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Abstract

Optimization problems with a nuclear norm
regularization, such as e.g. low norm matrix
factorizations, have seen many applications
recently. We propose a new approximation
algorithm building upon the recent sparse
approximate SDP solver of (Hazan, 2008).
The experimental efficiency of our method
is demonstrated on large matrix completion
problems such as the Netflix dataset. The al-
gorithm comes with strong convergence guar-
antees, and can be interpreted as a first theo-
retically justified variant of Simon-Funk-type
SVD heuristics. The method is free of tuning
parameters, and very easy to parallelize.

1. Introduction

This paper considers large scale convex optimization
problems with a nuclear norm regularization, as for in-
stance low norm matrix factorizations. Such formula-
tions occur in many machine learning and compressed
sensing applications such as dimensionality reduction,
matrix classification, multi-task learning and matrix
completion (Srebro et al., 2004; Candes & Tao, 2009).
Matrix completion by using matrix factorizations of
either low rank or low norm has gained a lot of atten-
tion in the area of recommender systems (Koren et al.,
2009) with the recently ended Netflix Prize competi-
tion.

Our new method builds upon the recent first-order op-
timization scheme for semi-definite programs (SDP) of
(Hazan, 2008) and has strong convergence guarantees.

We consider the following convex optimization prob-
lems over matrices:

min
X∈Rn×m

f(X) + µ||X||∗ (1)
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and the corresponding constrained variant

min
X∈Rn×m, ||X||∗≤ t2

f(X) (2)

where f(X) is any differentiable convex function (usu-
ally called the loss function), ||.||∗ is the nuclear norm
of a matrix, also known as the trace norm (sum of
the singular values, or `1-norm of the spectrum). Here
µ > 0 and t > 0 respectively are given parameters,
usually called the regularization parameter.

When choosing f(X) := ||A(X) − b||22 for some lin-
ear map A : Rn×m → Rp, the above formula-
tion (1) is the matrix generalization of the problem
minx∈Rn ||Ax − b||22 + µ||x||1, which is the important
`1-regularized least squares problem, also known as
the basis pursuit de-noising problem in compressed
sensing literature. The analogue vector variant of
(2) is the Lasso problem (Tibshirani, 1996) which is
minx∈Rn

{
||Ax− b||22

∣∣ ||x||1 ≤ t}.

Recently (Toh & Yun, 2009; Liu et al., 2009) and (Ji
& Ye, 2009) independently proposed algorithms that
obtain an ε-accurate solution to (1) in O(1/

√
ε) steps,

by improving the algorithm of (Cai et al., 2008). More
recently also (Mazumder et al., 2009) and (Ma et al.,
2009) proposed algorithms in this line of so called sin-
gular value thresholding methods, but cannot guaran-
tee a convergence speed. Each step of all those algo-
rithms requires the computation of the singular value
decomposition (SVD) of a matrix of the same size as
the solution matrix, which is expensive even with the
currently available fast methods such as PROPACK.
Both (Toh & Yun, 2009) and (Ji & Ye, 2009) show
that the primal error of their algorithm is smaller than
ε after O(1/

√
ε) steps, using an analysis in the spirit

of (Nesterov, 1983).

We present a much simpler algorithm to solve prob-
lems of the form (2), which does not need any SVD
computations. We achieve this by transforming the
problem to a convex optimization problem on posi-
tive semi-definite matrices, and then using the approx-
imate SDP solver of Hazan (2008). Hazan’s algorithm
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can be interpreted as the generalization of the core-
set approach to problems on symmetric matrices. The
algorithm has a strong approximation guarantee, in
the sense of obtaining ε-small primal-dual error (not
only small primal error). With the resulting approx-
imate solution X, our algorithm also gives a matrix
factorization X = UV T of rank O(1/ε) (with the
desired bounded nuclear norm). Compared to (Nes-
terov, 1983), a moderately increased number of steps
is needed in total, O(1/ε), which represents the price
for the very severe simplification in each individual
step of our method on the one hand and the improved
(low) rank on the other hand.

We demonstrate that our new algorithm on standard
datasets improves the state of the art nuclear norm
methods, and scales to large problems such as matrix
factorizations on the Netflix dataset. Furthermore, the
algorithm is easy to implement and parallelize, as it
only uses the power method (or Lanczos steps) to ap-
proximate the largest eigenvalue of a matrix.

Our method can also be interpreted as a modified,
theoretically justified variant of Simon Funk’s popu-
lar SVD heuristic (Webb, 2006), making it suitable for
low norm matrix factorization. To our knowledge this
is the first guaranteed convergence result for this class
of SVD-like gradient descent algorithms. Unlike most
other comparable algorithms, our general method is
free of tuning parameters (apart from the regulariza-
tion parameter).

Notation. For arbitrary real matrices, the stan-
dard inner product is defined as 〈A,B〉 := Tr(ATB),
and the (squared) Frobenius matrix norm ||A||2Fro :=
〈A,A〉 is the sum of all squared entries of the matrix.
By Sd×d we denote the set of symmetric d × d matri-
ces. A ∈ Rd×d is called positive semi-definite (PSD),
written as A � 0, iff vTAv ≥ 0 ∀v ∈ Rd.

2. Hazan’s Algorithm

Our main ingredient is the following simple gradient-
descent type algorithm of (Hazan, 2008), to obtain
sparse solutions to any convex optimization problems
of the form

min
Z∈S

f(Z) , (3)

where S :=
{
Z ∈ Sd×d

∣∣Z � 0, T r(Z) = 1
}

is the set
of PSD matrices of unit trace. The set S is some-
times called Spectrahedron and is a generalization of
the unit simplex to the space of symmetric matrices.
The algorithm guarantees ε-small primal-dual error af-
ter at most O

(
1
ε

)
iterations, where each iteration only

involves the calculation of a single approximate eigen-

vector of a matrix M ∈ Sd×d. In practice for example
Lanczos or the power method can be used.

Algorithm 1 Hazan’s Algorithm

Input: Convex f with curvature constant Cf , tar-
get accuracy ε.
Initialize Z(1) := v0v

T
0 for arbitrary unit vector v0.

for k = 1 to
⌈
4Cf
ε

⌉
do

Compute vk := ApproxEV
(
−∇f(Z(k)),

Cf
k2

)
.

Let αk := 1
k .

Set Z(k+1) := Z(k) + αk
(
vkv

T
k − Z(k)

)
.

end for

Here ApproxEV(M, ε′) is a sub-routine that delivers
an approximate largest eigenvector to a matrix M with
the desired accuracy ε′, meaning a unit length vector
v such that vTMv ≥ λmax(M)− ε′. Note that as our
convex function f takes a symmetric matrix Z as an
argument, its gradient ∇f(Z) is a symmetric matrix.

The actual running time for a given convex function
f : Sd×d → R depends on its curvature constant Cf
(also called the modulus of convexity) defined as

Cf := sup
Z,V∈S,α∈R,

Z′=Z+α(V−Z)

1
α2 (f(Z ′)− f(Z) + 〈Z ′ − Z,∇f(Z)〉) ,

which turns out to be small for many applications1.

The algorithm can be seen as a matrix generaliza-
tion of the sparse greedy approximation algorithm of
(Clarkson, 2008) for vectors in the unit simplex, called
the coreset method, which has seen many successful
applications in a variety of areas ranging from cluster-
ing to support vector machine training, smallest en-
closing ball/ellipsoid, boosting and others. Here spar-
sity just gets replaced by low rank. The same Algo-
rithm 1 with a well-crafted function f can also be used
to solve arbitrary SDPs in feasibility form.

3. Transformation to convex problems

3.1. Motivation: Formulating Matrix Factori-
zations as Convex Optimization Problems

Approximate matrix factorization refers to the setting
of approximating a given matrix Y ∈ Rn×m (typically
given only partially) by a product X = UV T , under an
additional low rank or low norm constraint, such that
some error function f(X) is minimized. Most of the
currently known gradient-descent-type algorithms for
matrix factorization suffer from the following problem:

1An overview of values of Cf for several classes of func-
tions f can be found in (Clarkson, 2008)
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Even if the loss-function f(X) is convex in X, the same
function expressed as a function f(UV T ) of both the
factor variables U and V usually becomes a non-convex
problem (consider for example U, V ∈ R1×1 together
with the identity function f(x) = x). Therefore many
of the popular methods such as for example (Rennie &
Srebro, 2005; Lin, 2007) can get stuck in local minima
and so are neither theoretically nor practically well
justified, see also (DeCoste, 2006).

These shortcomings can be overcome as follows: One
can equivalently transform any low-norm matrix fac-
torization problem (which is usually not convex in its
two factor variables) into an optimization problem over
symmetric matrices: For any function f on Rn×m, the
optimization problem

min
U∈Rn×r
V ∈Rm×r

f(UV T ) (4)

s.t. ||U ||2Fro + ||V ||2Fro = t

is equivalent to

min
Z∈S(n+m)×(n+m)

rank(Z)≤r

f̂(Z) (5)

s.t. Z � 0, T r(Z) = t.

where “equivalent” means that for any feasible solu-
tion of each problem, there is a feasible solution of the
other problem with the same objective value. Here
f̂ is the same function as f , just acting on the cor-
responding off-diagonal rectangle of the larger, sym-
metric matrices Z ∈ S(n+m)×(n+m). Formally, f̂(Z) =

f̂

((
Z1 Z2

ZT
2 Z3

))
:= f(Z2). The equivalence holds sim-

ply because every PSD matrix Z can be written as

some product Z =

(
U
V

)
(UT V T ) =

(
UUT UV T

V UT V V T

)
,

for U ∈ Rn×r and V ∈ Rm×r, when r ≥ rank(Z).
On the other hand, of course any arbitrary valued
matrices U, V give rise to a PSD matrix Z of this
form. Furthermore Tr(Z) = Tr(UUT ) + Tr(V V T )
= ||U ||2Fro + ||V ||2Fro holds by definition.

The main advantage of this reformulation is that if the
rank r := n+m is not restricted, the new problem (5)
is now a convex problem over a nice well-studied con-
vex domain (the cone of PSD matrices of fixed trace),
whereas the original formulation (4) is usually not con-
vex in both arguments U and V .

3.2. Nuclear Norm Regularized Problems

In the same spirit, we obtain that any nuclear norm
regularized problem of the form (2) is equivalent to the
convex problem given by the following Corollary 2.

Lemma 1. For any non-zero matrix X ∈ Rn×m and
t ∈ R:

||X||∗ ≤
t

2

iff

∃ symmetric matrices A ∈ Sn×n, B ∈ Sm×m

s.t.

(
A X
XT B

)
� 0 and Tr(A) + Tr(B) = t .

Proof. This is a slight variation of the argument of
(Fazel et al., 2001; Srebro et al., 2004).
⇒ From the characterization ||X||∗ =

minUV T=X
1
2 (||U ||2Fro + ||V ||2Fro) we get that

∃ U, V , UV T = X s.t. ||U ||2Fro + ||V ||2Fro =
Tr(UUT ) + Tr(V V T ) ≤ t, or in other words we have

found a matrix

(
UUT X
XT V V T

)
of trace say s ≤ t. If

s < t, we add (t− s) to the top-left entry of A, i.e. we
add to A the PSD matrix e1e

T
1 (which again gives a

PSD matrix).
⇐ As the matrix is symmetric and PSD, it can be

(Cholesky) factorized to (U ;V )(U ;V )T s.t. UV T = X
and t = Tr(UUT ) + Tr(V V T ) = ||U ||2Fro + ||V ||2Fro,
therefore ||X||∗ ≤ t

2 .

Corollary 2. Any nuclear norm regularized problem
of the form (2) is equivalent to

min
Z∈S(n+m)×(n+m)

Z�0, Tr(Z)=t

f̂(Z) . (6)

Note that both transformations in this section are
equivalent formulations and not just relaxations. As
already mentioned above, an explicit factorization of
any feasible solution to (5) or (6) — if needed — can
always be directly obtained since Z � 0. Alternatively,
algorithms for solving the transformed problem (5) or
(6) can directly maintain the approximate solution Z
in a factorized representation, as achieved for example
by Hazan’s algorithm.

3.3. Two Variants of Regularization

The two original problem formulations (1) and (2) are
very closely related, and used interchangeably in many
applications: If X∗ is an optimal solution to trade-off
variant (1), then the same solution is also optimal for
(2) when using the value ||X∗||∗ as the norm constraint.
On the other hand (1) is just the Lagrangian version of
(2), with µ being the Lagrange multiplyer belonging to
the single constraint. This is the same change in for-
mulation as when going from regularized least squares
formulation (the vector analogue of (1)), to the Lasso
problem corresponding to (2) and vice versa.
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4. Solving Nuclear Norm Regularized
Problems

By the equivalent reformulation of the previous sec-
tion, as in Corollary 2, we can now solve both general
nuclear norm regularized problems and low norm ma-
trix factorizations by using Hazan’s algorithm.

Algorithm 2 Nuclear Norm Regularized Solver

1. Consider the transformed problem for f̂ given by
Corollary 2.
2. Adjust the function f̂ by re-scaling all matrix
entries by 1

t .

3. Run Algorithm 1 for f̂(Z).

The following theorem shows that Algorithm 2 runs
in time linear in the number Nf of non-zero entries
of the gradient ∇f . This makes it very attractive in
particular for recommender systems applications and
matrix completion, where ∇f is a sparse matrix (same
sparsity pattern as the observed entries).

Theorem 3. Algorithm 2 obtains an approximate so-
lution of primal-dual error ≤ ε for problems of the

form (2) after at most
⌈
4Cf
ε

⌉
many steps (or in other

words approximate eigenvector computations).
In the k-th call of ApproxEV(), it is sufficient to per-
form O(k) iterations of Lanczos method. Then the

overall running time is O
(
Nf
ε2

)
, or equivalently O

(
1
ε2

)
many sparse matrix-vector multiplications.

Proof. We use Corollary 2 and then rescale all matrix
entries by 1

t . Then the running time of follows from
Theorem 2 of (Hazan, 2008).

The fact that each iteration of our algorithm is com-
putationally very cheap — consisting only of the com-
putation of an approximate eigenvector — strongly
contrasts the existing “singular value thresholding”
methods, which in each step need to compute an en-
tire SVD. Such a single incomplete SVD computation
(first k singular vectors) amounts to the same com-
putational cost as an entire run of our algorithm (for
k steps). Furthermore, those existing methods which
come with a theoretical guarantee, i.e. (Toh & Yun,
2009; Liu et al., 2009; Ji & Ye, 2009; Ma et al., 2009),
in their analysis assume that all SVDs used during the
algorithm are exact, which is not feasible in practice.
By contrast, our analysis is rigorous even if the used
eigenvectors are only ε′-approximate.

Another nice property of Hazan’s method is that the
returned solution is guaranteed to be simultaneously

of low rank (k after k steps), and that by incremen-
tally adding the rank-1 matrices vkv

T
k , the algorithm

automatically maintains a matrix factorization of the
approximate solution.

Also, Hazan’s algorithm is designed to automatically
stay within the feasible region S, where most of the
existing approximate SDP-like methods do need a pro-
jection step to get back to the feasible region (as e.g.
(Lin, 2007; Liu et al., 2009)), which makes both their
theoretical analysis and implementation much more
complicated.

4.1. The Structure of the Eigenvalue Problem

For the actual computation of the approximate largest

eigenvector in ApproxEV
(
−∇f̂(Z(k)),

Cf̂
k2

)
, either

Lanczos method or the power method (as in PageR-
ank, see e.g. (Berkhin, 2005)) can be used. Both meth-
ods are known to scale well to very large problems and
can be parallelized easily, as each iteration consists of
just one matrix-vector multiplication. However, we
have to be careful that we obtain the eigenvector for
the largest eigenvalue which is not necessarily the prin-
cipal one (largest in absolute value). In that case the
spectrum can be shifted by adding an appropriate con-
stant to the diagonal of the matrix. (Hazan, 2008)
made use of the fact that Lanczos method, which is
theoretically better understood, provably obtains the
required approximation quality in a bounded number
of steps if the matrix is PSD (Arora et al., 2005).

For arbitrary loss function f , the gradient −∇f̂(Z),
which is the matrix whose largest eigenvector we have
to compute in the algorithm, is always a symmet-

ric matrix of the block form ∇f̂(Z) =

(
0 G
GT 0

)
for

G = ∇f(Z2), when Z =

(
Z1 Z2

ZT2 Z3

)
. In other words

∇f̂(Z) is the adjacency matrix of a weighted bipar-
tite graph. One vertex class corresponds to the n rows
of the original matrix Z2 (users in recommender sys-
tems), the other class corresponds to the m columns

(items or movies). The spectrum of ∇f̂ is always

symmetric: Whenever

(
v
w

)
is an eigenvector for some

eigenvalue λ, then

(
v
−w

)
is an eigenvector for −λ.

Hence, we have exactly the same setting as in the es-
tablished Hubs and Authorities (HITS) model (Klein-
berg, 1999). The first part of any eigenvector is always
an eigenvector of the hub matrix GTG, and the second
part is an eigenvector of the authority matrix GGT .
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Repeated squaring. In the special case that the
matrix X is very rectangular (n � m or n � m),
one of the two matrices GTG or GGT is very small.
Then it is known that one can obtain an exponential
speed-up in the power method by repeatedly squaring
the smaller one of the matrices. In other words we can
perform O(log 1

ε ) many matrix-matrix multiplications
instead of O( 1

ε ) matrix-vector multiplications.

4.2. Application to Matrix Completion and
Low Norm Matrix Factorizations

For matrix factorization problems as for example from
recommender systems (Koren et al., 2009), our algo-
rithm is particularly suitable as it retains the sparsity
of the observations, and constructs the solution in a
factorized way. In the setting of a partially observed
matrix such as in the Netflix case, the loss function
f(X) only depends on the observed positions, which
are very sparse, so ∇f(X) — which is all we need for
our algorithm — is also sparse.

We again suppose that we want to approximate a par-
tially given matrix Y (let P be the set of known entries
of the matrix) by a product X = UV T such that some
convex loss function f(X) is minimized. By T we de-
note the unknown test entries of the matrix we want
to predict. Our algorithm applies to any convex loss
function on a low norm matrix factorization problem,
and we will only mention two cases in particular:

Our algorithm directly applies to Maximum Margin
Matrix Factorization (MMMF) (Srebro et al., 2004),
whose original (soft margin) formulation is the trade-
off formulation (1) with f(X) :=

∑
ij∈P |Xij − yij |

being the hinge or `1-loss. Because this is not differen-
tiable, the authors recommend using the differentiable
smoothed hinge loss instead.

When using the standard squared loss function
f(X) :=

∑
ij∈P (Xij − yij)

2, the problem is known
as Regularized Matrix Factorization (Wu, 2007), and
our algorithm directly applies. This loss function is
widely used in practice, has a nice gradient structure,
and is just the natural matrix generalization of the `2-
loss (notice the analogous Lasso and regularized least
squares formulation). The same function is known as
the rooted mean squared error, which was the qual-
ity measure used in the Netflix competition. We write
RMSEtrain and RMSEtest for the rooted error on the
training ratings P and test ratings T respectively.

Running time and memory. From Theorem 3 we
obtain that the running time of our Algorithm 2 is lin-
ear in the size of the input: Each matrix-vector multi-
plication in Lanczos or the power method exactly costs

|P | (the number of observed positions of the matrix)
operations, and we know that in total we need at most
O
(

1
ε2

)
many such matrix-vector multiplications. The

same holds for the memory requirement: There is no
need to store the entire factorization of X(k) (meaning
all the vectors vk), but instead we only update and

store the prediction values X
(k)
ij for ij ∈ P ∪T in each

step. This, together with the known ratings yij deter-
mines the sparse gradient matrix ∇f(X(k)) during the
algorithm. Therefore, the total memory requirement
is only |P ∪ T | (the size of the output) plus the size
n+m of a single feature vector vk.

The constant Cf in the running time of Hazan’s
algorithm.

Lemma 4. For the squared error f(X) =
1
2

∑
ij∈P (Xij − yij)2, it holds that Cf̂ ≤ 1.

Proof. It is known that the constant Cf̂ is upper
bounded by the largest eigenvalue of the Hessian
∇2f̂(~Z) (here we consider f̂ as a function on vectors).
On can directly compute that the diagonal entries of
∇2f̂(~Z) are 1 at the entries corresponding to P , and
zero everywhere else, hence Cf̂ ≤ 1.

4.3. Two Improved Variants of Algorithm 1

The optimum on the line segment. Instead of
fixing the step width to αk := 1

k in Algorithm 1, the
αk ∈ [0, 1] of best improvement in the objective func-
tion f can be found by line search. (Hazan, 2008) has
already proposed binary search to find better values
for αk. In many cases, however, we can even compute
it analytically in a straightforward manner: Consider

fα := f
(
Z

(k+1)
(α)

)
= f

(
Z(k) + α

(
vkv

T
k − Z(k)

))
and

compute

0
.
=

∂

∂α
fα =

〈
∇f

(
Z

(k+1)
(α)

)
, vkv

T
k − Z(k)

〉
(7)

If this equation can be solved for α, then the optimal
such αk can directly be used as the step size, and the
convergence guarantee of Theorem 3 still holds.

For the squared error f(X) = 1
2

∑
ij∈P (Xij − yij)

2,
when we write v̄ for the approximate eigenvector vk in
step k, the optimality condition (7) is equivalent to

αk =

∑
ij∈P (Xij − yij)(Xij − v̄iv̄j)∑

ij∈P (Xij − v̄iv̄j)2
(8)

Immediate Feedback in the Power Method. As
a second small improvement, we propose a heuris-
tic to speed up the eigenvector computation in
ApproxEV

(
−∇f(Z(k), ε′

)
: Instead of multiplying

the current candidate vector vk with the matrix
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∇f(Z(k)) in each power iteration, we multiply with
1
2

(
∇f(Z(k)) +∇f

(
Z(k) + 1

kvkv
T
k

))
, i.e. the average

of the old and the new gradient. This means we im-
mediately take into account the effect of the new fea-
ture vector vk. This heuristic (which unfortunately
does not fall into our current theoretical guarantee)
is inspired by stochastic gradient descent as in Simon
Funk’s method, which we describe in the following:

4.4. Relation to Simon Funk’s SVD Method

Interestingly, our proposed framework can also be seen
as a theoretically justified variant of Simon Funk’s
(Webb, 2006) and related approximate SVD meth-
ods, which were used as a building block by most
of the teams participating in the Netflix competition
(including the winner team). Those methods have
been further investigated by (Paterek, 2007; Takács
et al., 2009) and also (Kurucz et al., 2007), which al-
ready proposed a heuristic using the HITS formula-
tion. These approaches are algorithmically extremely
similar to our method, although they are aimed at a
slightly different optimization problem, and do not di-
rectly guarantee bounded nuclear norm. Very recently,
(Salakhutdinov & Srebro, 2010) observed that Funk’s
algorithm can be seen as stochastic gradient descent to
optimize (1) when the regularization term is replaced
by a weighted variant of the nuclear norm.

Simon Funk’s method considers the standard squared
loss function f(X) = 1

2

∑
ij∈S(Xij − yij)2, and finds

the new rank-1 estimate (or feature) v by iterating

v := v + λ(−∇f̂(Z)v −Kv), or equivalently

v := λ

(
−∇f̂(Z) +

(
1

λ
−K

)
I

)
v , (9)

a fixed number of times. Here λ is a small fixed con-
stant called the learning rate. Additionally a decay
rate K > 0 is used for regularization, i.e. to penal-
ize the magnitude of the resulting feature v. Clearly
this matrix multiplication formulation (9) is equiva-
lent to a step of the power method applied within
our framework2, and for small enough learning rates λ
the resulting feature vector will converge to the largest
eigenvector of −∇f̂(Z).

However in Funk’s method, the magnitude of each new
feature strongly depends on the starting vector v0, the
number of iterations, the learning rate λ as well as

2Another difference of our method to Simon Funk’s lies
in the stochastic gradient descent type of the later, i.e.
“immediate feedback”: During each matrix multiplication,
it already takes the modified current feature v into account

when calculating the loss f̂(Z), whereas our Algorithm 1
alters Z only after the eigenvector computation is finished.

the decay K, making the convergence very sensitive
to these parameters. This might be one of the rea-
sons that so far no results on the convergence speed
could be obtained. Our method is free of these pa-
rameters, the k-th new feature vector is always a unit
vector scaled by 1√

k
. Also, we keep the Frobenius norm

||U ||2Fro+ ||V ||2Fro of the obtained factorization exactly
fixed during the algorithm, whereas in Funk’s method
— which has a different optimization objective — this
norm strictly increases with every newly added feature.

Our described framework therefore gives a solid the-
oretical foundation for a modified variant of the ex-
perimentally successful method (Webb, 2006) and its
related variants such as (Kurucz et al., 2007; Paterek,
2007; Takács et al., 2009), with proved approximation
quality and running time.

5. Experimental Results

We run our algorithm for the following standard
datasets3 for matrix completion problems, using the
squared error function.

dataset #ratings n m
MovieLens 100k 105 943 1682
MovieLens 1M 106 6040 3706
MovieLens 10M 107 69878 10677
Netflix 108 480189 17770

Any eigenvector method can be used as a black-box
in our algorithm. To keep the experiments simple, we
used the power method4, and performed 0.2 · k power
iterations in step k. If not stated otherwise, the only
optimization we used is the improvement by averaging
the old and new gradient as explained in Section 4.3.
All results were obtained by our (single-thread) imple-
mentation in Java 6 on a 2.4 GHz Intel C2D laptop.

Sensitivity. The generalization performance of our
method is relatively stable under different choices of
the regularization parameter, see Figure 1:

0.89

0.91

0.93

0.95

0 15000 30000 45000 60000
Trace regularization t

RMSE test
k=1000

Figure 1. Sensitivity of the method on the choice of the
regularization parameter t in (2), on MovieLens 1M.

3See www.grouplens.org and archive.ics.uci.edu/ml.
4We used the power method starting with the uniform

unit vector. 1
2

of the approximate eigenvalue corresponding
to the previously obtained feature vk−1 was added to the
matrix diagonal to ensure good convergence.

http://www.grouplens.org
http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
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Movielens. Table 1 reports the running times of our
algorithm on the three MovieLens datasets. Our al-
gorithm gives an about 5.6 fold speed increase over
(Toh & Yun, 2009), which is a very similar method
to (Ji & Ye, 2009). (Toh & Yun, 2009) already im-
proves the “singular value thresholding” methods (Cai
et al., 2008) and (Ma et al., 2009). For MMMF, (Ren-
nie & Srebro, 2005) report an optimization time of
about 5 hours on the 1M dataset, but use the different
smoothed hinge loss function so that the results can-
not be directly compared. (Ma et al., 2009), (Srebro
& Jaakkola, 2003) and (Ji & Ye, 2009) only obtained
results on much smaller datasets.

Table 1. Running times tour (in seconds) of our algorithm
on the three MovieLens datasets compared to the reported
timings tTY of (Toh & Yun, 2009). The ratings {1, . . . , 5}
were used as-is and not normalized to any user and/or
movie means. In accordance with (Toh & Yun, 2009), 50%
of the ratings were used for training, the others were used
as the test set. Here NMAE is the mean absolute error,
times 1

5−1
, over the total set of ratings. k is the num-

ber of iterations of our algorithm, #mm is the total num-
ber of sparse matrix-vector multiplications performed, and
tr is the used trace parameter t in (2). They used Mat-
lab/PROPACK on an Intel Xeon 3.20 GHz processor.

NMAE tTY tour k #mm tr
100k 0.205 7.39 0.156 15 33 9975
1M 0.176 24.5 1.376 35 147 36060
10M 0.164 202 36.10 65 468 281942

In all the following experiments we have pre-
normalized all training ratings to the simple average
µi+µj

2 of the user and movie mean values, for the sake
of being consistent with comparable literature.

For MovieLens 10M, we used partition rb provided with
the dataset (10 test ratings per user). The regulariza-
tion parameter t was set to 48333. We obtained a
RMSEtest of 0.8617 after k = 400 steps, in a total
running time of 52 minutes (16291 matrix multiplica-
tions). Our best RMSEtest value was 0.8573, compared
to 0.8543 obtained by (Lawrence & Urtasun, 2009) us-
ing their non-linear improvement of MMMF.

Algorithm Variants. Comparing the proposed al-
gorithm variants from Section 4.3, Figure 2 demon-
strates moderate improvements compared to our orig-
inal Algorithm 2.

Netflix. Table 2 shows an about 13 fold speed in-
crease of our method over the “Hard Impute” singu-
lar value thresholding algorithm of (Mazumder et al.,
2009) on the Netflix dataset, where they used Mat-
lab/PROPACK on an Intel Xeon 3 GHz processor.

0.63

0.708

0.785

0.863

0.94

0 100 200 300 400
k

RMSE

MovieLens 10M rb

1/k, test

best on line segm., test

gradient interp., test

1/k, train

best on line segm., train

gradient interp., train

Figure 2. Improvements for the two algorithm variants de-
scribed in Section 4.3, when running on MovieLens 10M.

Table 2. Running times tour (in hours) of our algorithm on
the Netflix dataset compared to the reported timings tM of
(Mazumder et al., 2009).

RMSEtest tM tour k #mm tr
0.986 3.3 0.144 20 50 99592
0.977 5.8 0.306 30 109 ”
0.965 6.6 0.504 40 185 ”
0.9478 n.a. 13.6 200 4165 ”

Note that the primary goal of this experimental sec-
tion is not to compete with the prediction quality of
the best engineered recommender systems (which are
usually ensemble methods). We just demonstrate that
our method solves nuclear norm regularized problems
of the form (2) on large sample datasets, obtaining
strong performance improvements.

6. Conclusion

We have introduced a new method to solve arbitrary
convex problems with a nuclear norm regularization,
which is simple to implement and parallelize and scales
very well. The method is parameter-free and comes
with a convergence guarantee. This is, to our knowl-
edge, the first guaranteed convergence speed result for
the class of Simon-Funk-type algorithms.

Further interesting questions include whether a simi-
lar algorithm could be used if a strict low-rank con-
straint as in (4), (5) is simultaneously applied. This
corresponds to fixing the sparsity of a solution in the
coreset setting. Also, it remains to investigate if our
algorithm can be applied to other matrix factorization
problems such as (potentially only partially observed)
kernel matrices as e.g. PSVM (Chang et al., 2007),
PCA or [p]LSA, because our method could exploit the
even simpler form of ∇f for symmetric matrices.
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