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Abstract
A sparse representation of Support Vector Ma-
chines (SVMs) with respect to input features is
desirable for many applications. In this paper, by
introducing a 0-1 control variable to each input
feature, l0-norm Sparse SVM (SSVM) is con-
verted to a mixed integer programming (MIP)
problem. Rather than directly solving this MIP,
we propose an efficient cutting plane algorithm
combining with multiple kernel learning to solve
its convex relaxation. A global convergence
proof for our method is also presented. Compre-
hensive experimental results on one synthetic and
10 real world datasets show that our proposed
method can obtain better or competitive perfor-
mance compared with existing SVM-based fea-
ture selection methods in term of sparsity and
generalization performance. Moreover, our pro-
posed method can effectively handle large-scale
and extremely high dimensional problems.

1. Introduction
In many machine learning applications, there is a great de-
sire of sparsity with respect to input features. Several facts
account for this. Firstly, many real datasets such as texts
and Microarray data are represented as very high dimen-
sional vectors, resulting in great challenges for further pro-
cessing. Secondly, most features in high dimensional vec-
tors are usually non-informative or noisy and may seriously
affect the generalization performance. Thirdly, a sparse
classifier can lead to a simplified decision rule for faster
prediction in large-scale problems. Finally, in some appli-
cations like Microarray data analysis, a small set of features
is desirable to interpret the results.

Recently, numerous feature selection methods regard-
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ing Support Vector Machine (SVM) have been pro-
posed (Blum & Langley, 1997; Guyon & Elisseeff, 2003).
To obtain a sparse decision rule for SVM, many re-
searchers (Bradley & Mangasarian, 1998; Zhu et al., 2003;
Fung & Mangasarian, 2004) proposed l1-norm Sparse
SVM (SSVM), which uses ∥w∥1 as the regularizer. The
resultant problem is convex, and can be solved optimally
by Linear Programming (LP) solvers or Newton method
(Fung & Mangasarian, 2004). Apart from l1-norm SSVM,
(Weston et al., 2003) proposed an Approximation of the
zero norm Minimization (AROM) to solve SSVM with
∥w∥0 as the regularizer, namely l0-norm SSVM. However,
the resultant optimization is non-convex and may suffer
from local minima. Recently, (Chan et al., 2007) proposed
another two direct convex relaxations to l0-norm SSVM,
namely QCQP-SSVM and SDP-SSVM, which can be
solved by Quadratically Constrained Quadratic Program-
ming (QCQP) and Semi-Definite Programming (SDP), re-
spectively. Though both the relaxed optimization problems
are convex, they are computationally expensive, especially
for high dimensional problems.

Besides sparse regularization, (Guyon et al., 2002) pro-
posed an effective Recursive Feature Elimination (RFE)
scheme for feature selection. SVM-RFE can obtain nested
subsets of input features and has shown state-of-the-art per-
formance on gene selection in Microarray data analysis
(Guyon et al., 2002). However, as described by (Xu et al.,
2009), the nested “monotonic” feature selection scheme
may be suboptimal in identifying the most informative sub-
set of input features. Here, the “monotonic” property refers
to the problem that, if an informative feature is wrongly
eliminated from a subset S, it will not be in its nested
subsets (Xu et al., 2009). This issue becomes extremely
critical when dealing with problems with large number of
noise features and therefore an accurate SVM model is hard
to be obtained to rightly measure the importance of fea-
tures. To overcome this problem, (Xu et al., 2009) pro-
posed a non-monotonic feature selection method, namely
NMMKL. However, their method requires to solve a QCQP
problem with |S| quadratic constraints, where |S| denotes
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the number of input features. Hence, NMMKL is compu-
tationally infeasible for high dimensional problems.

In this paper, we propose to learn a sparse solution with
respect to input features to SVM, namely Feature Generat-
ing Machine (FGM). It iteratively generates a pool of vio-
lated sparse feature subsets and then combines them via ef-
ficient Multiple Kernel Learning (MKL) algorithm. FGM
shows great scalability to non-monotonic feature selection
on large-scale and very high dimensional datasets. We also
provide a proof of global convergence for FGM. The rest
of this paper is organized as follows. Section 2 describes
the sparse SVM problem and our proposed cutting plane
algorithm. Experimental results are presented in Section 3.
The last section gives the conclusive remarks.

2. Learning Sparse SVM
In the sequel, we denote the transpose of vector/matrix by
the superscript ′ and a vector with all entries equal to one
as 1 ∈ Rn. We also denote ∥v∥p as the lp-norm of a vector
v. Moreover, A ⊙ B represents the elementwise product
between two matrices A and B.

Given a set of labeled patterns {xi, yi}ni=1, where xi ∈ Rm

is the input and yi ∈ {±1} is the output label, we learn
a linear decision hyperplane f(x) = w′x that minimizes
the following structural risk functional: minw Ω(∥w∥p) +
C
∑n

i=1 ℓ(−yiw
′xi), where w = [w1, . . . , wm]′ ∈ Rm is

the weight vector of the decision hyperplane, Ω(∥w∥p) is
the regularizer that defines the characteristic (e.g. sparsity)
of the decision hyperplane, ℓ(·) is a convex loss function,
and C > 0 is a regularization parameter that trades off
the model complexity and the fitness of the decision hy-
perplane. For standard SVMs, Ω(∥w∥p) is set to 1

2∥w∥
2
2,

which is a non-sparse regularizer. Hence, the learned deci-
sion hyperplane is usually non-sparse.

In order to obtain a sparse solution of SVM, we firstly
introduce a feature selection vector d = [d1, . . . , dm]′ ∈ D
which controls the sparsity of the SVM decision hyper-
plane: f(x) = w′x = (w̃ ⊙ d)′x = w̃′(d ⊙ x), where
D =

{
d
∣∣∑m

j=1 dj ≤ B, dj ∈ {0, 1}, j = 1, · · · ,m
}

is
the domain of d, and B controls the sparsity of d. For
simplicity, we here focus on square hinge loss1, and the
positive constraint ξi ≥ 0 satisfies automatically and can
be omitted. Then, the objective of Sparse SVM (SSVM)
can be simplified as:

min
d∈D

min
w̃,ξ,ρ

1

2
∥w̃∥22 +

C

2

n∑
i=1

ξ2i − ρ (1)

s.t. yiw̃
′(xi ⊙ d) ≥ ρ− ξi, i = 1, · · · , n.

The inner minimization problem can be solved by its dual,
then (1) can be rewritten as follows:

min
d∈D

max
α∈A

−1

2

∥∥∥∥ n∑
i=1

αiyi(xi ⊙ d)

∥∥∥∥2

− 1

2C
α′α, (2)

1This loss function can be solved efficiently by LIBLinear.

where α = [α1, . . . , αn]
′ is a vector of dual variables for

the inequality constraints in the inner minimization prob-
lem (1), and A=

{
α
∣∣∑n

i=1 αi = 1, αi ≥ 0, i = 1, · · · ,n
}

is the domain of α.

2.1. Convex Relaxation
Observe that (2) is still a mixed integer programming (MIP)
problem, which is computationally expensive in general.
Following (Li et al., 2009b;a), we introduce a mild convex
relaxation for our SSVM formulation in (2). According
to the minimax inequality (Kim & Boyd, 2008), when we
interchange the order of mind∈D and maxα∈A in (2), then
the saddle-point problem (2) can be lower-bounded by

max
α∈A

min
d∈D

−1

2

∥∥∥∥∥
n∑

i=1

αiyi(xi ⊙ d)

∥∥∥∥∥
2

− 1

2C
α′α. (3)

Define S(α, d) = −1
2 ∥

∑n
i=1 αiyi(xi ⊙ d)∥2 − 1

2Cα′α
and bring in an additional variable θ ∈ R, (3) becomes:

max
α∈A,θ

−θ : θ ≥ −S(α, dt), ∀ dt ∈ D, (4)

which is a convex QCQP problem. Let µt ≥ 0 be the
dual variable for each constraint. Its Lagrangian is written
as: L(θ, µ) = −θ +

∑
t,dt∈D µt(θ + S(α, dt)). Setting its

derivative w.r.t. θ to zero, we have
∑

µt = 1. Let µ be the
vector of µt’s, and M = {µ|

∑
µt = 1, µt ≥ 0} be the

domain of µ. The Lagrangian L(θ, µ) can be rewritten as:

max
α∈A

min
µ∈M

∑
dt∈D

µtS(α, d
t) (5)

= min
µ∈M

max
α∈A

−1

2
(α⊙ y)′

( ∑
dt∈D

µtXtX
′
t +

1

C
I
)
(α⊙ y),

where Xt = [x1 ⊙ dt, · · · , xn ⊙ dt]′, and the last equal-
ity holds due to the fact that the objective function is con-
cave in α and convex in µ. Moreover, (5) can be regarded
as a MKL problem (Rakotomamonjy et al., 2008), where
the kernel matrix

∑
t,dt∈D µtXtX

′

t to be learned is a con-
vex combination of |D| base kernel matrices XtX

′
t, each of

which is constructed from a feasible feature selection vec-
tor dt ∈ D.

2.2. Cutting Plane Algorithm
Although (4) is convex, a huge number of base kernels
make it impractical to be solved by existing MKL tech-
niques. Fortunately, not all constraints in (4) are active at
optimality. Alternatively, we can efficiently solve this prob-
lem by cutting plane algorithm (Kelley, 1960), which itera-
tively generates a pool of sparse feature subsets to construct
the quadratic inequality constraints in (4).

The overall algorithm of FGM is described in Algorithm 1.
Denote the subset of constraints by C ⊂ D. First, we ini-
tialize the vector of dual variables α to 1

n1 and find the most
violated d̂ ∈ D, initialize the working set C = {d̂}. Since
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the number of d in C (i.e. the number of base kernel matri-
ces) is no longer large, one can perform MKL with a subset
of kernel matrices in C and obtain new α from (5). Then
the most violated d is obtained and is added to C, which is
known as the “feature generation”. The whole process is
repeated until the termination criterion is met.

Algorithm 1 The cutting plane algorithm for FGM.

1: Initialize α = 1
n

1. Find the most violated d̂, and set C = {d̂}.
2: Run MKL for the subset of kernel matrices selected in C and

obtain α and µ from (5).
3: Find the most violated d̂ and set C = C

∪
d̂.

4: Repeat step 2-3 until convergence.

2.3. MKL with a Subset of Kernel Matrices
Several efficient MKL approaches have been proposed in
recent years. For simplicity, in this paper we apply Sim-
pleMKL (Rakotomamonjy et al., 2008) to solve the MKL
problem defined on the subset of kernel matrices selected
in C. More specifically, suppose that the current working
set is C = {d1, · · · , dT }, the MKL problem in (5) thus cor-
responding to the following primal optimization problem:

min
µ∈M,w̃,ρ,ξ

1
2

T∑
t=1

1
µt

∥w̃t∥2 + C
2

n∑
i=1

ξ2i − ρ

s.t.
T∑

t=1

w̃′
t(yixi ⊙ dt) ≥ ρ− ξi,∀i = 1, · · · , n.

(6)

Following SimpleMKL, we solve (5) (or, equivalently, (6))
iteratively. First, we fix the coefficients µ of the base ker-
nel matrices and solve the dual of SVM: maxα∈A − 1

2 (α⊙
y)′

(∑T
t=1 µtXtX

′
t +

1
C I

)
(α ⊙ y). Then, we fix α and

use the reduced gradient method for updating µ. These two
steps are iterated until convergence.

2.4. Finding the Most Violated d̂

To find the most violated d̂ in (4), we have to
solve the following equivalent optimization problem:
maxd∈D

1
2 ∥

∑n
i=1 αiyi(xi ⊙ d)∥2 = 1

2

∑m
j=1 c

2
jdj with

cj =
∑n

i=1 αiyixij . This problem is a linear integer pro-
gramming subject to one linear constraint

∑m
j=1 di ≤ B.

The globally optimal solution of this problem can be ob-
tained without any numeric optimization solver. That is, it
can be solved by first sorting c2j ’s and then setting the first
B numbers corresponding to dj to 1 and the rests to 0.

2.5. Prediction
When the algorithm converges, we get α∗ and µ∗,
the decision function can be obtained by f(x) =∑T

t=1 µt

∑n
i=1 αiyi(xi ⊙ dt)′x =

∑n
i=1 αiyi(xi ⊙ d̃)′x,

where d̃ =
∑T

t=1 µtd
t.

2.6. Global Convergence
In this subsection, we consider the conver-
gence properties of FGM. Let A × D be

the constraint domain for problem (4), where
A =

{
α
∣∣∑n

i=1 αi = 1, αi ≥ 0, i = 1, · · · ,n
}

and

D =
{
d
∣∣∑m

j=1 dj ≤ B, dj ∈ {0, 1}, j = 1, · · · ,m
}

.
In FGM, we iteratively find and add the most violated
constraint to the set C, which is a subset of D, i.e,
C ⊆ D. Further denote by Ck be the constraint set in
kth iteration, then we have Ck ⊆ Ck+1. In kth itera-
tion, we find a new constraint dk+1 based on αk, i.e.,
−S(αk, d

k+1) = maxd∈D −S(αk, d). Define

βk = max
1≤i≤k

−S(αk, d
i) = min

α∈A
max
1≤i≤k

−S(α, di) (7)

and

φk = min
1≤j≤k

−S(αj , d
j+1), (8)

where −S(αj , d
j+1) = maxd∈D −S(αj , d). Similar to

(Chen & Ye, 2008), we have the following theorem that in-
dicates FGM gradually approaches to the optimal solution.

Theorem 1. Let (α∗, θ∗) be the globally optimal solution
pair of (4), {βk} and {φk} as defined above, then:

βk ≤ θ∗ ≤ φk. (9)

With the number of iteration k increasing, {βk} is mono-
tonically increasing and the sequence {φk} is monotoni-
cally decreasing.

Proof. θ∗ = min
α∈A

max
d∈D

−S(α, d). For a fixed feasible

α, we have max
d∈Ck

−S(α, d) ≤ max
d∈D

−S(α, d), then

min
α∈A

max
d∈Ck

−S(α, d) ≤ min
α∈A

max
d∈D

−S(α, d), i.e. βk ≤ θ∗.

On the other hand, for ∀j = 1, · · · , k, −S(αj , d
j+1) =

max
d∈D

−S(αj , d), thus (αj ,−S(αj , d
j+1)) is a feasible so-

lution pairs of (4). Then θ∗ ≤ −S(αj , d
j+1) for

j = 1, · · · , k, and hence we have θ∗ ≤ φk =
min

1≤j≤k
−S(αj , d

j+1). With the number of iteration k in-

creasing, the subset Ck is monotonically increasing, so βk

is monotonic increasing while {φk} is monotonically de-
creasing. The proof is completed.

The following theorem further indicates that FGM can ob-
tain a global solution to (4) within a finite number of steps.

Theorem 2. Assume that in each exchanged iteration, sub-
problems in Section 2.3 and 2.4 can be solved, FGM stops
after a finite number of steps with a global solution of (4).

Proof. We can measure the convergence of FGM by the
gap difference of series {βk} and {φk}. After a finite it-
erations, the objective value will no longer improve. As-
sume in kth iteration, there is no update of Ck, i.e. dk+1 =
argmaxd∈D −S(αk, d) ∈ Ck, then Ck = Ck+1. So, we
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Table 1. Datasets used in the experiments

DATASET # FEATURES # TRAINING PTS. # TEST PTS.

WDBC 30 569 –
USPS 241 1,500 –
BREAST CANCER 7,129 38 –
LEUKEMIA 7,129 72 –
REAL-SIM 20,958 32,309 40,000
RCV1.BINARY 47,236 20,242 677,399
ARXIV ASTRO-PH 99,757 62,369 32,487
NEWS20.BINARY 1,355,191 9,996 10,000
URL0 3,231,961 16,000 20,000
URL1 3,231,961 20,000 20,000

can prove that, in this case, (αk, βk) is the globally opti-
mal solution pair of (4). First, since Ck = Ck+1, in Algo-
rithm 1, there will be no update of α, i.e. αk+1 = αk.
Then we have −S(αk, d

k+1) = maxd∈D −S(αk, d) =
maxd∈Ck

−S(αk, d) = max1≤i≤k −S(αk, d
i) = βk, and

φk = min
1≤j≤k

−S(αj , d
j+1) ≤ βk. From Theorem 1, we

know βk ≤ θ∗ ≤ φk, then we obtain βk = θ∗ = φk, and
(αk, βk) is the globally optimal solution pair of (4). The
proof is completed.

2.7. Computational Complexity
QCQP-SSVM, SDP-SSVM and LPSVM are convex opti-
mization problems, but they are very expensive even on
medium-sized datasets. For NMMKL, it has to solve a
QCQP problem with m quadratic constraints. Obviously,
if m is too large, NMMKL is very computationally expen-
sive. For SVM-RFE, its computational complexity largely
depends on the number of features eliminated in each step.
Assume that the training of linear SVM takes O(nm) time,
if only one feature is removed from the feature list in each
elimination step, SVM-RFE will take O(nm2) time. SVM-
RFE method can be speeded up by removing chunks of
features in each step, which, however, may lead to a sig-
nificant decline in the classification performance. In con-
trast, FGM only needs to solve a series of MKL problems
and find the most violated d. Empirically, a maximum of
10 iterations is enough for FGM to converge. Moreover,
all base kernels are linear, so the subproblem of finding α
of linear SVM in Section 2.3 can be solved by LIBLinear
software, which scales linearly in n and m (Hsieh et al.,
2008). And the time complexity of MKL is proportional to
the complexity of linear SVM. Finding the most violated
d can be obtained exactly by finding the B largest ones
from m coefficients c2j ’s, which takes only O(m logB)
time. The time complexity of each iteration of FGM is
O(nm+m logB). Thus, FGM is computationally efficient
even for large-scale and very high dimensional problems.

3. Experiments
3.1. Datasets
In this Section, we evaluate the performance of various
methods on a synthetic dataset and a collection of real
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Figure 1. Detailed information of the synthetic dataset

world datasets. The synthetic dataset is a binary classifi-
cation problem with three informative features f1, f2 and
f3, and the generation of data follows the description in
(Xu et al., 2009). The plot of the informative features are
shown in Figure 1, where f4 is a noise feature. Among the
three features, f1 and f2 are composite features and gener-
ated by two different multi-variate Gaussian distributions.
As a group, they are the most informative features to the
classification while f3 is the most informative feature as a
single. Ideally, a good SSVM or a “non-monotonic” feature
selection method should successfully identify the features
f1 and f2 as a group which is referred to as ideal features.

The real world datasets consist of two categories. The
first category includes 2 small datasets and 2 Microar-
ray datasets2. For these small datasets, we use the
cross validation scheme to validate the performance due
to the insufficient samples. For the second category,
it contains 6 large-scale and very high dimensional
datasets. Among them, real-sim, rcv1.binary
and news20.binary are from LIBSVM website3 while
Arxiv astro-ph can be referred to (Joachims, 2006).
For Arxiv astro-ph and rcv1.binary, they have
already been split into training set and testing set. For
real-sim and news20.binary, we manually split
them into training set and testing set. The last two are 2
URL datasets from an anonymized 120-day subset of the
ICML-09 URL data (Ma et al., 2009). The original URL
dataset contains 120 independent subsets collected from
120 days4. Because of space limitation, we only use the
data from the first three days. In our experiments, we train
on data collected from the previous day and predict on data
collected from the next day, resulting in two new datasets
denoted by URL0 and URL1. Detailed information of these
datasets and the splitting information are summarized in
Table 1. For all the datasets, each dimension of the data is
normalized to zero mean and unit variance.

2wdbc is from the UCI machine learning
repository, and the binary usps dataset is from
http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html;
ii) Microarray datasets Breast cancer and Leukemia are
from http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0

3http://www.csie.ntu.edu.tw/∼cjlin /libsvmtools/datasets/
4 http://archive.ics.uci.edu/ml/datasets/url+reputation
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Figure 2. Results on synthetic dataset with varying noise features
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Figure 3. Results on synthetic dataset with varying training samples

Table 2. Sparsity ratio of various methods on small datasets

DATA SETS
LPSVM FGM QCQP-SSVM
(IN %) B (IN %) (IN %)

WDBC 17.56±16.00

0.1m 84.00±2.38 86.67±0.00
0.2m 77.78±2.20 65.56±15.50
0.3m 69.11±1.94 0.33±1.02
0.4m 59.22±2.09 0.00±0.00

USPS 48.23±14.91

0.1m 87.74± 3.34 6.03± 4.29
0.2m 80.98±2.59 7.98±5.82
0.3m 73.44±5.26 7.95±5.78
0.4m 73.99±1.71 8.49±6.46

BREASTCANCER 89.46±29.94

2 99.92±0.02 12.59±29.99
5 99.86±0.03 79.90±40.57

10 99.81±0.03 99.72±0.05
20 99.71±0.03 99.44±0.05

LEUKEMIA 99.79±0.03

2 99.90±0.02 1.26± 1.19
5 99.85±0.03 49.46±50.35

10 99.71±0.04 99.53±0.07
20 99.62±0.03 99.25±0.08

3.2. Experimental Setup
In our experiments, comparisons are conducted among
FGM, QCQP-SSVM, NMMKL, LPSVM and SVM-RFE.
And we do not include the results of SDP-SSVM for its
high computational cost (Chan et al., 2007), because Sim-
pleMKL may select multiple kernels (i.e. multiple d’s may
be selected), the number of features selected by FGM is
self-determined and may be larger than B. This property,
although may lead to a decline in sparsity, is very impor-
tant to the “non-monotonic” feature selection because usu-
ally we have no idea of how many features should be se-
lected in advance. Alternatively, we can select B features
by ranking the features as in SVM-RFE and NMMKL ac-

cording to the score cj , and form the final feature subset.
We name this strategy as FGM-B in this paper. For the
better illustration of the sparsity property, we define a spar-
sity ratio as: ρ(w) = 1 − Card(w)

m , which means the ra-
tio of zeros in w. Card(w) here denotes the number of
nonzeros in w. However, for LPSVM and QCQP-SSVM,
it is hard for them to achieve completely sparse solutions
for some problems. Alternatively, we define Card(w) for
LPSVM and QCQP-SSVM as the number of weights wj

with large relative magnitude, i.e the number of elements
with |wj |/max

i
(|wi|) ≥ 10−4 (Chan et al., 2007). Exper-

iments are performed with a 2.27GHZ Interl(R)Core(TM)
4 DUO CPU running Windows Server 2003 with 24.0GB
main memory. We use MOSEK (version 5.0.0.127) for
solving QCQP and LPSVM, and use LIBlinear5 to solve
FGM, NMMKL and SVM-RFE. The dual coordinate de-
scent for L2-SVM (DCDL2) algorithm is adopted as the
baseline classification method.

3.3. Experiments on Synthetic Data
To thoroughly study the performance of different methods,
two synthetic experiments are performed. At first, we gen-
erate 1000 instances (500 for each class) and then randomly
choose 500 for training and the rest for testing. Then, we
gradually increase the noise features to the dataset and test
whether the considered methods can successfully identify
the former 2 informative features. The initial number of
noise features are set to 100. For the noise features, half of

5http://www.csie.ntu.edu.tw/ ∼cjlin/liblinear/
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Table 3. Testing accuracies (in %) of various methods on small datasets
DATA SETS

LPSVM FGM FGM-B QCQP-SSVM NMMKL SVM-RFE
(IN %) B (IN %) (IN %) (IN %) (IN %) (IN %)

WDBC 88.71±1.57

0.1m 91.11±2.52 90.96±1.50 86.77±2.40 92.15±1.17 92.15±1.29
0.2m 91.81±2.37 92.44±1.10 90.85±2.44 92.37±1.14 92.25±1.20
0.3m 92.46±1.13 92.43±0.99 90.70±1.42 92.30±1.45 92.51±1.10
0.4m 92.47±1.13 92.37±1.08 90.57±1.46 92.18±1.24 92.51±1.22

USPS 89.05±1.79

0.1m 90.78±1.36 79.69±1.89 84.32±9.06 80.38±1.20 80.62±1.33
0.2m 91.47±1.27 81.97±2.27 84.76±8.91 83.47±2.02 85.78±1.24
0.3m 91.23±1.88 87.49±1.05 83.08±8.14 87.90±1.26 88.82±1.30
0.4m 91.99±1.43 89.60±1.07 83.08±8.30 89.47±1.06 90.08±1.40

BREAST CANCER 80.63±15.60

2 86.88±8.10 67.92±17.50 48.96±14.13 - 76.04±17.61
5 88.75±8.90 87.50±11.72 72.29±18.62 - 85.00±10.46

10 87.92±11.60 89.58±11.76 79.79±15.46 - 88.54±10.52
20 87.71±10.57 88.13±11.17 81.04±16.29 - 89.17±10.63

LEUKEMIA 87.01 ± 8.53

2 91.61±5.85 85.75±5.71 62.87±22.10 - 88.39±4.75
5 93.91±5.56 95.06± 4.31 80.80±15.09 - 93.91±4.85

10 94.37±4.39 94.48±5.17 93.91±6.38 - 95.63±4.87
20 95.52±4.26 95.75±3.91 91.26±7.56 - 95.75±3.81

them are uniformly distributed and another half are gen-
erated by Gaussian distribution. In this experiment, the
parameter C for all algorithms is set to 0.1 and B to 2.
The parameter τ in NMMKL is set to 1

C . In SVM-RFE, as
suggested in (Guyon et al., 2002), when the total features
are greater than 200, we remove 10 features at each time;
otherwise, we eliminate one feature at one time. To show
whether the mentioned methods can identify the composite
features f1 and f2, in Figure 2(a), we denote the testing ac-
curacy obtained by using ideal features as SVM(IDEAL).
Meanwhile, we also use SVM with all features as the base-
line method which is denoted by SVM(ALL). All experi-
ments are repeated 5 times.

In Figure 2(a), with the number of noise features in-
creasing, only FGM-B can obtain the same accuracy as
SVM(IDEAL), i.e. FGM-B successfully identifies the
composite features (or ideal features). As for QCQP-
SSVM, its sparsity increases along with the increasing
number of features. However, the testing accuracy de-
creases when the number of noise feature increases. An-
other problem of QCQP-SSVM has a rapid increase in the
memory usage with the increasing features. In our ex-
periment, the MOSEK solver for QCQP encounters out-
of-memory problem when the number of features exceeds
8000. NMMKL can identify the composite feature when
the noise is relatively small. When the noise increases, the
performance of NMMKL will decline. In addition, from
Figure 2(c), NMMKL cannot deal with very high dimen-
sional problems. LPSVM shows competitive performance
compared with FGM. SVM-RFE performs well when the
number of noise features is not very large (less than 2500).
For SVM(ALL), from Figure 2(a), when the number of
noises exceeds 2000, SVM cannot learn an accurate classi-
fier. Figure 2(c) shows the training time of various meth-
ods. Obviously, compared with SVM-RFE, FGM is more
computationally efficient when dealing with higher dimen-
sional problems.

In the second experiment, we fix the number of features to
2000 and then gradually increase the number of instances.
Half of the whole instances are used as training samples
and the other half are for testing. The initial instances are
set to 1000. Because NMMKL is incapable of dealing with
large dimensions, we did not include its results in this ex-
periment. Figure 3 shows the testing accuracy, sparsity
ratio and training time of various methods. Although the
testing accuracy of FGM is lower than SVM(IDEAL), the
testing accuracy of FGM-B is the same as SVM(IDEAL),
which indicates that FGM can also identify the compos-
ite features. As to SVM-RFE, it fails to identify the first
two composite features when the number of training sam-
ples is relatively small. However, as the training exam-
ples increasing, the performance becomes better. Finally,
from Figure 3(b), QCQP-SSVM and LPSVM cannot pro-
vide good sparsity for classifiers. Both of them also cannot
handle large sample problems.

3.4. Experiments on Small Datasets

For the experiments on the small datasets, we randomly
split them into 60% for training and the rest 40% for
testing. For wdbc and usps, the parameter C is
selected using 5-fold cross validation over the range
{0.01, 0.05, 0.1, 0.5, 1, 5}. For the Microarray datasets,
due to the small sample size, we simply set C = 0.01.
As to the second parameter B, it is chosen in a range of
{0.1m, 0.2m, 0.3m, 0.4m} for the first two datasets and
{2, 5, 10, 20} for the Microarray datasets. As to SVM-
RFE, we follow the experimental settings of the synthetic
experiment. All the methods are repeated 30 times and av-
eraged performances are reported.

Table 2 summarizes the performances of sparsity achieved
by various methods. For FGM-B, SVM-RFE and
NMMKL, as their sparsity can be directly computed by
using the parameter B, we do not include their sparsity
results in Table 2. Here, we did not obtain the results of
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Table 4. Training time (in s) of various methods on small datasets
DATA SETS

LPSVM FGM QCQP-SSVM NMMKL SVM-RFE
(IN S) B (IN S) (IN S) (IN S) (IN S)

WDBC 0.25±0.03

0.1m 2.09±1.49 0.23±0.03 1.17±0.66 0.45±0.07
0.2m 1.41±1.04 0.23±0.03 1.30±0.73 0.29±0.18
0.3m 1.14±0.70 0.23±0.03 1.26±0.62 0.33±0.14
0.4m 0.95±0.68 0.23±0.03 1.41±0.80 0.35±0.10

USPS 6.66± 1.12

0.1m 73.15±66.31 3.06±0.46 94.33±69.43 10.60±12.95
0.2m 18.84±8.36 2.88±0.31 49.04±46.70 7.86±5.05
0.3m 13.60±8.22 2.85±0.23 55.44±24.58 7.73±5.43
0.4m 7.58±1.94 2.90±0.28 72.82±13.20 7.98±7.60

BREAST CANCER 0.67±0.10

2 9.24±3.54 8.29±0.62 - 9.35±0.78
5 9.18±3.61 8.78±0.59 - 9.33±0.75

10 7.84±2.50 9.02±0.69 - 9.32±0.86
20 5.96±2.36 9.11±0.59 - 9.31±0.77

LEUKEMIA 2.07±0.21

2 13.01±5.96 9.71±0.96 - 28.67±2.89
5 18.32±7.37 10.10±0.94 - 28.43±2.92

10 17.01±4.38 10.34±0.70 - 28.40±3.00
20 16.16±3.52 10.48±0.63 - 28.18±2.79

NMMKL on the Microarray datasets because it cannot han-
dle such high dimensional problems. As expected, in gen-
eral, FGM can obtain the most sparse results on all datasets.
The testing accuracies of various methods are listed in Ta-
ble 3. From this table, we can observe that FGM can obtain
competitive results or even better results on all the small
benchmark datasets. Table 4 lists the training time of vari-
ous methods spent on different small datasets. From this ta-
ble, we can observe that QCQP-SSVM and LPSVM shows
better efficiency on dealing with small problems. However,
both of them are incapable of very large problems.

3.5. Experiments on Very High Dimensional Datasets
In this subsection, we verify the performance of FGM on
large-scale datasets listed in Table 1. These datasets have
both large number of instances and features. Note, some of
the methods, such as NMMKL, QCQP-SSVM and LPSVM
cannot be used due to their high computational cost or high
memory storage. Therefore, we only consider the compar-
ison among FGM, FGM-B and SVM-RFE. For the param-
eter settings, we did the experiments by fixing C = 5. As
to the parameter B for FGM and SVM-RFE, we set it in
the range of {2, 5, 10, 50, 100, 150, 200, 250} for the for-
mer four datasets and {2, 5, 10, 20, 30, 40, 50, 60} for the
two URL datasets. For SVM-RFE, we remove 100 features
in each step for the first four large datasets. However, for
the two URL datasets, SVM-RFE with 100 features elimi-
nation of each step is still very computationally expensive,
hence we remove 10,000 features in each step if the num-
ber of remaining features is larger than 20,000. We respec-
tively recorded the testing accuracy against the number of
selected features and the training time versus different B
in Figure 4 and Figure 5, respectively. From Figure 4,
we have the following observations: (a) On real-sim,
rcv1.binary and news20.binary datasets, FGM
obviously outperforms SVM-RFE and FGM-B on testing
accuracy with selected features. Meanwhile, FGM-B also
shows improved performance compared with SVM-RFE

on these datasets. (b) On Arxiv astro-ph dataset, al-
though FGM does not show significant improvements com-
pared with SVM-RFE, its counterpart, FGM-B, is slightly
better than SVM-RFE. (c) From the results of the two URL
datasets, we can easily see that FGM is much better than
SVM-RFE when identifying a small number of features.
Finally, from Figure 5, we can conclude that FGM is very
efficient when dealing with very high dimensional prob-
lems.

4. Conclusion
In this paper, we propose a novel SVM algorithm to learn a
sparse feature subset for classification. In particular, a 0-1
vector is introduced into SVM to control whether or not the
features are selected, resulting in a Mixed Integer Program-
ming (MIP) problem. By introducing a convex relaxation,
the MIP is further transformed into a convex Multiple Ker-
nel Learning problem with exponentially large number of
base kernels. Finally, an efficient and scalable cutting plane
algorithm, namely “Feature Generating Machine (FGM)”,
is introduced to iteratively generates and learns a pool of
informative and sparse feature subsets. Because FGM only
requires to solve a small number of MKL problems with
very few linear kernels, and the internal subproblem of
MKL only involves linear SVM that can be solved by state-
of-the-art LIBLinear software, FGM is very suitable for
solving large-scale and very high dimensional problems.
Moreover, with the property of global convergence, the size
of the final feature subset in FGM can be optimally de-
termined, catering to the “non-monotonic” requirement in
feature selection. Comprehensive experiments on both syn-
thetic dataset and real-word datasets verify the good classi-
fication performance and efficiency of FGM.
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(b) rcv1.binary
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(d) news20.binary
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(f) URL1
Figure 4. Testing accuracy on different data sets
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Figure 5. Training time on various data sets
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