
Exploiting Data-Independence for Fast Belief-Propagation

Julian J. McAuley julian.mcauley@nicta.com.au
Tibério S. Caetano tiberio.caetano@nicta.com.au

NICTA and Australian National University, Canberra ACT 0200 Australia

Abstract

Maximum a posteriori (MAP) inference in
graphical models requires that we maximize
the sum of two terms: a data-dependent term,
encoding the conditional likelihood of a cer-
tain labeling given an observation, and a
data-independent term, encoding some prior
on labelings. Often, data-dependent fac-
tors contain fewer latent variables than data-
independent factors – for instance, many grid
and tree-structured models contain only first-
order conditionals despite having pairwise
priors. In this paper, we note that MAP-
inference in such models can be made sub-
stantially faster by appropriately preprocess-
ing their data-independent terms. Our main
result is to show that message-passing in any
such pairwise model has an expected-case ex-
ponent of only 1.5 on the number of states
per node, leading to significant improvements
over existing quadratic-time solutions.

1. Introduction

MAP-inference in a graphical model G consists of solv-
ing an optimization problem of the form

ŷ(x) = argmax
y

∑
C∈C

ΦC(yC |xC), (1)

where C is the set of maximal cliques in G. This
problem is often solved via message-passing algorithms
such as the junction-tree algorithm, loopy belief-
propagation, or inference in a factor graph (Aji &
McEliece, 2000; Kschischang et al., 2001).

Computing messages between two intersecting cliques
A and B in general involves solving a problem of the

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

form

mA→B(yA∩B) = max
yA\B

ΦA(yA|xA)
∑

D∈Γ(A)\{B}

mD→A(yA∩D),

(2)
where Γ(A) is the set of cliques that intersect with A.
If the nodes of our model have N states, solving (eq. 2)
appears to require Θ(N |A|) operations, since there are
N |A| possible values of yA.

Alternately, (eq. 1) can be expressed in the form

ŷ(x) = argmax
y

∑
F∈F

ΦF (yF |xF)︸ ︷︷ ︸
data dependent

+
∑
C∈C

ΦC(yC)︸ ︷︷ ︸
data independent

, (3)

where each F ∈ F is a subset of some C ∈ C.
In this paper, we show that much faster algorithms
can be developed whenever the model’s data-dependent
factors contain fewer latent variables than its data-
independent factors, or equivalently when every F ∈ F
is a proper subset of some C ∈ C in (eq. 3). Al-
though our results apply to general models of this
form, we shall mainly be concerned with the most
common case, in which we have pairwise models with
data-independent priors, or problems of the form

ŷ(x) = argmax
y

∑
i∈N

Φi(yi|xi)︸ ︷︷ ︸
node potential

+λ
∑

(i,j)∈E

Φi,j(yi, yj)

︸ ︷︷ ︸
edge potential

. (4)

This encompasses a wide variety of models, including
grid-structured models for optical flow and stereo dis-
parity as well as chain and tree-structured models for
text or speech. Examples are shown in Figure 1. In all
of these examples, we give a solution to (eq. 2) with
an expected-case running time of only O(N1.5), while
to our knowledge, the best currently known solution
is the näıve Θ(N2) version. Our result is achieved by
preprocessing the data-independent part of the model
offline, simply by sorting the rows and columns of Φi,j .

As our optimizations apply directly to the message
passing equations themselves, they can be applied

Exploiting Data-Independence for Fast Belief-Propagation

Figure 1. Some graphical models to which our results ap-
ply: cliques containing observations have fewer latent vari-
ables than purely latent cliques. Gray nodes correspond
to the observation, white nodes to the labeling. In other
words, cliques containing a gray node encode the data like-
lihood, whereas cliques containing only white nodes encode
priors. We focus on the case where the gray nodes have de-
gree one (i.e., they are connected to only one white node).

to many variants of belief-propagation, such as the
junction-tree algorithm, loopy belief-propagation, and
factor graphs. In particular, in models where belief-
propagation is known to produce the correct solution,
i.e., trees (and junction trees in general), our optimiza-
tions result in the asymptotically fastest solution for
exact inference.

1.1. Related Work

There has been previous work on speeding-up message-
passing algorithms by exploiting some type of struc-
ture in the graphical model. For example, Kersting
et al. (2009) study the case where different cliques
share the same potential function. In Felzenszwalb &
Huttenlocher (2006), fast message-passing algorithms
are provided for the case in which the potential of a 2-
clique is only dependent on the difference of the latent
variables (which is common in some computer vision
applications); they also show how the algorithm can
be made faster if the graphical model is a bipartite
graph. In Kumar & Torr (2006), the authors provide
faster algorithms for the case in which the potentials
are truncated, whereas in Petersen et al. (2008) the
authors offer speedups for models that are specifically
grid-like.

The latter work is perhaps the most similar in spirit
to ours, as it exploits the fact that certain factors can
be sorted in order to reduce the search space of a cer-
tain maximization problem. In practice, this leads to
linear speedups over a Θ(N4) algorithm. We too shall
rely on sorting to reduce the search space of a max-
imization problem, but additionally we exploit data-
independence to reduce a Θ(N2) algorithm toO(N1.5).

Notably, our assumption of data-independence in the
prior differs substantially from those above; it is ar-
guably a much weaker assumption since it is in fact
satisfied by most graphical models of practical inter-
est.

2. Our Approach

We consider an (undirected) pairwise graphical model
G(N , E), where N is the set of nodes, and E the set of
edges, which factorizes according to (eq. 4). In such
a model, computing a message between two neighbor-
ing cliques A = (i, j) and B = (i, k) is equivalent in
complexity to solving

mA→B(yi) = Ψi(yi) + max
yj

Ψj(yj) + Φi,j(yi, yj), (5)

where Ψi(yi) is the sum of Φ(yi|xi) and any first-order
messages over yi (similarly for Ψj(yj)). The general
form of (eq. 5) encompasses many variants of belief-
propagation. In all such cases, solving (eq. 5) appears
to be a Θ(N2) operation, since this is the number of
possible arguments to Φi,j .

For a specific value of yi = q, solving (eq. 5) amounts
to solving

mA→B(q) = Ψi(q) + max
yj

Ψj(yj)︸ ︷︷ ︸
va

+ Φi,j(q, yj)︸ ︷︷ ︸
vb

, (6)

which appears to have linear time complexity, as it is
equivalent to solving

max
i
{va[i] + vb[i]} . (7)

However, we note that solving (eq. 7) is only O(
√
N)

if we know the permutations that sort va and vb. Our
algorithm for solving (eq. 7) is given in Algorithm 1;
the execution of this algorithm is explained in Figure
2. For now, we simply state the following theorem
regarding the algorithm’s running time:

Theorem 1. The expected running time of Algo-
rithm 1 is O(

√
N). This yields a speedup of at

least Ω(
√
N) in models containing pairwise priors and

unary data-likelihoods.

We have recently employed an algorithm of this type in
McAuley & Caetano (2010), where we showed that fast
algorithms can be developed for inference in graph-
ical models whose maximal cliques are larger than
their factors. Further discussion of this theorem can
be found in Section 3; complete proofs are given in
McAuley & Caetano (2009).

An apparent issue is that the cost of sorting every row
of Φi,j is Θ(N2 logN) (i.e., more expensive than the
näıve solution). However we make the observation that
this cost can be circumvented so long as only the data-
independent part of the potential is maximal (i.e., the
prior, such as in (eq. 6)). In such cases, the data-
independent part of the model can be sorted offline.

Exploiting Data-Independence for Fast Belief-Propagation

Algorithm 1 Find i that maximizes va[i] + vb[i]
Require: permutation functions pa and pb that sort

va and vb in decreasing order
1: Initialize: start ← 1
2: enda ← p−1

a [pb[1]] {enda is the index of the ele-
ment in va corresponding to the largest element
in vb; see the red line in Figure 2}

3: endb ← p−1
b [pa[1]]

4: best ← argmaxi∈{pa[1],pb[1]} {va[i] + vb[i]}
5: max ← va[best] + vb[best]
6: while start < enda ∧ start < endb do
7: {consider the indices pa[start] and pb[start]}
8: start ← start + 1
9: if va[pa[start]] + vb[pa[start]] > max then

10: best ← pa[start]
11: max ← va[best] + vb[best]
12: end if
13: if p−1

b [pa[start]] < endb then
14: endb ← p−1

b [pa[start]]
15: end if
16: {repeat Lines 9–15, interchanging a and b}
17: end while
18: while start < enda do
19: {we have considered all candidate values in pb,

but some may remain in pa}
20: start ← start + 1
21: if va[pa[start]] + vb[pa[start]] > max then
22: best ← pa[start]
23: max ← va[best] + vb[best]
24: end if
25: end while
26: {repeat Lines 18–25, interchanging a and b}
27: return best {this takes expected time O(

√
N)}

Once Φi,j has been sorted, (eq. 6) can be solved via
Algorithm 2.1

Often the prior is homogeneous (every edge uses the
same prior), meaning that Φi,j can be sorted online,
so long as |E| ∈ Ω(logN) (i.e., the number of mes-
sages that must be computed is asymptotically larger
than logN). Similarly, when using iterative inference
schemes (such as loopy belief-propagation), the sort-
ing step takes place only during the first iteration; if
inference is run for Ω(logN) iterations, then speed im-
provements can still be obtained with online sorting.

3. Runtime Analysis

In this section, we compute the expected-case running
time of Algorithm 2 under the assumption that the

1C++ implementations of our algorithms are available
at http://users.cecs.anu.edu.au/~julianm/

start = 1

8>>>>><>>>>>:
 6 2 14 16 9 7 12 8 10 3 11 13 1 15 4 5

99 92 87 81 78 66 53 46 30 26 21 16 12 10 8 6

 3 4 8 11 7 16 13 9 6 2 15 10 12 5 1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

don't search past this line

start = 2

8>>>>><>>>>>:
 6 2 14 16 9 7 12 8 10 3 11 13 1 15 4 5

99 92 87 81 78 66 53 46 30 26 21 16 12 10 8 6

 3 4 8 11 7 16 13 9 6 2 15 10 12 5 1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

start = 3

8>>>>><>>>>>:
 6 2 14 16 9 7 12 8 10 3 11 13 1 15 4 5

99 92 87 81 78 66 53 46 30 26 21 16 12 10 8 6

 3 4 8 11 7 16 13 9 6 2 15 10 12 5 1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

start = 4

8>>>>><>>>>>:
 6 2 14 16 9 7 12 8 10 3 11 13 1 15 4 5

99 92 87 81 78 66 53 46 30 26 21 16 12 10 8 6

 3 4 8 11 7 16 13 9 6 2 15 10 12 5 1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

start = 5

8>>>>><>>>>>:
 6 2 14 16 9 7 12 8 10 3 11 13 1 15 4 5

99 92 87 81 78 66 53 46 30 26 21 16 12 10 8 6

 3 4 8 11 7 16 13 9 6 2 15 10 12 5 1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Figure 2. Algorithm 1 explained (best viewed in color):
the two arrows connect va[pa[start]] to vb[pa[start]], and
va[pb[start]] to vb[pb[start]]; the red line connects enda and
endb, which is updated each time an arrowhead lies to its
left; we only consider those arrows that whose tail lies to
the left of the red line – all others can be ignored; a dashed
arrow is shown when a new maximum is found.

rows and columns of the data-independent terms have
been sorted offline. First note that if Algorithm 1
solves (eq. 7) in O(f(N)), then Algorithm 2 must take
O(N log(N) + Nf(N)); thus we need only compute
f(N). We shall demonstrate that f(N) ∈ O(

√
N) as

stated in Theorem 1.

We consider the expected-case running time, under the
assumption that the order statistics of va and vb are
independent. It is worth mentioning that we are lim-
ited to expected-case analysis, as there is provably no
deterministic solution that is sub-linear in N : other-
wise we could solve max-sum matrix multiplication (or
‘funny matrix multiplication’) in O(N2.5), though it is
known to have no deterministic sub-cubic solution (as-
suming that only addition and comparison operators
are used) (Kerr, 1970; Alon et al., 1997).

The running time of Algorithm 1 depends on the per-
mutation matrix that transforms the sorted values of

http://users.cecs.anu.edu.au/~julianm/

Exploiting Data-Independence for Fast Belief-Propagation

Algorithm 2 Solve (eq. 6) using Algorithm 1
Require: a set of permutation functions p such that

pi sorts the ith row of Φi,j in decreasing order.
1: compute the permutation function pa by sorting

Ψj {takes Θ(N logN)}
2: for q ∈ {1 . . . N} do
3: (va,vb)← (Ψj ,Φi,j(q, yj |xi, xj))
4: r ← Algorithm1 (va,vb, pa, pq) {O(

√
N)}

5: mA→B(q)← Ψi(q) + Ψj(r) + Φi,j(q, r|xi, xj)
6: end for {expected-case O(N

√
N)}

7: return mA→B

va into the sorted values of vb, which in turn depends
only on their order statistics.

Figure 3 gives examples of different permutation ma-
trices, and the number of addition operations that each
induces. Here we see that our method is Θ(1) when the
two vectors have the same order statistics, and Θ(N)
when the two vectors have ‘opposite’ order statistics.
Our analysis considers the case that the order statistics
of va and vb are independent (i.e., every permutation
matrix is equally likely). Further details and proofs
are given in McAuley & Caetano (2009).

As stated in Figure 3, we can compute the number
of additions as follows: starting from the top-left of
the permutation matrix, find the smallest gray square
that contains an entry; if this square has width M ,
we perform fewer than 2M additions. For a randomly
chosen permutation matrix, simple inspection reveals
that the probability that M > m is given by

PN (M > m) =
(N −m)!(N −m)!

(N − 2m)!N !
, (8)

and thus, using the identity E(X) =
∑∞

x=1 P (X ≥ x),
we can show that the expected value of M is

EN (M) =
bN/2c∑
m=0

(N −m)!(N −m)!
(N − 2m)!N !

, (9)

which can be shown to be Ω(logN) and O(
√
N) (The-

orem 1). Thus we can solve (eq. 2) in expected-case
Θ(NEN (M)) which is O(N1.5). We shall verify these
statements experimentally in Section 5.1.

3.1. Correlated Data

As shown in Figure 3, our algorithm will perform bet-
ter or worse than the expected-case depending on the
particular permutations that sort the data. If the data
are positively correlated we will tend to observe per-
mutations that lie close to the main diagonal (the left

Step 1:

8>>>>>>>><>>>>>>>>:

 6 2 14 16 9 7 12 8 10 3 11 13 1 15 4 5

99 92 87 81 78 66 53 46 30 26 21 16 12 10 8 6

 3 4 8 11 7 16 13 9 6 2 15 10 12 5 1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

don't search past this line

11 4 5 10 14 6 9 7 3 16 12 2 8 13 15 1

97 95 81 78 75 60 55 50 44 39 37 31 30 27 26 20

Figure 4. Algorithm 1 can be generalized to handle any
number of lists. For K lists (corresponding to Kth-order

priors), it has running time O(KN
K−1

K).

side of Figure 3); if the data are negatively correlated
we will tend to observe permutations that lie close to
the off-diagonal (the right side of Figure 3). In such
cases, we shall observe better or worse performance
(respectively) than the expected-case.

4. Generalizations

As we have suggested, our results apply not only
to pairwise models, but to any models whose data-
dependent cliques have fewer latent variables than the
data-independent cliques; in this section we shall state
our main result in this general case.

We have shown that Algorithm 1 solves (eq. 7) in
O(
√
N). By similar reasoning, it can be shown that

this algorithm can be adapted to solve

max
i
{v1[i]× v2[i]× · · · × vK [i]} (10)

in sub-linear time. As with our solution to (eq. 7), we
can substantially reduce the search space if we know
the permutations that sort the lists (see Figure 4). The
running time of our algorithm is given by the following
theorem (a proof is given in (McAuley & Caetano,
2009)):

Theorem 2. Algorithm 1 generalizes to K lists with
an expected running time of O(KN

K−1
K) (it can be

adapted to be O(min(N,KN
K−1

K)), if we carefully
avoid rereading entries).

This generalization can be applied as follows: if the
data-independent factors are of dimension K (within
cliques containing more than K terms), we can obtain
an expected speedup of Ω(1

KN
1
K); setting K = 2 re-

covers precisely the Ω(
√
N) speedup for pairwise priors

discussed so far in this paper.

An example application to which this generalization
can be applied is that of Felzenszwalb (2005). This
model contains a third-order geometric prior, while the
data-dependent factors are only pairwise. Our method

Exploiting Data-Independence for Fast Belief-Propagation

← best case worst case →

permutation:

operations: 1 1 3 3 5 7 7 9 10 10

Figure 3. Different permutation matrices and their resulting cost (in terms of additions performed). Each permutation
matrix transforms the sorted values of one list into the sorted values of the other, i.e., it transforms va as sorted by pa

into vb as sorted by pb. For instance, if there is an entry in the first row and fifth column, this indicates that pa[1] = pb[5]
(equivalently that p−1

b [pa[1]] = 5, or p−1
a [pb[5]] = 1), meaning that the largest value of va has the same index as the fifth

largest value of vb. The red squares show the entries that must be read before the algorithm terminates (each corresponding
to one addition). In reference to Algorithm 1, an entry in row number start corresponds to computing va[pa[start]] +
vb[pa[start]]; similarly, the entry in column number start corresponds to computing va[pb[start]] + vb[pb[start]]. A simple
method to determine the number of additions is as follows: starting from the top-left of the permutation matrix, find the
smallest gray square that contains an entry; if this square has width M , we shall read fewer than 2M entries. Note that
the width of this gray square is precisely the value of start when the algorithm terminates.

0 100 200 300 400 500
N (number of states)

0

10

20

30

40

50

N
um

be
ro

fa
dd

iti
on

s

Number of online operations per message entry

naı̈ve method
our method

2
√
N

2×∑bN/2cm=0
(N−m)!(N−m)!

(N−2m)!N !

Figure 5. The number of addition operations required to
compute each entry of a message (average of 10 trials).
The näıve solution requires Θ(N) operations, whereas our
method requires O(

√
N) in the expected-case. The exact

expectation is also shown.

allows us to pass messages in this model in O(N
8
3),

i.e., Ω(N
1
3) faster than the standard cubic solution.

As the pairwise case is by far the most common, and
as it gives the largest speedup, we shall focus on this
case in our experiments.

5. Experiments

5.1. Number of Addition Operations

Figure 5 shows the number of addition operations re-
quired to solve to (eq. 7); multiplying byN+1 gives the
number of operations required to compute (eq. 5), i.e.,
the entire message. va and vb are chosen by sampling
uniformly from [0, 1)N , and the average of 10 trials is
shown. The value reported is precisely the value of

2× start when Algorithm 1 terminates. This confirms
that the expected value given in (eq. 9) matches the
experimental performance, and also verifies that the
expectation is upper-bounded by 2×√N .

Due to the computational overhead of our solution,
we expect the running time of our algorithm to differ
from the value shown in Figure 5 by a multiplicative
constant, except in cases where va and vb are highly
(positively or negatively) correlated.

5.2. Inference in Pairwise Models

In each of the following experiments we perform belief-
propagation in models of the form given in (eq. 4).
Thus each model is completely specified by defin-
ing the node potentials Φi(yi|xi), the edge potentials
Φi,j(yi, yj), and the topology (N , E) of the graph.

Furthermore we assume that the edge potentials are
homogeneous, i.e., that the potential for each edge is
the same, or rather that they have the same order
statistics (for example, they may differ by a multiplica-
tive or additive constant). This means that the sorting
can be done online without affecting the asymptotic
complexity. When subject to heterogeneous potentials
we need merely sort them offline; the online cost shall
be similar to what we report here.

5.2.1. Chain-Structured Models

In this section, we consider chain-structured graphs.
Here we have nodes N = {1 . . . Q}, and edges E =
{(1, 2), (2, 3) . . . (Q − 1, Q)}. The max-sum algorithm
is known to compute the maximum-likelihood solution
exactly for tree-structured models.

Figure 6 (top) shows the performance of our method
on a model with random potentials, i.e., Φi(yi|xi) =
U [0, 1), Φi,i+1(yi, yi+1) = U [0, 1), where U [0, 1) is the

Exploiting Data-Independence for Fast Belief-Propagation

uniform distribution. Fitted curves are superimposed
onto the running time, confirming that the perfor-
mance of the standard solution grows quadratically
with the number of states, while ours grows at a rate
of N1.5. The residual error r shows how closely the fit-
ted curve approximates the running time; in the case of
random potentials, both curves have similar constants.

Figure 6 (bottom) shows the performance of our
method on a ‘text-denoising’ experiment. In this ex-
periment random errors are introduced into a body
of text, which the model aims to correct. Here we
have Φi(yi|xi) = λ(1 − I{xi}(yi)), i.e., a constant
cost λ is incurred in the event that xi and yi are
not equal. Φi,i+1(yi, yi+1) returns the frequency of
the pair (yi, yi+1) in a training corpus. This experi-
ment was performed on text from each language in the
Leipzig Multilingual Corpora (Quasthoff et al., 2006).
The first 100,000 characters were used to construct the
pairwise statistics of Φi,i+1, and the next 2,500 char-
acters were used for the denoising experiment.

Although our algorithm results in a faster solution for
all languages, we observe a higher constant of complex-
ity than that obtained for random data. This suggests
that the pairwise priors in different languages are not
independent of the messages; the higher residual error
may also suggest that different languages have differ-
ent order-statistics.

5.2.2. Grid-Structured Models

Similarly, we can apply our method to grid-structured
models. Here we resort to loopy belief-propagation
to approximate the MAP solution, though indeed the
same analysis applies in the case of factor graphs
(Kschischang et al., 2001). We construct a 50 × 50
grid model and perform loopy belief-propagation using
a random message-passing schedule for five iterations.
In these experiments our nodes are N = {1 . . .M}2,
and our edges connect the 4-neighbors (similar to the
grid shown in Figure 1 (left)).

Figure 7 (top) shows the performance of our method
on a grid with random potentials (similar to the ex-
periment in Section 5.2.1). Figure 7 (bottom) shows
the performance of our method on an optical flow task
(Lucas & Kanade, 1981). Here the states encode flow
vectors: for a node with N states, the flow vector
is assumed to take integer coordinates in the square
[−√N/2,√N/2)2 (so that there are N possible flow
vectors). For the unary potential we have

Φ(i,j)(y|x) =
∥∥Im1[i, j]− Im2[(i, j) + f(y)]

∥∥, (11)

where Im1[a, b] and Im2[a, b] return the gray-level of
the pixel at (a, b) in the first and second images (re-

0 100 200 300 400 500
N (number of states)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

lw
al

lt
im

e
(s

ec
on

ds
)

Random potentials (2500 node chain)

naı̈ve method
0.00002N2 (r = 0.00514)

our method
0.00002N1.5 (r = 0.00891)

0 500 1000 1500 2000
N (alphabet size)

0

10

20

30

40

50

60

70

80

To
ta

lw
al

lt
im

e
(s

ec
on

ds
)

Korean

Japanese

Text denoising

naı̈ve method
0.00002N2 (r = 0.15)

our method
0.00015N1.5 (r = 5.38)

75 90 105 120 135 150
0.00

0.15

0.30

0.45

0.60

Figure 6. Running time of inference in chain-structured
models: random potentials (top), and text denoising (bot-
tom). Fitted curves confirm that the exponent of our
method is indeed 1.5 (r denotes the residual error, i.e.,
the ‘goodness’ of the fitted curve).

spectively), and f(y) returns the flow vector encoded
by y. The pairwise potentials simply encode the Eu-
clidean distance between two flow vectors.

Our fitted curves in Figure 7 show O(N1.5) perfor-
mance for both random data and for optical flow.

5.2.3. Failure Cases

In our previous experiments on text denoising and
optical flow we observed running times similar to
those for random potentials, indicating that there is
no prevalent dependence structure between the order
statistics of the messages and the potentials.

In certain applications the order statistics of these
terms are highly dependent. The most straightforward
example is that of concave potentials (or convex po-
tentials in a min-sum formulation). For instance, in a

Exploiting Data-Independence for Fast Belief-Propagation

0 100 200 300 400 500
N (number of states)

0

10

20

30

40

50

60

70

80

90
To

ta
lw

al
lt

im
e

(s
ec

on
ds

)
Random potentials (50× 50 grid, 5 iterations)

naı̈ve method
0.00034N2 (r = 24.26)

our method
0.00252N1.5 (r = 15.26)

0 100 200 300 400 500
N (number of states)

0

20

40

60

80

100

To
ta

lw
al

lt
im

e
(s

ec
on

ds
)

Optical flow (50× 50 grid, 5 iterations)

naı̈ve method
0.00038N2 (r = 28.04)

our method
0.00386N1.5 (r = 1.76)

Figure 7. Running time of inference in grid-structured
models: random potentials (top), and optical flow (bot-
tom).

stereo disparity experiment, the unary potentials en-
code that the output should be ‘close to’ a certain
value; the pairwise potentials encode that neighboring
nodes should take similar values (Sun et al., 2003).

Whenever both va and vb are concave in (eq. 7), the
permutation matrix that transforms the sorted values
of va to the sorted values of vb is block-off-diagonal
(see the sixth permutation in Figure 3). In such cases,
our algorithm only decreases the number of addition
operations by a multiplicative constant, and may in
fact be slower due to its computational overhead. This
is precisely the behavior shown in Figure 8 (top), in
the case of stereo disparity.

It should be noted that there exist algorithms specifi-
cally designed for this class of potential functions (Kol-
mogorov & Shioura, 2007; Felzenszwalb & Hutten-
locher, 2006), which are preferable in such instances.

We similarly perform an experiment on image denois-

0 100 200 300 400 500
N (number of states)

0

20

40

60

80

100

120

To
ta

lw
al

lt
im

e
(s

ec
on

ds
)

Stereo disparity (50× 50 grid, 5 iterations)

naı̈ve method
0.00033N2 (r = 15.21)

our method
0.00852N1.5 (r = 253.57)

0 100 200 300 400 500
N (number of states)

0

20

40

60

80

100

To
ta

lw
al

lt
im

e
(s

ec
on

ds
)

Image denoising (50× 50 grid, 5 iterations)

naı̈ve method
0.00037N2 (r = 43.63)

our method
0.00727N1.5 (r = 14.04)

Figure 8. Two experiments whose potentials and messages
have highly dependent order statistics: stereo disparity
(top), and image denoising (bottom).

ing, where the unary potentials are again convex func-
tions of the input (see Lan et al., 2006). Instead of
using a pairwise potential that merely encodes smooth-
ness, we extract the pairwise statistics from image data
(similar to our experiment on text denoising); thus the
potentials are no longer concave. We see in Figure 8
(bottom) that even if a small number of entries exhibit
some ‘randomness’ in their order statistics, we begin to
gain a modest speed improvement over the näıve solu-
tion (though indeed, the improvements are negligible
compared to those shown in previous experiments).

6. Discussion and Future Work

At the core of our work is an O(
√
N) solution to

(eq. 7); this solution has many applications beyond
those covered in this paper. As suggested in Section
3, our analysis leads to an O(N2.5) expected-time so-
lution to ‘funny matrix multiplication’ – the analogue

Exploiting Data-Independence for Fast Belief-Propagation

of regular matrix multiplication where summation is
replaced by maximization.

It can be shown that a sub-cubic solution to funny
matrix multiplication has a variety of applications be-
yond those discussed here. For instance, it allows us
to solve the all-pairs shortest path problem in O(N2.5)
(Aho et al., 1983).

We have also applied similar techniques to a different
class of graphical models, by exploiting the fact that
the data-dependent factors in triangulated graphical
models often contain fewer terms than their maximal
cliques. In such cases, exact inference in a junction-
tree is equivalent to a generalized version of funny ma-
trix multiplication. This leads to faster solutions to a
number of computer-vision problems in which large
maximal cliques factor into pairwise terms (McAuley
& Caetano, 2010).

7. Conclusion

We have presented an algorithm for message passing in
models whose data-dependent factors contain fewer la-
tent variables than their data-independent factors. We
find this to be useful in models with pairwise priors,
as it allows us to do message passing in only O(N1.5)
for models with N states, thus substantially improving
upon the standard quadratic-time solution. In prac-
tice, we find that in spite of the computational over-
head of our model, speed improvements are gained
even for modest values of N , resulting in substantial
speedups in a variety of real-world applications.

Acknowledgements

We would like to thank Pedro Felzenszwalb, Johni-
cholas Hines, and David Sontag for comments on ini-
tial versions of this paper. NICTA is funded by the
Australian Government as represented by the Depart-
ment of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council
through the ICT Centre of Excellence program

References

Aho, Alfred V., Hopcroft, John E., and Ullman, Jef-
frey D. Data Structures and Algorithms. Addison-
Wesley, 1983.

Aji, Srinivas M. and McEliece, Robert J. The general-
ized distributive law. IEEE Trans. on Information
Theory, 46(2):325–343, 2000.

Alon, Noga, Galil, Zvi, and Margalit, Oded. On the ex-
ponent of the all pairs shortest path problem. Jour-

nal of Computer and System Sciences, 54(2):255–
262, 1997.

Felzenszwalb, Pedro F. Representation and detection
of deformable shapes. IEEE Trans. on PAMI, 27(2):
208–220, 2005.

Felzenszwalb, Pedro F. and Huttenlocher, Daniel P.
Efficient belief propagation for early vision. IJCV,
70(1):41–54, 2006.

Kerr, Leslie R. The effect of algebraic structure on the
computational complexity of matrix multiplication.
PhD Thesis, 1970.

Kersting, Kristian, Ahmadi, Babak, and Natarajan,
Sriraam. Counting belief propagation. In UAI, 2009.

Kolmogorov, Vladimir and Shioura, Akiyoshi. New
algorithms for the dual of the convex cost network
flow problem with application to computer vision.
Technical report, University College London, 2007.

Kschischang, Frank R., Frey, Brendan J., and Loeliger,
Hans-Andrea. Factor graphs and the sum-product
algorithm. IEEE Trans. on Information Theory, 47
(2):498–519, 2001.

Kumar, M. Pawan and Torr, Philip. Fast memory-
efficient generalized belief propagation. In ECCV,
2006.

Lan, Xiang-Yang, Roth, Stefan, Huttenlocher,
Daniel P., and Black, Michael J. Efficient belief
propagation with learned higher-order markov ran-
dom fields. In ECCV, 2006.

Lucas, Bruce D. and Kanade, Takeo. An iterative
image registration technique with an application to
stereo vision. In IJCAI, 1981.

McAuley, Julian J. and Caetano, Tibério S. Faster Al-
gorithms for Max-Product Message-Passing CoRR,
abs/0910.3301, 2009.

McAuley, Julian J. and Caetano, Tibério S. Exploit-
ing within-clique factorizations in junction-tree al-
gorithms. AISTATS, 2010.

Petersen, K., Fehr, J., and Burkhardt, H. Fast gener-
alized belief propagation for MAP estimation on 2D
and 3D grid-like markov random fields. In DAGM,
2008.

Quasthoff, U., Richter, M., and Biemann, C. Corpus
portal for search in monolingual corpora. In Lan-
guage Resources and Evaluation, 2006.

Sun, Jian, Zheng, Nan-Ning, and Shum, Heung-Yeung.
Stereo matching using belief propagation. IEEE
Trans. on PAMI, 25(7):787–800, 2003.

