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Abstract

In this work, inspired by (Bühler & Hein,
2009), (Strang, 1983), and (Zhang et al.,
2009), we give a continuous relaxation of the
Cheeger cut problem on a weighted graph.
We show that the relaxation is actually equiv-
alent to the original problem. We then de-
scribe an algorithm for finding good cuts sug-
gested by the similarities of the energy of
the relaxed problem and various well stud-
ied energies in image processing. Finally we
provide experimental validation of the pro-
posed algorithm, demonstrating its efficiency
in finding high quality cuts.

1. Introduction

Many clustering methods start with a (nonnegative,
symmetric) matrix W which collects the relative simi-
larities between a set of points V to be clustered, and
make the assumption that in some sense, the cluster
indicators should be smooth with respect to W . A
simple such notion is that the length of the boundary
of the clusters should be small relative to their size.
This motivates the definition of the Cheeger cut value
of a partition P = {S, Sc} of V :

C(S) =
Cut(S, Sc)

min(|S|, |Sc|)
, (1)

where
Cut(A,B) =

∑

i∈A,j∈B

Wij ,

and where S ⊂ V, Sc is the complement of S in V , and
|S| is the cardinality of S.
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Computing the optimal partition C∗ = minS⊂V C(S)
is unfortunately NP-hard. However it turns out that
C∗ is approximated by the second eigenvalue of the
combinatorial Laplacian D−W , where Dii =

∑

j Wij :

1

2maxiDii
C2
∗ ≤ λ2 ≤ 2C∗. (2)

See (Cheeger) for the continuous version, and for
the discrete version, see (Chung, 1997). This moti-
vates “spectral clustering”, which in its simplest from,
thresholds the second eigenvector φ2 of the Laplacian
to get an approximation to the clustering with the
smallest cut (see (von Luxburg, 2006) for an excel-
lent introduction). In symbols, we find the threshold
γ∗ = argmin

γ
C(Sγ), where Sγ = {v ∈ V, φ2(v) > γ}.

Unfortunately, the bounds for the quality of C(Sγ∗
)

have the quadratic gap present in (2).

Using the Rayleigh quotient formula for the eigenvalue
gives

λ2 = arg min
f∈L2(V )

H2(f),

where

Hp(f) =

∑

||∇f ||p

minc∈R ||f − c||pp
,

and where for p ≥ 1, ||∇f ||p at i is given by

||∇f ||p(i) =
∑

j

Wij |f(i)− f(j)|p.

Recently, in (Bühler & Hein, 2009) (also see
(Amghibech, 2003)), it was shown that

lim
p7→1+

min
f∈L2(V )

Hp(f) = C∗. (3)

In fact they show something stronger: for any p >
1, denote by Sp the set obtained from the optimal
thresholding of arg min

f∈L2(V )
Hp(f). They prove

C∗ ≤ C(Sp) ≤ p
(

max
i

Dii

)
p−1

p

(C∗)
1
p . (4)



Thus, by finding the minimizer of Hp for small p and
thresholding it, we get a cut closely approximating C∗.

In this work we will consider what happens when
p = 1. We start by noting that minimizing H1 over
L2(V ) is a relaxation of minimizing (1) over partitions
of V . On the other hand, we will show that as one
might suspect from (3) and (4), the two problems are
actually equivalent, and there is a minimizer of the re-
laxed problem which is the indicator of a set. While
this might seem to scuttle hopes of using H1 for al-
gorithmic advantage, it turns out that the extra space
afforded by the continuous domain can be put to prac-
tical use. We will describe an iterative algorithm for
minimizing H1 based on ideas in (Goldstein & Osher,
2009) which finds high quality cuts rapidly in prac-
tice; for cuts of comparable quality, it often runs ten
to a hundred times faster than the algorithm used in
(Bühler & Hein, 2009). Finally, we will provide some
experiments on the quality of the clusterings given by
the algorithms we have presented.

2. Equivalence of the TV problem and
the Ratio Cut problem

In this section we fix a set of points V of size n and a
similarity matrix W on V . We can relax the problem

min
S⊂V

C(S)

as follows: for any binary valued function f = χS ,
S ( V ,

||f −m(f)||1 =

{

|S| |Sc| > |S|
|Sc| |Sc| ≤ |S|,

where m(f) is the median of f . Then

∑

i ||∇f ||(i)

||f −m(f)||1
= 2

∑

vi∈Sc

∑

vj∈S Wij

min(|S|, |Sc|)

= 2C(S).

Thus

min
f

∑

i ||∇f ||(i)

||f −m(f)||1
(5)

is a relaxation of the Cheeger cut problem, and

min
f

∑

i ||∇f ||(i)

||f −m(f)||1
≤ min

S
C(S). (6)

In this work we will show that the inequality (6) is
actually an equality, and for any solution f of the re-
laxed minimization, there is a threshold γ so that the
binary function

fγ =

{

1 f > γ
0 f ≤ γ,

has the same energy as the minimum cut. While the
equivalence of the relaxation and the original problem
is not new, it seems that the explicit form of the mini-
mizer has not been described before. Our approach is
in part inspired by the analysis of similar problems in
the continuous setting by Strang in (Strang, 1983).

For a function f : V 7→ R, denote

|f |TV =
∑

i

||∇f ||.

Note that this is a norm on the set of function modulo
constants. TV stands for “total variation”; this norm
has been well studied in many contexts.

Lemma 2.1. A function f : V 7→ R is an extreme
point of the TV unit ball if and only if there is a number
α such that f = αχS, where S ( V .

Proof. Denote by {a1, ..., an} the distinct values of f
arranged in increasing order. Let Sr = {v : f(v) =
ar}, S

+
r = {v : f(v) > ar}, and S−

r = {v : f(v) < ar}
pick indices t and s with t 6= s, and let g = f+ǫsχSs

+
ǫtχSt

; and h = f − ǫsχSs
− ǫtχSt

, where ǫs and ǫt will
be chosen in a moment. Note that adding ǫsχSs

to f
changes its total variation by

ǫs





∑

i∈Ss,j∈S−

s

Wij −
∑

i∈Ss,j∈S+
s

Wij



 ,

and adding ǫtχSt
to the resulting function changes the

total variation by the corresponding expression with
St, and and as long as ǫs and ǫt are chosen small
enough to not upset the order of the values of f , the
changes are independent. Thus by keeping

ǫt = −

∑

i∈Ss,j∈S−

s
Wij −

∑

i∈Ss,j∈S+
s
Wij

∑

i∈St,j∈S−

t
Wij −

∑

i∈St,j∈S+

t
Wij

ǫs,

and picking both small enough so that the order of the
values does not change, we get that |g|TV = |h|TV = 1.
Then f = g/2+h/2, and so f is not an extreme point
of the ball. To prove the converse, let f = αχS , and
suppose that βg + (1 − β)h = f , for some g and h
in the TV unit ball on W . Let W ∗ be the weighted
subgraph of W given by

W ∗
ij :=

{

Wij i ∈ S and j ∈ Sc

0 otherwise,

Note that on W ∗, still βg + (1 − β)h = f ; and
|f |TV(W∗) = 1. By the sublinearity of the TV(W ∗)
norm

1 ≤ β|g|TV(W∗) + (1− β)|h|TV(W∗),

but the choice of g and h show that

β|g|TV(W∗) + (1 − β)|h|TV(W∗) ≤ β + (1 − β) = 1,



and so
1 = |g|TV(W∗)

and
|h|TV(W∗) = 1.

Therefore both h and g are constant on S and Sc, and
were thus, up to a constant, multiples of f .

We will need a slightly sharper version of Lemma 2.1
below; however, the proof is essentially the same.

Lemma 2.2. Let W be a weighted graph, and let I+
and I− be a partition of V . Let Q be the set of vectors
in Rn such that f is nonnegative in the coordinates
I+, and nonpositive in the coordinates I−; let B be the
TV norm unit ball on Q. The vector f is an extreme
point of B if and only if there exists a number α with
f = αχS , where S ( V .

Proof. The “if” direction is as above. The proof of the
“only if” direction proceeds exactly as in Lemma 2.1
if f takes positive and negative values. If f takes non-
negative values, then the proof above works as long as
we choose at > as > 0; and similarly for the nonposi-
tive case.

Theorem 2.3. Consider the problem

λ = min
f

|f |TV

||f −m(f)||1
.

There is a binary valued minimizer, and

λ = min
S

Cut(S)

min (|S|, |Sc|)
.

Furthermore, for any minimizer f , there is a number
γ so that the function

fγ =

{

1 f > γ
0 f ≤ γ,

is also a minimizer.

Proof. Suppose f is a minimizer. If |f |TV = 0, the
characteristic function of the support of f is binary
and also has TV norm zero. If not, because the func-
tional has homogeneity 0, we can rescale f to fix the
numerator of the energy as |f |TV = 1; f is thus a
maximizer for the denominator, constrained to the TV
ball. Because both numerator and denominator are
unchanged by the addition of a constant to f , we may
restrict attention to f with m(f) = 0. Let I1 be the
indices where f ≤ 0, and let I2 be the indices where
f > 0. Note that any function nonpositive on I1 and
nonnegative on I2 also has median 0; denote this set of
functions by Q. Denote by B the TV norm unit ball on
Q. By definition, f is a solution to maxB ||f ||1. The

set B is convex, and || · ||1 is a convex function on B, so
it takes its maximum at an extreme point; by Lemma
2.2, there is a binary valued maximizer g = αχS for

some set S, and the energy of g is exactly Cut(S)
min(|S|,|Sc|) .

To see the last part of the statement, note that f can
be written as f =

∑

βigi where the gi are extreme
points (and therefore characteristic functions), βi > 0,
and

∑

βi = 1. Because the L1 norm is linear on the
quadrant that f lies in, all the gi are also minimizers.
It thus suffices to pick γ to be the value of the greatest
valued gi.

Remark 1. If instead of using f −m(f), we use f −
mj(f) with j < n/2, where mj(f) is the jth largest
value of f , we can encode an expectation of clusters
of a specific size. That is, the energy of a partition
becomes Cj(S) = Cut(S, Sc)/αj(S), where αj(S) = |S|
if |S| < |V | − j, and |Sc| otherwise.

3. A Split-Bregman algorithm for ratio
minimization

In this section, we give a heuristic algorithm for min-
imizing the ratio cut energy 5. The algorithm will
be based on the split-Bregman method introduced in
(Goldstein & Osher, 2009) to solve the TV/L2 prob-
lem for image denoising.

3.1. The alternating direction method, a.k.a

Bregman iteration

Here we give a brief review of the Bregman iterative
method for solving l1 regularized linear constrained
problems. Suppose we want to solve

argmin
u

||u||1,

Au = g,

where A is fat n × m matrix A (i.e. m > n) and
g is a fixed m vector. We can solve the sequence of
unconstrained problems

1. gk+1 = g −Auk + gk

2. uk+1 = argmin
u

||u||1 + η||Au − gk+1||2,

where η is fixed penalty parameter. In this case
(Yin et al.), the uk can be proved to converge to the
solution of the constrained problem, and the uncon-
strained problem in the second step is easier to solve
than the original problem. This method can be inter-
preted as alternating updates in the dual variables gk

and primal variables uk. In more pedestrian language,
the update of gk is designed to increase the penalty



on the coordinates where the previous unconstrained
solution was away from the constraints.

In (Goldstein & Osher, 2009) (and later (Zhang et al.,
2009) in the non-local/graph setting), this technique
was used for the solution of various total variation reg-
ularized problems in image processing, for example

argmin
f

||f ||TV + β||f − f0||
2, (7)

where f0 is a fixed function and β is a fixed parameter.
To put this kind of problem in the form above, they
introduced the dummy variable

d = ∇f,

and solved

argmin
d,f

||d||1 + β||f − f0||
2,

∇f = d.

using the Bregman method:

1. dk+1, fk+1 =

argmin
d,f

||d||1 + β||f − f0||
2 + η||d−∇f + gk||2

2. gk+1 = gk + dk+1 −∇fk+1,

which is further divided into

1. dk+1 = argmin
d

||d||1 + ||d−∇f + gk||2

2. fk+1 = argmin
f

β||f − f0||
2 + ||d−∇f + gk||2

3. gk+1 = gk + dk+1 −∇fk+1.

This “splitting” trick has a long history (see (Esser,
2009) and the references therein for a nice account in
this context). The point is that the d update is now a
simple shrinkage:

dk+1 = S(−∇f + gk, η),

where the shrinkage operator S is defined by

S(x, η) =

{

x− sign(x)η |x| > η
0 |x| ≤ η

(8)

and the f update is the solution of a linear system.
Thus the l1 part of the energy has been decoupled
from the ∇f part.

3.2. Ratio minimization

In this section we will describe a heuristic based on
split Bregman for minimizing energy (5). While we
will not be able to prove the convergence of the
method, experimentally it is very fast gives high qual-
ity cuts. We use the method of (Dinkelbach, 1967) to
convert the ratio problem into a sequence of problems
resembling (7).

As before, note that the minimization problem (5) is
invariant to shifts of f by constant functions, and so it
is equivalent to the constrained minimization problem

min
f∈Rn

|f |TV

||f ||1
s.t. m(f) = 0. (9)

We can almost use Dinkelbach’s method to reformulate
this as

max
λ

min
f

|f |TV − λ||f ||1

m(f) = 0,
(10)

and alternate between the steps

fn+1 = min
f

|f |TV − λn||f ||1 (11)

s.t. m(f) = 0,

λn+1 = |fn+1|TV/||fn+1||1.

However, if the domain of f is unbounded, the ob-
jective in (10) may also be unbounded; and for 9 to
make sense the domain should not contain the ori-
gin. Since energy (5) is homogenous of degree 0, we
can add the constraint ||f ||2 = 1 without changing
the solution. This fixes the subproblem (10), and the
results in (Dinkelbach, 1967) would guarantee conver-
gence to the global minimum if we could solve this
subproblem. Unfortunately, the median zero and l2

constraints make it difficult to prove that the split
Bregman methods converge. In practice, we will find
that instead of attempting to solve problem (11) to
completion with the constraints, it will be more ef-
fective to take a few steps towards the unconstrained
(and therefore unbounded) objective, update λ, take
a few more steps, etc.

We now describe the algorithm we will use in more
detail. Recall we are working on a graph with vertices
V and weights W . Suppose V has m points, and let E
be the nonzero entries in the upper-triangular part of
W . Let D be the |E| ×m matrix given by Drs = Wij

if r corresponds to ij and s = j, Drs = −Wij if r
corresponds to ij and s = i, and zero otherwise. Then
|f |TV = |Df |1. We introduce the dummy variables
d = Df , and e = f , and rewrite the norm constrained



version of problem (11) as

min
d,e,f

||d||1 − λn||e||1

d = Df, e = f,

m(e) = 0, ||e||2 = 1.

This leads to the introduction of the dual variables
bkn and ckn and the following subproblems, as in the
previous section:

1. dk+1
n , fk+1

n , ek+1
n = mind,e,f ||d||1 − λn||e||1

+η1||Df − d+ bkn||
2 + η2||f − e+ ckn||

2

s.t. m(e) = 0, and ||e||2 = 1,

2. bk+1
n = bkn +Dfk+1

n − dk+1
n ,

3. ck+1
n = ckn + fk+1

n − ek+1
n .

Here n is as in (11), and k indexes the steps towards a
solution of (11) for a fixed n. The reader may wonder
at the use of two dummy variables instead of one. The
reason for this becomes apparent when we continue
as in section 3.1, and further split step 1 into three
updates, leading to three easy to solve problems:

1. dk+1
n = mind ||d||1 + η1||Dfk

n − d+ bkn||
2,

2. ek+1
n = mine−λn||e||1 + η2||f

k
n − e + ckn||

2,
such that m(e) = 0, ||e||22 = 1,

3. fk+1
n = minf η1||Dfk

n − dk+1
n + bkn||

2 + η2||f
k
n −

ek+1
n + ckn||

2.

Each of these subproblems has an explicit solution.
The solution to 1 is given by dk+1

n = S(Dfk
n+bkn, 1/η1),

where S is the shrinkage operator defined in 8. Sub-
problem 3 is a linear system, and has explicit solution

(η1D
TD+η2I)

−1(η1D
T (dk+1

n −bk+1
n )+η2(e

k+1
n −ck+1

n ).

Subproblem 2 has a similar solution to subproblem 1,
but its description is more involved. Suppose for a
moment that the median zero condition is removed,
and set r = fk

n + ckn. Then the solution is simply an
“unshrinkage”

E(r, λn/η2) = r +
λn

η2
sign(r), (12)

projected onto the l2 unit sphere. To deal with the me-
dian zero constraint, note that the sign of the solution
will still be the sign of r. Thus enforcing median zero
simply specifies that some coordinates of the solution
corresponding to the overrepresented sign of r will be
zero. Once these coordinates are fixed, the solution

Algorithm 3.1: Ratio Min(f0, η1, η2, Ni, Ncg , N,D)

f = f0 −m(f0), d = 0, e = 0,
b = 0, c = 0, λ = ||Df ||1/||f ||1
for i = 1 to N

for j = 1 to Ni

d← S(f + b, 1/η1)
e← E(f + c, λ/η2)
f ← f −m(f), where f is the output of Ncg

conjugate gradient steps for solving
(η1D

TD + η2I)f = η1D
T (d− b) + η2(e− c)

b← b+Df − d
c← c+ f − e

end(j)
λ← ||Df ||1/||f ||1
(optional) u← ||f ||2, f ← f/u,
d← d/u, e← e/u, b← b/u, c← c/u

end(i)

to the problem is exactly as above; note that indepen-
dent of the choice of coordinates, the quantity ||es−r||2

will be the same. Therefore, we simply choose the co-
ordinates so that after unshrinkage and projection, the
resulting vector has largest l1 norm. This can be done
as follows: sort r, and without loss, assume there are
m more positive entries than negative entries. Now we
mask out the contiguous block of m sorted entries so
that the remaining positive values have the smallest
l1 norm after projection onto the l2 ball. We can find
this block quickly by keeping a running count of the
absolute and square sums. The solution Ec(r, λ, η) to
subproblem 2 is then given by

Ec(r, λ, η) =

{

E(r,λn/η2)(j)
||E(r,λn/η2)||2

j /∈ I

0 j ∈ I
,

where I is the set of masked indices.

In practice, we have found it is better to solve sub-
problem 3 iteratively, rather than using the explicit
solution. Computing (η1D

TD + η2I)
−1 is expensive

and unecessary, as D is extremely sparse. Instead,
we run a few steps of conjugate gradient descent. As
mentioned above, we have also found that enforcing
the constraints in subproblem 2 is not usually as effi-
cient as just subtracting the median from f after its
update, and either projecting back to the sphere after
every few iterations, or ignoring the artificial l2 con-
straint altogether.

The algorithm is summarized in 3.1. Although we can-
not prove that it converges, we will see in the next
section that experimentally, the algorithm performs
extremely well.



4. Experiments

In all experiments we use a 10-NN graph with the self-
tuning weights as in (Zelnik-Manor & Perona, 2004),
and the neighbor parameter set to 10. The optimiza-
tion parameters for algorithm 3.1 for all experiments
are fixed as follows: the total number of iterations
N = 120, the number of inner iterations before a
λ update Ni = 1, the number of conjugate gradient
steps Ncg = 5, and the penalty parameters η1 = 1
and η2 = 1. We do not do the optional normaliza-
tion step. The method is always initialized using the
second eigenvector of the normalized Laplacian.

We compare our method against the one in
(Bühler & Hein, 2009), using code downloaded
from http://www.ml.uni-saarland.de/code/

pSpectralClustering/pSpectralClustering.html,
and against thresholding the second eigenvector of
the normalized Laplacian. For each method, we use
the threshold with the lowest Cheeger cut value.
The timings do not include the cost of finding the
threshold or of building the graph.

4.1. MNIST

We test on the combined training and test samples
from the MNIST dataset, available at http://yann.
lecun.com/exdb/mnist/. This data set consists of
70000 28× 28 images of handwritten digits, 0 through
9. The data was preprocessed by projecting onto 50
principal components.

The goal in this data set is to discover the 10 digit
classes. The methods described above give a binary
clustering, so in order to obtain 10 clusters, we itera-
tively subdivide in the standard way. That is, we ten-
tatively divide each of the l current clusters in two, and
keep the division minimizing the sum of the Cheeger
cut values between each cluster and the union of all
the others; now we have l + 1 clusters, and we repeat
till we have 10.

The confusion matrices for the results using algorithm
3.1 and the second eigenvector method are presented in
Figure 1, where each row is a cluster, and the number
in the leftmost column of each row is the dominant
label of that cluster.

We see that the method does well. The 4’s and 9’s
are merged, but otherwise the clustering is very accu-
rate. The total computation time (not including con-
structing the weights) is 214 seconds. This experiment
is interesting because it shows that MNIST has quite
good clusters, suggesting that the cluster structure,
and not the manifold structure, is behind the success
of many of the SSL techniques that have used this data

Table 1. Top: the confusion matrix for the clustering of
MNIST using Algorithm 3.1 iterated as described in 4.1.
Each row is a cluster; the number in the leftmost column of
each row is the dominant label of that cluster. The 4’s and
9’s are merged, but otherwise the clustering is very accu-
rate. The total computation time (not including construct-
ing the weights) was 214 seconds. Middle: the confusion
matrix using (Bühler & Hein, 2009); the total computation
time is 7303 seconds. Bottom: the confusion matrix using
the iterated second eigenvector cut. More classes have been
merged, and the ones broken into 4 clusters. The compu-
tation time was 54 seconds

mode/true 0 1 2 3 4 5 6 7 8 9
0 6857 1 22 1 4 10 11 7 3 13
1 0 4011 2 1 4 0 2 9 18 5
1 2 3618 4 2 1 0 1 8 12 0
2 5 125 6860 50 3 1 6 31 55 3
3 2 1 14 6919 1 42 0 2 60 128
4 3 62 11 32 6785 36 6 86 62 6735
5 7 3 0 53 1 6162 43 0 44 18
6 22 4 6 1 18 43 6781 0 5 5
7 1 49 56 36 5 3 0 7148 12 34
8 4 3 15 46 2 16 26 2 6554 17

mode/true 0 1 2 3 4 5 6 7 8 9
0 6867 2 28 3 4 22 18 6 6 13
1 2 3602 4 2 1 0 2 9 12 0
1 0 4027 2 1 4 0 2 8 17 5
2 7 155 6842 42 3 1 1 19 12 2
3 1 2 11 6922 1 58 0 2 53 119
4 3 62 10 33 6784 40 6 78 59 6723
5 3 3 0 38 1 6109 11 0 33 33
6 15 8 8 3 17 62 6834 0 19 5
7 1 12 66 42 8 4 0 7168 11 38
8 4 4 19 55 1 17 2 3 6603 20

mode/true 0 1 2 3 4 5 6 7 8 9
0 6871 1 66 7 14 35 15 22 17 98
1 0 1830 0 1 0 0 2 8 4 0
1 0 2034 0 0 2 0 0 4 4 0
1 0 2044 0 0 1 0 1 4 6 4
1 1 1738 2 0 1 0 3 4 2 0
2 1 82 6809 31 8 1 6 38 6 5
3 6 83 54 7042 6 6221 90 10 6713 175
4 2 47 7 26 6726 17 2 144 49 6500
6 22 4 6 5 60 37 6757 2 11 26
7 0 14 46 29 6 2 0 7057 13 150

set as a benchmark. The second eigenvector method
does not do as well, merging more classes; but still its
performance is good. The computation time of this
method is 54 seconds. The results using the method
in (Bühler & Hein, 2009) are roughly the same quality
as our method, merging the 9’s and 4’s, but otherwise
separating all of the classes; however, the run time is
7303 seconds.

4.2. Two moons

We construct the two moons data set as in
(Bühler & Hein, 2009). We take the half of a circle of
radius one in R2 with positive second coordinate sam-
pled with a thousand points, and the half with negative
second coordinate also sampled at a thousand points,
but shifted 1 in the positive first coordinate direction,
and .5 in the positive second coordinate direction. The

http://www.ml.uni-saarland.de/code/pSpectralClustering/pSpectralClustering.html
http://www.ml.uni-saarland.de/code/pSpectralClustering/pSpectralClustering.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


data set is embedded in R100, and Gaussian noise with
σ = .02 is added.

We calculate the clustering using algorithm 3.1, the
second eigenvector method, and using the algorithm
from (Bühler & Hein, 2009). The results displayed in
Figures 1 are averaged over 100 instantiations of the
dataset.

Our algorithm gives slightly better cuts on average
than (Bühler & Hein, 2009), but runs more than 50
times as fast; on the other hand, it runs about 20 times
slower than the second eigenvector method, which
gives poor results here, both in terms of cut value and
classification error.

In Figure 3 we show the results of modifying algorithm
3.1 as in Remark 1; that is, instead of subtracting off
the median in the f update, we specify a position m,
and subtract off themth sorted value of f . Ifm = n/2,
where n is the number of data points, this would be
the normal version of the algorithm. This modification
results in favoring a partition with an element roughly
the size ofm, instead of favoring a partition of size n/2.
Our experience has been that picking very small (or
very large) values for m can destablize the algorithm,
but it is tolerant of moderate values of m.

4.3. CIFAR-10

The CIFAR-10 dataset, available at http://www.

cs.utoronto.ca/~kriz/cifar.html and described in
(Krizhevsky, 2009), is a labeled subset of the 80 million
tiny images dataset, described in (A. Torralba, 2008).
There are 5000 32×32 color images of various objects,
grouped into 10 classes. We preprocess the data by
projecting each image (considered as a 3072 vector)
onto the unit sphere in rgb space, and then project
onto 500 principal components. The results, displayed
in Figure 1, are averaged over the 45 binary problems.

Our algorithm again gives slightly better cuts on aver-
age than (Bühler & Hein, 2009), but on average, runs
more than 100 times as fast. On the other hand, it
runs about 10 times slower than the second eigenvector
method, which on this dataset gives poorer cut values,
but not significantly poorer classification errors.

5. Conclusions

In this work we have shown an equivalence between
the Cheeger ratio cut clustering objective and the
minimization of the energy (5). We develop a algo-
rithm using the split Bregman technique for minimiz-
ing this energy which experimentally gives higer qual-
ity cuts than the second eigenvector method, while

Figure 1. Results on two moons and CIFAR-10. Two
moons is averaged over 100 instances, and CIFAR-10 is
averaged over the 45 pairs of two class problems.

Two moons CIFAR-10
Algorithm 3.1 .046 .382

p-Laplacian, p = 1.1 .052 .381
Eigenvector method .171 .390

(a) Average error in percent on the two moons and
CIFAR-10 data sets.

Two moons CIFAR-10
Algorithm 3.1 .81 5.2

p-Laplacian, p = 1.1 48 580
Eigenvector method .07 .450

(b) Average run time on the two moons and CIFAR-10
data sets in seconds.

Two moons CIFAR-10
Algorithm 3.1 .341 .308

p-Laplacian, p = 1.1 .342 .309
Eigenvector method .448 .338

(c) Average Cheeger cut value on the two moons and
CIFAR-10 data sets.
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(a) Output of algorithm 3.1 with the
“median” set at element 667 as in re-
mark 1. The thresholded partition has
695 elements in one cluster and 1305
in the other.
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(b) Output of algorithm 3.1 with the
“median” set at element 333 as in re-
mark 1. The thresholded partition has
340 elements in one cluster and 1660
in the other.

Figure 3. Results for an instantiation of the two moons
dataset, 2000 points in 100 dimensions, with the modified
algorithm 3.1 as in Remark 1 .

http://www.cs.utoronto.ca/~kriz/cifar.html
http://www.cs.utoronto.ca/~kriz/cifar.html
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(d) Second eigenvector of the Lapla-
cian.
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(e) Optimal Cheeger cut obtained by
thresholding the second eigenvector
of the Laplacian from a.
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(f) Output of proposed algorithm 3.1.

Figure 2. Results for an instantiation of the two moons dataset, 2000 points in 100 dimensions.

running significantly faster than the method presented
in (Bühler & Hein, 2009)

There is of course much left to be done here. We sus-
pect that some mild modifications of the algorithm
would lead to something which provably converges.
Furthermore, we suspect quite strong convergence re-
sults are possible for data that admit a good cut. We
also think that there is plenty of room to speed up
the algorithm. While it is seems unlikely that there is
a way to get faster than finding the second eigenvec-
tor, we also suspect finding a good cut should not take
much longer than this.
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