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Abstract

The Nyström method is an efficient technique
for the eigenvalue decomposition of large ker-
nel matrices. However, in order to ensure an
accurate approximation, a sufficiently large
number of columns have to be sampled. On
very large data sets, the SVD step on the re-
sultant data submatrix will soon dominate
the computations and become prohibitive.
In this paper, we propose an accurate and
scalable Nyström scheme that first samples
a large column subset from the input ma-
trix, but then only performs an approximate
SVD on the inner submatrix by using the re-
cent randomized low-rank matrix approxima-
tion algorithms. Theoretical analysis shows
that the proposed algorithm is as accurate as
the standard Nyström method that directly
performs a large SVD on the inner subma-
trix. On the other hand, its time complexity
is only as low as performing a small SVD.
Experiments are performed on a number of
large-scale data sets for low-rank approxima-
tion and spectral embedding. In particular,
spectral embedding of a MNIST data set with
3.3 million examples takes less than an hour
on a standard PC with 4G memory.

1. Introduction

Eigenvalue decomposition is of central importance in
science and engineering, and has numerous applica-
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tions in diverse areas such as physics, statistics, signal
processing, machine learning and data mining. In ma-
chine learning for example, eigenvalue decomposition
is used in kernel principal component analysis and ker-
nel Fisher discriminant analysis for the extraction of
nonlinear structures and decision boundaries from the
kernel matrix. The eigenvectors of the kernel or affin-
ity matrix are also used in many spectral clustering
(von Luxburg, 2007) and manifold learning algorithms
(Belkin & Niyogi, 2002; Tenenbaum et al., 2000) for
the discovery of the intrinsic clustering structure or
low-dimensional manifolds.

However, standard algorithms for computing the
eigenvalue decomposition of a dense n×n matrix take
O(n3) time, which can be prohibitive for large data
sets. Alternatively, when only a few leading (or trail-
ing) eigenvalues/eigenvectors are needed, one may per-
form a partial singular value decomposition (SVD) us-
ing the Arnoldi method (Lehoucq et al., 1998). How-
ever, empirically, the time reduction is significant only
when the matrix is sparse or very few eigenvectors are
extracted (Williams & Seeger, 2001).

A more general approach to alleviate this problem is
by using low-rank matrix approximations, of which the
Nyström method (Drineas & Mahoney, 2005; Fowlkes
et al., 2004; Williams & Seeger, 2001) is the most pop-
ular. It selects a subset of m � n columns from
the kernel matrix, and then uses the correlations be-
tween the sampled columns and the remaining columns
to form a low-rank approximation of the full matrix.
Computationally, it only has to decompose the much
smaller m × m matrix (denoted W ). Obviously, the
more columns are sampled, the more accurate is the
resultant approximation. However, there is a trade-
off between accuracy and efficiency. In particular, on
very large data sets, even decomposing the small W
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matrix can be expensive. For example, when the data
set has several millions examples, sampling only 1%
of the columns will lead to a W that is larger than
10, 000× 10, 000.

To avoid this explosion of m, Kumar et al. (2010) re-
cently proposed the use of an ensemble of ne Nyström
approximators. Each approximator, or expert , per-
forms a standard Nyström approximation with a man-
ageable column subset. Since the sampling of columns
is stochastic, a number of such experts can be run and
the resultant approximations are then linearly com-
bined together. Empirically, the resultant approxima-
tion is more accurate than that of a single expert as
in standard Nyström. Moreover, its computational
cost is (roughly) only ne times the cost of standard
Nyström. However, as will be shown in Section 3, it is
essentially using a block diagonal matrix to approxi-
mate the inverse of a very large W . Since the inverse of
a block diagonal matrix is another block diagonal ma-
trix, this approximation can be poor unless W is close
to block diagonal. However, this is highly unlikely in
typical applications of the Nyström method.

Recently, a new class of randomized algorithms are
proposed for constructing approximate, low-rank ma-
trix decompositions (Halko et al., 2009). It also ex-
tends the Monte Carlo algorithms in (Drineas et al.,
2006) on which the analysis of the Nyström method
in (Drineas & Mahoney, 2005) is based. Unlike the
standard Nyström which simply samples a column
subset for approximation, it first constructs a low-
dimensional subspace that captures the action of the
input matrix. Then, a standard factorization is per-
formed on the matrix which is restricted to that sub-
space. Though being a randomized algorithm, it is
shown that this can yield an accurate approximation
with very high probability. On the other hand, the al-
gorithm needs to have at least one pass over the whole
input matrix. This is thus more expensive than the
Nyström method (and its ensemble variant) which only
accesses a column subset. On very large data sets, this
performance difference can be significant.

In this paper, we combine the merits of the standard
Nyström method and the randomized SVD algorithm.
The standard Nyström is highly efficient but requires
a large enough number of columns to be sampled,
while the randomized SVD algorithm is highly accu-
rate but less efficient. Motivated by the observation
that the ensemble Nyström algorithm is essentially us-
ing a block diagonal matrix approximation for W+, we
will adopt a large column subset and then speed up the
inner SVD step by randomized SVD. Both theoretical
analysis and experimental results confirm that the er-

ror in the randomized SVD step is more than compen-
sated for by the ability to use a large column subset,
leading to an efficient and accurate eigenvalue decom-
position even for very large input matrices. Moreover,
unlike the ensemble Nyström method which resorts
to a learner and needs to attend to the consequent
model selection issues, the proposed method is very
easy to implement and can be used to obtain approx-
imate eigenvectors.

The rest of this paper is organized as follows. Section 2
gives a short introduction on the standard/ensemble
Nyström method and the randomized SVD algorithm.
Section 3 then describes the proposed algorithm. Ex-
perimental results are presented in Section 4, and the
last section gives some concluding remarks.

Notations The transpose of vector/matrix is de-
noted by the superscript T . Moreover, Tr(A) denotes
the trace of matrix A = [Aij ], A+ is its pseudo-
inverse, ran(A) is the range of A, ‖A‖2 = max{

√
λ :

λ is eigenvalue of ATA} is its spectral norm, ‖A‖F =√
Tr(ATA) is its Frobenius norm, and σi(A) denotes

the ith largest singular value of A.

2. Related Works

2.1. Nyström Method

The Nyström method approximates a symmetric pos-
itive semidefinite (psd) matrix G ∈ Rn×n by a sample
C of m � n columns from G. Typically, this sub-
set of columns are randomly selected by uniform sam-
pling without replacement (Williams & Seeger, 2001;
Kumar et al., 2009). Recently, more sophisticated
non-uniform sampling schemes have also been pursued
(Drineas & Mahoney, 2005; Zhang et al., 2008).

After selecting C, the rows and columns of G can be
rearranged such that C and G are written as:

C =
[
W
S

]
and G =

[
W ST

S B

]
, (1)

where W ∈ Rm×m, S ∈ R(n−m)×m and B ∈
R(n−m)×(n−m). Assume that the SVD of W is
UΛUT , where U is an orthonormal matrix and Λ =
diag(σ1, . . . , σm) is the diagonal matrix containing the
singular values of W in non-increasing order. For
k ≤ m, the rank-k Nyström approximation is

G̃k = CW+
k C

T , (2)

where W+
k =

∑k
i=1 σ

−1
i U (i)U (i)T , and U (i) is the ith

column of U . The time complexity is O(nmk + m3).
Since m� n, this is much lower than the O(n3) com-
plexity required by a direct SVD on G.
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2.2. Ensemble Nyström Algorithm

Since the Nyström method relies on random sampling
of columns, it is stochastic in nature. The ensem-
ble Nyström method (Kumar et al., 2010) employs
an ensemble of ne ≥ 1 Nyström approximators for
improved performance. It first samples mne columns
from G, which can be written as C = [C1, . . . , Cne ] ∈
Rn×mne with each Ci ∈ Rn×m. The standard Nyström
method is then performed on Ci, obtaining a rank-k
approximation G̃i,k (i = 1, . . . , ne). Finally, these are
weighted to form the ensemble approximation

G̃ens =
ne∑
i=1

µiG̃i,k, (3)

where µi’s are the mixture weights. A number of
choices have been used in setting these weights, includ-
ing uniform weights, exponential weights and by ridge
regression. Empirically, the best method is ridge re-
gression. This, however, needs to sample an additional
s columns from G as the training set, and another s′

columns as the hold-out set for model selection. The
total time complexity is O(nenmk+nem3+Cµ), where
Cµ is the cost of computing the mixture weights.

Another disadvantage of the ensemble Nyström
method is that, unlike the standard Nyström method,
approximate eigenvectors of G cannot be easily ob-
tained. As can be seen from (3), the eigenvectors of
each of the G̃i,k’s in (3) are in general different and
so cannot be easily combined together. Hence, the en-
semble Nyström method cannot be used with spectral
clustering and manifold learning algorithms.

2.3. Randomized Low-Rank Approximation

Recently, a class of simple but highly efficient random-
ized algorithms are proposed for constructing approxi-
mate, low-rank matrix decompositions (Halko et al.,
2009). In general, they can be used on complex-
valued rectangular matrices. In the following, we focus
on obtaining a rank-k SVD from a symmetric matrix
W ∈ Rm×m (Algorithm 1).

In general, there are two computational stages in this
class of algorithms. In the first stage (steps 1 to 3),
an orthonormal matrix Q ∈ Rm×(k+p) is constructed
which serves as an approximate, low-dimensional basis
for the range of W (i.e., W ' QQTW ). Here, p is an
over-sampling parameter (typically set to 5 or 10) such
that the rank of Q is slightly larger than the desired
rank (k), and q is the number of steps of a power it-
eration (typically set to 1 or 2) which is used to speed
up the decay of the singular values of W . In the sec-
ond stage (steps 4 to 6), the input matrix matrix is

Algorithm 1 Randomized SVD (Halko et al., 2009).
Input: m×m symmetric matrix W , scalars k, p, q.
Output: U , Λ.
1: Ω ← a m × (k + p) standard Gaussian random

matrix.
2: Z ←WΩ, Y ←W q−1Z.
3: Find an orthonormal matrix Q (e.g., by QR de-

composition) such that Y = QQTY .
4: Solve B(QTΩ) = QTZ.
5: Perform SVD on B to obtain V ΛV T = B.
6: U ← QV .

restricted to the above subspace and a standard SVD
is then computed on the reduced matrix

B = QTWQ (4)

to obtain B = V ΛV T . Finally, the SVD of W can be
approximated as W ' UΛUT , where U = QV .

Computationally, it takes O(m2k) time1 to compute
Z and Y , O(mk) time for the QR decomposition,
O(mk2) time to obtainB, andO(k3) time for the SVD.
Hence, the total time complexity is O(m2k+k3), which
is quadratic in m. Moreover, it needs to have at least
one pass over the whole input matrix.

3. Algorithm

3.1. Combining Nyström and Randomized
SVD

Obviously, the more columns are sampled, the more
accurate is the Nyström approximation. Hence, the
ensemble Nyström method samples mne columns in-
stead of m columns. In the following, we abuse no-
tations and denote the corresponding W matrix by
W(nem) ∈ Rmne×mne . However, there is a trade-
off between accuracy and efficiency. If the standard
Nyström method were used, this would have taken
O(n3

em
3) time for the SVD of W(nem). The ensemble

Nyström method alleviates this problem by replacing
this expensive SVD by ne SVDs on ne smaller m×m
matrices. Our key observation is that, by using (2),
the ensemble Nyström approximation in (3) can be
rewritten as

G̃ens = C diag(µ1W
+
1,k, . . . , µne

W+
ne,k

)CT , (5)

where Wi,k ∈ Rm×m is the W matrix in (1) corre-
sponding to G̃i,k, and diag(µ1W

+
1,k, . . . , µne

W+
ne,k

) is

1Here, we compute Y by multiplying W to a sequence
of m× (k + p) matrices, as WZ, W (WZ), . . . , W (W q−2Z).
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the block diagonal matrix

µ1W
+
1,k

. . .

µneW
+
ne,k

. In

other words, the ensemble Nyström algorithm can be
equivalently viewed as approximating W+

(nem) by the
block diagonal diag(µ1W

+
1,k, . . . , µneW

+
ne,k

). Despite
the resultant computational simplicity, the inverse of
a block diagonal matrix is another block diagonal ma-
trix. Hence, no matter how sophisticated the mixture
weights µi’s are estimated, this block diagonal approx-
imation is rarely valid unless W(nem) is block diagonal.
This, however, is highly unlikely in typical applications
of the Nyström method.

Since the ensemble Nyström method attains better
performance by sampling more columns, our method
will also sample more columns, or, equivalently, use
a m larger than is typically used in the standard
Nyström method. However, instead of using a block
diagonal matrix approximation for solving the subse-
quent large-SVD problem, we will use a more accurate
procedure. In particular, we will adopt the randomized
low-rank matrix approximation technique introduced
in Section 2.3.

Algorithm 2 The proposed algorithm.
Input: Psd matrix G ∈ Rn×n, number of columns m,

rank k, over-sampling parameter p, power param-
eter q.

Output: Ĝ, an approximation of G.
1: C ← m columns of G sampled uniformly at ran-

dom without replacement.
2: W ← m×m matrix defined in (1).
3: [Ũ ,Λ]← randsvd(W,k, p, q) using Algorithm 1.
4: U ← CŨΛ+.
5: Ĝ←

(√
m
n U
) (

n
mΛ
) (√

m
n U

T
)
.

The proposed algorithm is shown in Algorithm 2. Es-
sentially, it combines the high efficiency of the Nyström
method, which however requires a large enough col-
umn subset for accurate approximation, with the abil-
ity of the randomized algorithm to produce a very
accurate SVD but still relatively efficient approxima-
tion. Note from step 5 that Ĝ = CŨΛ+ŨTCT . In
turn, from Algorithm 1 and (4), ŨΛŨT = QBQT =
Q(QTWQ)QT . Hence, instead of relying on the block
diagonal matrix approximation in (5), Ĝ is now more
accurately approximated as

Ĝ = CQ(QTWQ)+QTC. (6)

Besides, instead of using the randomized SVD al-
gorithm for the inner SVD, one might want to ap-

Table 1. Time complexities for the various methods to ob-
tain a rank-k Nyström approximation of an n× n matrix.
Here, m is the number of columns sampled.

method time complexity
Nyström O(nmk + m3)

ensemble Nyström O(nmk + nek
3 + Cµ)

randomized SVD O(n2k + k3)
proposed method O(nmk + k3)

ply other approximations, such as using the stan-
dard Nyström method again. However, the Nyström
method is not good at approximating the trailing
eigenvalues, which are important in computing the in-
verse of W . Preliminary experiments show that in
order for the resultant approximation on G to be ac-
curate, the inner Nyström needs to sample close to
m columns, which, however, will lead to little speedup
over a standard SVD. Moreover, recall from Section 2.1
that there are different column sampling strategies.
Here, we will focus on uniform sampling without re-
placement (Kumar et al., 2009). Extension to other
sampling schemes will be studied in the future.

The time complexity required is O(nmk+k3). A sum-
mary of the time complexities2 of the various methods
is shown in Table 1. Recall that typically n� m ≥ k.
As can be seen, all the methods except randomized
SVD scale linearly with n. Moreover, the proposed
method has a comparable complexity as the ensemble
Nyström method as both only scale cubically with k,
but not with m.

3.2. Error Analysis

Let the column sampling matrix be S ∈ {0, 1}n×k,
where Sij = 1 if the ith column of G is chosen in the
j random trial, and Sij = 0 otherwise. Then, C = GS
and W = STGS. Moreover, since G is psd, we can
write it as

G = XTX, (7)

for some X ∈ Rd×n. In the proof, we will also need
the column-sampled and rescaled version of X:

H = κXS, (8)

where κ =
√
n/m is the scaling factor. Then,

C = κ−1XTH, W = κ−2HTH. (9)

The error analysis will depend on a number of results
in (Halko et al., 2009; Kumar et al., 2009; Stewart,

2In order to be consistent with the other methods, the
total number of columns sampled in the ensemble Nyström
method is now m (not nem in Section 2.2).
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1990). For the readers’ convenience, these are listed in
the appendix.

3.2.1. Spectral Norm

For the matrix W in step 3, we will first compute
its (expected) approximation error E ‖W −QQTW‖2.
Since the input matrix G is psd, W is also psd. The
following proposition can then be obtained by using a
more general result in (Halko et al., 2009).

Proposition 1. Given a psd matrix W , the Q ob-
tained in Algorithm 1 satisfies

E ‖W −QQTW‖2 ≤ ζ1/qσk+1(W ), (10)

where ζ = 1 +
√

k
p−1 + e

√
k+p
p

√
m− k.

The main theorem is stated below.

Theorem 1. For the Ĝ obtained in Algorithm 2,

E ‖G−Ĝ‖2 ≤ ζ1/q‖G−Gk‖2+(1+ζ1/q)
n√
m
G∗ii, (11)

where Gk is the best rank-k approximation of G, G∗ii =

maxiGii, and ζ = 1 +
√

k
p−1 + e

√
k+p
p

√
m− k.

As in (Halko et al., 2009), the power iteration drives
ζ1/q towards 1 exponentially fast as q increases, and so
the error in (11) decreases with the number of sampled
columns m. In particular, if we replace ζ1/q by 1,
then (11) becomes ‖G − Gk‖2 + 2n√

m
G∗ii, which is the

same3 as that for the standard Nyström method using
m columns. In other words, Algorithm 2 is as accurate
as performing a large SVD in standard Nyström.

3.2.2. Frobenius Norm

A similar bound can be obtained for the approximation
error in terms of the Frobenius norm. Since there is no
analogous theory for power iteration w.r.t. the Frobe-
nius norm (cf. remark 10.1 of (Halko et al., 2009)),
the analysis here is restricted to q = 1 and thus the re-
sultant bound is quite loose. However, as will be seen
in Section 4, empirically the approximation with just
q = 2 is already very good.

Theorem 2. For the Ĝ obtained in Algorithm 2,

E ‖G− Ĝ‖F

≤ 2(k + p)√
p− 1

‖G−Gk‖F +

(
1 +

4(k + p)√
m(p− 1)

)
nG∗ii.

Table 2. Data sets used.

data #samples dim
low-rank Satimage 4,435 36
approx RCV1 23,149 47,236

MNIST 60,000 784
Covtype 581,012 54

embedding MNIST-8M 3,276,294 784

4. Experiments

In this section, we study the efficiency of the proposed
method in solving large dense eigen-systems. Experi-
ments are performed on low-rank approximation (Sec-
tion 4.1) and spectral embedding (Section 4.2). All
the implementations are in Matlab. Experiments are
run on a PC with 2.4GHz Core2 Duo CPU and 4G
memory.

4.1. Low-rank Approximation

We use a number of data sets from the LIBSVM
archive4 (Table 2). The linear kernel is used on the
RCV1 text data set, while the Gaussian kernel is used
on all the others. The following methods are compared
in the experiments:

1. Standard Nyström method (denoted nys);

2. Ensemble Nyström method (denoted ens): As
in (Kumar et al., 2010), an additional s = 20
columns are used for training the mixture weights
by ridge regression, and another s′ = 20 columns
are used for choosing the regularization parame-
ters. For the covtype data set, s and s′ are reduced
to 2 so as to speed up computation. Moreover, we
set ne = m/k.

3. The proposed method (denoted our): We fix the
over-sampling p to 5, and the power parameter q
to 2.

4. Randomized SVD (denoted r-svd): Similar to the
proposed method, we also use p = 5 and q = 2.

The first three methods are based on the Nyström
method, and m columns are uniformly sampled with-
out replacement. Due to randomness in the sampling
process, we perform 10 repetitions and report the aver-
aged result. On the other hand, the randomized SVD
algorithm does not perform sampling and the whole

3This bound can be obtained in (Kumar et al., 2010)
by combining their (6) and (10).

4http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/
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Figure 1. Performance of the various methods. Top: Low-rank approximation error; Bottom: CPU time. (The randomized
SVD algorithm cannot be run on the covtype data set because it is too large).

input matrix is always used. Besides, the best rank-
k approximation could have been obtained by a direct
SVD on the whole input matrix. However, this is com-
putationally expensive even on medium-sized data sets
and so is not compared here.

4.1.1. Different Numbers of Columns

In the first experiment, we fix k = 600 and grad-
ually increase the number of sampled columns (m).
Figure 1 shows the the relative approximation er-
ror5 ‖G − Ĝ‖F /‖G‖F and the CPU time. As can
be seen, the randomized SVD algorithm is often the
most accurate, albeit also the most expensive. Stan-
dard Nyström can be as accurate as randomized SVD
when m is large enough. However, since Nyström
takes O(m3) time for the SVD step, it also quickly be-
comes computationally infeasible. As for the ensem-
ble Nyström method, it degenerates to the standard
Nyström when ne = 1 (the left endpoint of the curve).
Its approximation error decreases when the ensemble
has more experts6, which is consistent with the results
in (Kumar et al., 2010). However, as discussed in Sec-
tion 3.1, the ensemble Nyström method approximates

5Results are only reported for the Frobenius norm be-
cause the approximation error w.r.t. the spectral norm
is computationally difficult to compute, especially on large
data sets. Nevertheless, this is still a good indication of the
approximation performance as the spectral norm is upper-
bounded by the Frobenius norm (Lütkepohl, 1996).

6Recall that we use ne = m/k, and so the number of
experts increases with m.

the large SVD problem with a crude block diagonal
matrix approximation. Hence, its accuracy is much
inferior to that of the standard Nyström (which per-
forms the large SVD directly). On the other hand, the
proposed method is almost as accurate as standard
Nyström, while its CPU time is comparable or even
smaller than that of the ensemble Nyström method.

The accuracy of the ensemble Nyström method can be
improved, at the expense of more computations. Re-
call that in our setup, all Nyström-based methods have
access to m columns. For the ensemble Nyström, these
columns are divided by the m/k experts, each receiv-
ing a size-k subset. In general, let r be the number of
columns used by each expert. Obviously, the larger the
r, the better the ensemble approximation. Indeed, in
the extreme case where r = m, the ensemble Nyström
method degenerates to the standard Nyström. Hence,
accuracy of the ensemble Nyström method can be im-
proved by using fewer experts, with each expert using a
larger column subset. However, the time for perform-
ing m

r size-r SVD’s is O(mr r
3) = O(mr2). Figure 2

shows the resultant tradeoff between approximation
error and CPU time on the satimage data set. As can
be seen, in order for the ensemble Nyström method to
have comparable speed with the proposed algorithm,
this justifies our choice of r = k.

4.1.2. Different Ranks

In the second experiment, we study the approximation
performance when the rank k varies. Because of the
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(a) k = 200.
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(b) k = 400.
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(c) k = 600.
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(d) k = 800.
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(e) k = 200.
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(f) k = 400.
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(g) k = 600.
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(h) k = 800.

Figure 3. Performance at different k’s on the MNIST data set. Top: Low-rank approximation error; Bottom: CPU time.
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(a) Approximation error.
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(b) CPU time.

Figure 2. Low-rank approximation performance for the en-
semble Nyström method, with varying number of columns
used by each expert.

lack of space, results are only reported on the MNIST
data set. As can be seen from Figure 3, when k in-
creases, the approximation error decreases while the
CPU time increases across all methods. Hence, there is
a tradeoff between accuracy and efficiency. Neverthe-
less, the relative performance comparison among the
various methods is still the same as in Section 4.1.1.

4.1.3. Input Matrices of Different Sizes

In this experiment, we examine how the performance
scales with the size of the input matrix. The various
methods are run on subsets of the covtype data set.
Here, k is fixed to 600 and m to 0.03n. Results are
shown in Figure 4. Note that the slopes of the curves
in Figure 4(b) determines their scalings with n. As can
be seen, the standard Nyström method scales cubically
with n, while all the other methods scale quadratically
(because m also scales linearly with n here). Moreover,
similar to the results in the previous sections, the en-

semble Nyström and the proposed method are most
scalable, while the proposed method is as accurate as
the standard Nyström that performs a large SVD.
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Figure 4. Low-rank approximation performance at differ-
ent sizes of the input matrix on the covtype data set.

4.2. Spectral Embedding

In this section, we perform spectral embedding using
the Laplacian eigenmap (Belkin & Niyogi, 2002). The
Gaussian kernel is used to construct the affinity ma-
trix. For easy visualization, the data are projected
onto the two singular vectors of the normalized Lapla-
cian with the second and third smallest singular values.

Experiments are performed on the MNIST-8M data
set7, which contains 8.1M samples constructed by elas-
tic deformation of the original MNIST training set. To
avoid clutter of the embedding results, we only use dig-
its 0, 1, 2 and 9, which result in a data set with about

7http://leon.bottou.org/papers/
loosli-canu-bottou-2006
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3.3M samples. Because of this sheer size, neither stan-
dard SVD nor Nyström can be run on the whole set.
Moreover, neither can the ensemble Nyström method
be used as it cannot produce approximate eigenvec-
tors (Section 2.2). Hence, the full set can only be run
with the proposed method, with m = 4000, k = 400
and the Gaussian kernel. For comparison, we also run
standard SVD on a random subset of 8,000 samples.

Results are shown in Figure 5. As can be seen, the two
embedding results are very similar. Besides, for the
proposed method, this embedding of 3.3M samples is
obtained within an hour on our PC.

(a) Proposed method. (b) SVD on a data subset.

Figure 5. Embedding results for the digits 0,1,2,9 in the
MNIST-8M data set.

5. Conclusion

In this paper, we proposed an accurate and scalable
Nyström approximation scheme for very large data
sets. It first samples a large column subset from the
input matrix, and then performs an approximate SVD
on the inner submatrix by using the recent randomized
low-rank matrix approximation algorithms. Both the-
ory and experiments demonstrate that the proposed
algorithm is as accurate as the standard Nyström
method that directly performs a large SVD on the in-
ner submatrix. On the other hand, its time complex-
ity is only as low as the ensemble Nyström method. In
particular, spectral embedding of a MNIST data set
with 3.3 million examples takes less than an hour on
a standard PC with 4G memory.

Acknowledgments

This research was supported in part by the Research
Grants Council of the Hong Kong Special Administra-
tive Region (Grant 614508), the National Natural Sci-
ence Foundation of China (Grant No. 60773090 and
Grant No. 90820018), the National Basic Research
Program of China (Grant No. 2009CB320901), and
the National High-Tech Research Program of China
(Grant No. 2008AA02Z315).

References

Belkin, M. and Niyogi, P. Laplacian eigenmaps and
spectral techniques for embedding and clustering.
In NIPS 14, 2002.

Drineas, P. and Mahoney, M.W. On the Nyström
method for approximating a Gram matrix for im-
proved kernel-based learning. Journal of Machine
Learning Research, 6:2175, 2005.

Drineas, P., Kannan, R., and Mahoney, M.W. Fast
Monte Carlo algorithms for matrices II: Computing
a low-rank approximation to a matrix. SIAM Jour-
nal on Computing, 36(1):158–183, 2006.

Fowlkes, C., Belongie, S., Chung, F., and Malik, J.
Spectral grouping using the Nyström method. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 26(2):214–225, February 2004.

Halko, N., Martinsson, P.-G., and Tropp, J.A. Find-
ing structure with randomness: Stochastic algo-
rithms for constructing approximate matrix decom-
positions. Technical report, 2009.

Kumar, S., Mohri, M., and Talwalkar, A. Sampling
techniques for the Nyström method. In AISTATS,
2009.

Kumar, S., Mohri, M., and Talwalkar, A. Ensemble
Nyström method. In NIPS 22, 2010.

Lehoucq, R.B., Sorensen, D.C., and Yang, C.
ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods. SIAM, 1998.

Lütkepohl, H. Handbook of Matrices. John Wiley and
Sons, 1996.

Stewart, G.W. Matrix perturbation theory. SIAM
Review, 1990.

Tenenbaum, J.B., de Silva, V., and Langford, J.C.
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290:2319–2323, 2000.

von Luxburg, U. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, December
2007.

Williams, C.K.I. and Seeger, M. Using the Nyström
method to speed up kernel machines. In NIPS 13,
2001.

Zhang, K., Tsang, I.W., and Kwok, J.T. Improved
Nyström low rank approximation and error analysis.
In ICML, 2008.


