either RSVMSOCP or RSVM
(g)
SOCP

perform best in terms of all the error measures, clearly
demonstrating the power of the proposed methods.
For generating synthetic data, we chose lij = 0.25∗Kij,
in order to have a dataset where the noise is less than
the actual kernel values. Hence, the β matrix turns
out to be PSD most of the times, thus leading to

better performance of RSVMSOCP or RSVM
(g)
SOCP.

RSVMQN and RSVM
(g)
QN follow closely, because

they get stuck at local optima. RSVMQP and

RSVM
(g)
QP show intermediate performance compared

to SVM.

In terms of RobustErr, SVM performs very badly,
showing its lack of ability to achieve robustness. Also,
RSVM(g) is found to perform better than RSVM
when the uncertainty is Gaussian. These observations
are explored in detail below.
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Table 1. Cross-validation accuracy (%) obtained with

RSV M
(g)
QP , RSV M

(g)
SOCP , RSV M

(g)
QN , RSV MQP ,

RSV MSOCP , RSV MQN , Nominal SVM using NomErr
(NE, 20), MajErr (ME, 18) and RobustErr (RE, 19).

RSV M(g) RSV M SV M

QP SOCP QN QP SOCP QN

Uniform Distribution

ME 94.60 96.15 95.55 95.30 96.60 95.60 87.70

RE 52.60 93.30 92.85 74.20 95.20 94.60 18.65

NE 80.30 95.94 95.50 83.20 95.60 95.60 58.79

Gaussian Distribution

ME 95.45 96.35 95.95 94.50 95.60 95.70 71.95

RE 55.15 93.70 92.70 64.30 84.10 84.10 24.75

NE 74,27 95.18 94.92 80.45 94.80 94.65 52.69

β(0.5, 0.5)

ME 95.20 96.15 95.60 95.35 96.20 95.95 86.75

RE 47.45 91.45 91.35 75.50 94.30 93.85 5.20

NE 79.22 95.91 95.48 85.35 96.20 95.95 57.25

5.1.2. Comparison of robustness

In the proposed RSVM (or RSVM(g)), the effect
of uncertainty in training data is controlled by ǫ and
hence κ (15). Higher the value of κ, higher the effect
of uncertainty. For κ = 0, RSVM ignores uncertainty
in kernel values. A consistent reduction in uncertainty
for the test data points is achieved by generating them
as Ks

ij = Kij + Zs′

ij , where |Zs′

ij | ≤ κ ∗ lij for uncer-

tainty with finite support, and Zs′

ij ∼ N(0, κσij) for
Gaussian uncertainty.

Figure 1 shows that, with the increase of uncertainty
in test examples the RobustErr(19) for SVM increases
more rapidly than that for RSVMSOCP , RSVMQN

for all types of uncertainties. This shows that non-
robust classifiers, e.g. SVM, are unable to handle un-
certainty, compared to the proposed robust classifiers.

RSVMQP performs comparably with SVM since the
assumption of β being rank 1 does not hold for the
current dataset. Hence, RSVMQP becomes theoreti-
cally equivalent to SVM using a kernel with diagonal
made heavy (see Theorem 5). Figure 2 shows that
with increase in uncertainty which is i.i.d. RSVMQP

performs much better than Nominal SVM.

In Figure 1 and Figure 2 at κ = 0, RobustErr for both
RSV M and RSV M (g) are exactly same as that of
SVM. It confirms the fact that at κ = 0, RSV M (g) and
RSV M are equivalent to SVM. Both RSVMQN and
RSVM(g)

QN sometimes give higher error than SOCP
due to the solver getting stuck at local optimum.

5.1.3. Effectiveness of bound

In this section, using the same synthetic data as above,
we experimentally verify the effectiveness of bounds

discussed in Lemma 1 and Theorem 2, which were used
to derive the RSVM formulation (15) from the chance
constraint (2). For a given ǫ, we calculate ǫeffective =
#{Ks,s=1...ns|α∗⊤Y KsY α∗>t∗}

ns
, for the optimal values

of α∗ and t∗ solving (15).

Figure 3 plots ǫeffective vs ǫ. Ideally ǫeffective should
be equal to ǫ (shown as ”Ideal-case” in graph). The
leftmost plot shows that the Gaussian bound (Lemma
1) is much tighter than interval based bound if the
uncertainty is Gaussian. In the other plots, we plot
ǫeffective obtained from RSVM for various values of
ǫ, thus testing the bound in Theorem 2. The bound is
very loose for the general distributions. However, we
observe that for the interesting range of ǫ, ǫ ∈ [0, 0.5],
the bound is tighter than rest of the region. The bound
is very tight for small values of ǫ.

5.2. Resolution-aware protein structure
classification

Here, we present experimental results which compare
accuracy and robustness of the proposed RSVM, with
state of the art methods for protein structure classifi-
cation.

Dataset: We use a dataset based on SCOP
(Murzin et al., 1995) 40% sequence non-redundant
dataset, taken from (Bhattacharya et al., 2007). The
dataset has 15 classes (SCOP superfamilies), having 10
structures each. The experimental methodology is also
similar to that used in (Bhattacharya et al., 2007), e.g.
using 15 “one versus all” binary classifiers, where the
negative data contains 10 proteins (to keep the dataset
balanced) randomly chosen from all other classes. We
perform Leave-One-Out(LOO) crossvalidation here.

Let D = {(Pi, ri, yi)} where Pi is the set of coordi-
nates of ith protein structure obtained from Astral3

database, ri be the corresponding resolution informa-
tion obtained from PDB, and yi is the class label. Us-
ing resolution, we generate a set of perturbed struc-
tures Qi = {P 1

i , . . . , Pns

i } for each Pi as follows: for
each atom pia

of Pi generate structure P s
i with coor-

dinates of atoms as ps
ia

= pia
+u and u ∼ U(−ri

2 , ri

2 ).

For any kernel K, mean kernel Kij = E[K(p, p′)].
Also aij = minp∈Qi,p′∈Qj

K(p, p′) and bij =
maxp∈Qi,p′∈Qj

K(p, p′). For the purpose of our com-
parison, we have used weighted pairwise distance sub-
structure kernel (Bhattacharya et al., 2007).

Existing techniques: Each protein structure can
be viewed as a set of perturbations of the orig-
inal structures. Hence, we compared RSV M

3http://astral.berkeley.edu

http://astral.berkeley.edu
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Figure 1. Robustness for RSVM, RSVM(g) and Nominal-SVM using (starting from left) Gaussian, Uniform and
β(0.5, 0.5) distribution for generating sample kernels. (Plot shows average error over 20 classifiers by fixing C at 10).
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Figure 2. Robustness for RSVMQP , RSVM
(g)
QP and Nominal-SVM using (starting from left) i.i.d. Gaussian, Uniform

and β(0.5, 0.5) distributions for generating sample kernels. (Plot shows average error over 20 classifiers by fixing C at 10).
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Figure 3. Verification of Bound for RSVM and RSVM(g) using (starting from left) Gaussian, Uniform, β(0.5, 0.5) and
β(5, 5) distribution for generating sample kernels. (Plot shows average error over 20 classifiers by fixing C at 10).

with the normalized set multi-instance kernel (MI)
(Gartner et al., 2002). For a given kernel K, nor-
malized set kernel is defined as Kmulti(Pi, Pj) =

P

p∈Qi,p′∈Qj
K(p,p′)

√
(
P

p∈Qi,p′∈Qi
K(p,p′))

q

(
P

p∈Qj,p′∈Qj
K(p,p′))

.

We have used SV MR(SVM considering each per-
turbed structure as individual data points) Nominal-
SVM (SVM with kernel based on protein structure re-
ported in PDB files), SV MM (SVM considering K as
kernel) for benchmarking our result.

5.2.1. Results on protein structures

Table 2 reports results for RSVM and state of the
art methods using both standard and robust error
measures defined in section 4 using the LOO proce-

dure. Hyper-parameters (C and/or ǫ) for each clas-
sifiers were tuned separately using a grid search. We
report Total Accuracy (TA) and F1 score. All reported
results are averaged over 10 different datasets, where
negative dataset were selected randomly. Note that
for SVM with MI kernel, one label is given to every
set following (Gartner et al., 2002) method. We re-
port this as the majority error, which will also be the
Nominal error.

It is clear that RSV MQN performs significantly bet-
ter than rest of the methods, both in terms of Nomi-
nal Accuracy (measured by NomErr) and Robustness
(measured by RobustErr). This indicates that use of
resolution information improves the overall classifica-
tion accuracy. Moreover, very low values of accuracy
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Table 2. Comparison RSVMQP, RSVMSOCP,
RSVMQN, Nominal-SVM,SVMM.SVMR and
MI using accuracy measures defined in section 4

RSVM SVM MI

QP SOCP QN Nominal M R

MajErr

TA 72.67 73.56 82.78 62.89 71.11 71.67 72.11

F1 73.49 74.35 82.95 63.50 71.87 72.58 72.17

RobustErr

TA 27.11 50.33 66.44 34.56 22.00 61.56 20.11

F1 26.81 50.28 66.36 34.07 21.70 61.26 19.63

NomErr

TA 66.50 66.65 76.00 61.02 65.00 70.44 ×

F1 65.13 65.16 75.80 60.86 64.48 67.58 ×

corresponding to RobustErr for SVM and other com-
peting methods suggests that the SVM classification
is not robust to perturbations in coordinates of atoms
within the resolution. The fact that other RSVM
formulations perform worse than RSV MQN indicates
that assumptions used to derive other formulations,
e.g. Rank 1 or PSD, do not hold for this dataset.

In terms of RobustErr, RSVMQP performs worse
than RSVMSOCP, confirming the fact that PSD as-
sumption is much better for robustness than rank one
assumption. The simple heuristic of using all the per-
turbed samples (SVMR) performs very well in terms
of robustness, which is intuitive. However, the com-
putational complexity of SV MR is O(n2

s) higher than
others, which can be prohibitive for many cases.

6. Conclusion

We have presented an optimization problem (15),
which is robust to uncertainty in the kernel matrix.
The formulation applies to Gaussian uncertainty and
as well as to arbitrary distributions with finite support.
For the finite support case the formulation is derived
from a novel large deviation inequality, stated in Theo-
rem 2. The large deviation inequality is of independent
interest and applies more generally to problems involv-
ing traces of random matrices. An interesting result is,
for i.i.d uncertainty, the formulation reduces to SVM
(Theorem 5). We show that for positive semidefinite β
the the formulation is second-order-cone representable
and can be solved by SOCP. On the real world problem
of protein structure classification it yields significantly
improved results.
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