
Estimation of (near) low-rank matrices with noise and

high-dimensional scaling

Sahand Negahban sahand n@eecs.berkeley.edu

Department of EECS, University of California, Berkeley, CA 94720, USA

Martin J. Wainwright wainwrig@eecs.berkeley.edu

Department of Statistics, EECS, University of California, Berkeley, CA 94720, USA

Abstract

We study an instance of high-dimensional
statistical inference in which the goal is to
use N noisy observations to estimate a ma-
trix Θ∗ ∈ R

k×p that is assumed to be ei-
ther exactly low rank, or “near” low-rank,
meaning that it can be well-approximated
by a matrix with low rank. We consider an
M -estimator based on regularization by the
trace or nuclear norm over matrices, and ana-
lyze its performance under high-dimensional
scaling. We provide non-asymptotic bounds
on the Frobenius norm error that hold for a
general class of noisy observation models, and
apply to both exactly low-rank and approxi-
mately low-rank matrices. We then illustrate
their consequences for a number of specific
learning models, including low-rank multi-
variate or multi-task regression, system iden-
tification in vector autoregressive processes,
and recovery of low-rank matrices from ran-
dom projections. Simulations show excellent
agreement with the high-dimensional scaling
of the error predicted by our theory.

1. Introduction

High-dimensional inference refers to instances of sta-
tistical estimation in which the ambient dimension of
the data is comparable to (or possibly larger than) the
sample size. Problems with a high-dimensional charac-
ter arise in a variety of applications in science and en-
gineering, including analysis of gene array data, med-
ical imaging, remote sensing, and astronomical data
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analysis. In settings where the number of parameters
may be large relative to the sample size, the utility of
classical “fixed p” results is questionable, and accord-
ingly, a line of on-going statistical research seeks to
obtain results that hold under high-dimensional scal-
ing, meaning that both the problem size and sam-
ple size (as well as other problem parameters) may
tend to infinity simultaneously. It is usually impos-
sible to obtain consistent procedures in such settings
without imposing some sort of additional constraints.
Accordingly, there are now various lines of work on
high-dimensional inference based on imposing differ-
ent types of structural constraints. A substantial body
of past work has focused on models with sparsity con-
straints (e.g., (1; 2; 3)). A theme common to much
of this work is the use of ℓ1-penalty as a surrogate
function to enforce the sparsity constraint.

In this paper, we focus on the problem of high-
dimensional inference in the setting of matrix estima-
tion. In contrast to past work, our interest in this pa-
per is the problem of estimating a matrix Θ∗ ∈ R

k×p

that is either exactly low rank, meaning that it has at
most r ≪ min{k, p} non-zero singular values, or more
generally is near low-rank, meaning that it can be well-
approximated by a matrix of low rank. As we discuss
at more length in the sequel, such exact or approxi-
mate low-rank conditions are appropriate for many ap-
plications, including multivariate or multi-task forms
of regression, system identification for autoregressive
processes, collaborative filtering, and matrix recovery
from random projections. Analogous to the use of an
ℓ1-regularizer for enforcing sparsity, we consider the
use of the nuclear norm (also known as the trace norm)
for enforcing a rank constraint in the matrix setting.
By definition, the nuclear norm is the sum of the sin-
gular values of a matrix, and so encourages sparsity
in the vector of singular values, or equivalently for the
matrix to be low-rank. The problem of low-rank ap-
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proximation has been studied by various researchers in
optimization and machine learning (e.g., (4; 5; 6; 7; 8)),
with the nuclear norm relaxation studied for (among
other problems) noiseless random projections (9), as
well as for matrix completion problems (10; 11). In
addition, Bach (7) has provided some consistency re-
sults for nuclear norm regularization in the classical
(fixed “p”) setting, but not in the high-dimensional
setting considered here.

The goal of this paper is to analyze the nuclear norm
relaxation for a general class of noisy observation mod-
els, and obtain non-asymptotic error bounds on the
Frobenius norm that hold under high-dimensional scal-
ing, and are applicable to both exactly and approxi-
mately low-rank matrices. We begin by presenting a
generic observation model, and illustrating how it can
be specialized to several cases of interest, including
low-rank multivariate regression, estimation of autore-
gressive processes, and random projection (compressed
sensing) observations. Our theoretical results on these
models are obtained by leveraging the ideas from our
own past work (12) on M -estimators with decompos-
able regularizers, where it is shown that error rates can
be obtained by bounding the restricted strong convex-
ity (RSC) parameter and specifying a suitable choice of
the regularization parameter. Establishing bounds on
these parameters for specific models can involve some
non-trivial analysis, and in this paper, we use random
matrix theory to provide the requisite control.

Notation: For the convenience of the reader, we col-
lect standard pieces of notation here. For a pair of ma-
trices Θ and Γ with commensurate dimensions, we let
〈〈Θ, Γ〉〉 = trace(ΘTΓ) denote the trace inner product
on matrix space. For a matrix Θ ∈ R

k×p, we let m =
min{k, p}, and denote its (ordered) singular values by
σ1(Θ) ≥ σ2(Θ) ≥ . . . ≥ σm(Θ) ≥ 0. We also use the
notation σmax(Θ) = σ1(Θ) and σmin(Θ) = σm(Θ) to
refer to the maximal and minimal singular values re-
spectively. We use the notation ||| · ||| for various types
of matrix norms based on these singular values, includ-
ing the nuclear norm |||Θ|||1 =

∑m
j=1 σj(Θ), the spectral

or operator norm |||Θ|||op = σ1(Θ), and the Frobenius

norm |||Θ|||F =
√
trace(ΘTΘ) =

√∑m
j=1 σ

2
j (Θ). We

refer the reader to Horn and Johnson (13) for more
background on these matrix norms and their proper-
ties.

2. Background and problem set-up

We begin with some background on problems and ap-
plications in which rank constraints arise, before de-
scribing a generic observation model. We then intro-

duce the semidefinite program (SDP) based on nuclear
norm regularization that we study in this paper.

2.1. Models with rank constraints

Imposing a rank r constraint on a matrix Θ∗ ∈ R
k×p

is equivalent to requiring that the rows (or columns) of
Θ∗ lie in some r-dimensional subspace of Rp (or Rk re-
spectively). Such types of rank constraints (or approx-
imate forms thereof) arise in a variety of applications,
as we discuss here. In some sense, rank constraints are
a generalization of sparsity constraints; rather than as-
suming that the data is sparse in a known basis, a rank
constraint implicitly imposes sparsity but without as-
suming the basis.

We first consider the problem of multivariate regres-
sion, also referred to as multi-task learning in statisti-
cal machine learning. The goal of multivariate regres-
sion is to estimate a prediction function that maps
covariates Zj ∈ R

p to multi-dimensional output vec-
tors Yj ∈ R

k. More specifically, let us consider the
linear model, specified by a matrix Θ∗ ∈ R

k×p, of the
form

Ya = Θ∗Za +Wa, for a = 1, . . . , n, (1)

where {Wa}na=1 is an i.i.d. sequence of k-dimensional
zero-mean noise vectors. Given a collection of obser-
vations {Za, Ya}na=1 of covariate-output pairs, our goal
is to estimate the unknown matrix Θ∗. This type of
model has been used in many applications, including
analysis of fMRI image data, neural response model-
ing, and analysis of financial data. This model and
closely related ones also arise in the problem of col-
laborative filtering (5), in which the goal is to predict
users’ preferences for items (such as movies or mu-
sic) based on their and other users’ ratings of related
items.

As a second (not unrelated) example, we consider the
problem of system identification in vector autoregres-
sive processes (see the book (14) for a detailed back-
ground). A vector autoregressive (VAR) process in
p-dimensions is a stochastic process {Zt}∞t=1 specified
by an initialization Z1 ∈ R

p, followed by the recursion

Zt+1 = Θ∗Zt +Wt, for t = 1, 2, 3, . . .. (2)

In this recursion, the sequence {Wt}∞t=1 consists of
i.i.d. samples of innovations noise. We assume that
each vector Wt ∈ R

p is zero-mean with covariance
ν2I, so that the process {Zt}∞t=1 is zero-mean, and
has a covariance matrix Σ given by the solution of the
discrete-time Ricatti equation

Σ = Θ∗Σ(Θ∗)T + ν2I. (3)
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The goal of system identification in a VAR process
is to estimate the unknown matrix Θ∗ ∈ R

p×p on the
basis of a sequence of samples {Zt}nt=1. In many appli-
cation domains, it is natural to expect that the system
is controlled primarily by a low-dimensional subset of
variables. For instance, models of financial data might
have an ambient dimension p of thousands (including
stocks, bonds, and other financial instruments), but
the behavior of the market might be governed by a
much smaller set of macro-variables (combinations of
these financial instruments). Similar statements ap-
ply to other types of time series data, including neural
data, subspace tracking models in signal processing,
and motion models in computer vision.

A third example that we consider in this paper is a
compressed sensing observation model, in which one
observes random projections of the unknown matrix
Θ∗. This observation model has been studied exten-
sively in the context of estimating sparse vectors (2; 3),
and Recht et al. (9) suggested and studied its exten-
sion to low-rank matrices. In their set-up, one ob-
serves trace inner products of the form 〈〈Xi, Θ∗〉〉 =
trace(XT

i Θ
∗), where Xi ∈ R

k×p is a random matrix
(for instance, filled with standard normal N(0, 1) en-
tries). Like compressed sensing for sparse vectors, ap-
plications of this model include computationally effi-
cient updating in large databases (where the matrix
Θ∗ measures the difference between the database at
two different time instants), and matrix denoising.

A fourth example that can also be treated within our
framework is the matrix completion model, in which
each observation matrix takes the form Xi = ea(i)e

T
b(i),

so that Xi is non-zero except at a randomly chosen
pair (a(i), b(i)) of row/column indices. This problem
has been studied by several authors in recent work
(e.g., (5; 10; 8; 11)).

2.2. A generic observation model

We now introduce a generic observation model that
will allow us to deal with these different observation
models in an unified manner. For pairs of matrices
A,B ∈ R

k×p, recall the Frobenius or trace inner prod-
uct 〈〈A, B〉〉 := trace(BAT ). We then consider a linear
observation model of the form

yi = 〈〈Xi, Θ
∗〉〉+ εi, for i = 1, 2, . . . , N , (4)

which is specified by the sequence of observation matri-
ces {Xi}Ni=1 and observation noise {εi}Ni=1. This obser-
vation model can be written in a more compact manner
using operator-theoretic notation. In particular, let us
define the observation vector

~y =
[
y1 . . . yN

]T ∈ R
N ,

with a similar definition for ~ε ∈ R
N in terms of

{εi}Ni=1. We then use the observation matrices {Xi}Ni=1

to define an operator X : Rk×p → R
N via

[
X(Θ)

]
i
=

〈〈Xi, Θ〉〉. With this notation, the observation
model (4) can be re-written as

~y = X(Θ∗) + ~ε. (5)

2.3. Regression with nuclear norm

regularization

We now consider an estimator that is naturally suited
to the problems described in the previous section.
Recall that the nuclear or trace norm of a matrix
Θ ∈ R

k×p is given by |||Θ|||1 =
∑min{k,p}

j=1 σj(Θ), cor-
responding to the sum of its singular values. Given
a collection of observations (yi, Xi) ∈ R × R

k×p, for
i = 1, . . . , N from the observation model (4), we con-
sider estimating the unknown Θ∗ by solving the fol-
lowing optimization problem

Θ̂ ∈ arg min
Θ∈Rk×p

{ 1

2N
‖~y − X(Θ)‖22 + λN |||Θ|||1

}
, (6)

where λN > 0 is a regularization parameter. Note
that the optimization problem (6) can be viewed as
the analog of the Lasso estimator, tailored to low-rank
matrices as opposed to sparse vectors. An important
property of the optimization problem (6) is that it can
be solved in time polynomial in the sample size N
and the matrix dimensions k and p. Indeed, the opti-
mization problem (6) is an instance of a semidefinite
program, a class of convex optimization problems that
can be solved efficiently by various polynomial-time
algorithms. For instance, when the problem parame-
ters are small, interior point methods are a classical
method that can be employed for solving the semidef-
inite programs. However, as we discuss in Section 4,
there are a variety of other methods tailored to solving
our specific M -estimation procedure that lend them-
selves to solving larger-scale problems.

Like in any typical M -estimator for statistical infer-
ence, the regularization parameter λN is specified by
the statistician. As part of the theoretical results in
the next section, we provide suitable choices of this
parameter that guarantee that the estimate Θ̂ is close
in Frobenius norm to the unknown matrix Θ∗.

3. Main results and some consequences

In this section, we state our main results and discuss
some of their consequences. Section 3.1 is devoted
to results that apply to generic instances of low-rank
problems, whereas Section 3.2 is devoted to the con-
sequences of these results for more specific problem
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classes, including low-rank multivariate regression, es-
timation of vector autoregressive processes, and recov-
ery of low-rank matrices from random projections.

3.1. Results for general model classes

We begin by introducing the key technical condition
that allows us to control the error Θ̂−Θ∗ between an
SDP solution Θ̂ and the unknown matrix Θ∗. We refer
to it as the restricted strong convexity condition (12),
since it amounts to guaranteeing that the quadratic
loss function in the SDP (6) is strictly convex over a
restricted set of directions. Letting C ⊆ R

k×p denote
the restricted set of directions, we say that the opera-
tor X satisfies restricted strong convexity (RSC) over
the set C if there exists some κ(X) > 0 such that

1

2N
‖X(∆)‖22 ≥ κ(X) |||∆|||2F for all ∆ ∈ C. (7)

We note that analogous conditions have been used to
establish error bounds in the context of sparse linear
regression (1), in which case the set C corresponded
to certain subsets of sparse vectors. Of course, the
definition (7) hinges on the choice of the restricted
set C. In order to define the set, we require some
additional notation. For any matrix Θ ∈ R

k×p, we
let row(Θ) ⊆ R

p and col(Θ) ⊆ R
k denote its row

space and column space, respectively. For a given posi-
tive integer r ≤ min{k, p}, any r-dimensional subspace
of Rk can be represented by some orthogonal matrix
U ∈ R

k×r (i.e., that satisfies UTU = Ir×r. In a simi-
lar fashion, any r-dimensional subspace of Rp can be
represented by an orthogonal matrix V ∈ R

p×r. For
any fixed pair of such matrices (U, V ), we may define
M(U, V ) as the set of Θ such that row(Θ) ⊂ V and
col(Θ) ⊂ U and M⊥(U, V ) as the set of Θ such that
row(Θ) ⊥ V and col(Θ) ⊥ V . Finally, we let ΠM(U,V )

and ΠM⊥(U,V ) denote the (respective) projection op-
erators onto these subspaces. When the subspaces
(U, V ) are clear from context, we use the shorthand
notation ∆′′ = ΠM⊥(U,V )(∆) and ∆′ = ∆ − ∆′′. Fi-
nally, for any positive integer r ≤ min{k, p}, we let
(U r, V r) denote the subspace pair defined by the top
r left and right singular vectors of Θ∗. For a given
integer r and tolerance δ > 0, we then define a subset
of matrices as follows:

C(r; δ) : =
{
∆ ∈ R

k×p | |||∆|||F ≥ δ,

|||∆′′|||1 ≤ 3|||∆′|||1 + 4|||ΠM⊥(Ur ,V r)(Θ
∗)|||1

}
. (8)

The next ingredient is the choice of the regulariza-
tion parameter λN used in solving the SDP (6). Our

theory specifies a choice for this quantity in terms of
the adjoint of the operator X—namely, the operator
X

∗ : RN → R
k×p defined by

X
∗(~ε) : =

N∑

i=1

εiXi. (9)

With this notation, we now state a deterministic
result, analogous to the main result in our past
work (12), which specifies two conditions—namely, an
RSC condition and a choice of the regularizer—that
suffice to guarantee that any solution of the SDP (6)
fall within a certain radius.

Theorem 1. Suppose that the operator X satisfies re-
stricted strong convexity with parameter κ(X) > 0 over
the set C(r; δ), and that the regularization parameter
λN is chosen such that λN ≥ 2|||X∗(~ε)|||op/N . Then any

solution Θ̂ to the semidefinite program (6) satisfies

|||Θ̂ −Θ∗|||F ≤ max

{
δ,

32λN
√
r

κ(X)
,

[
16 λN |||ΠM⊥(Ur ,V r)(Θ

∗)|||1
κ(X)

]1/2}
. (10)

Apart from the tolerance parameter δ, the two main
terms in the bound (10) have a natural interpretation.
The first term (involving

√
r) corresponds to estima-

tion error, capturing the difficulty of estimating a
rank r matrix. The second is an approximation error,
in which the projection onto the set M⊥(U r, V r)
describes the gap between the true matrix Θ∗ and the
rank r approximation.

Let us begin by illustrating the consequences of The-
orem 1 when the true matrix Θ∗ has exactly rank r,
in which case there is a very natural choice of the sub-
spaces represented by U and V . In particular, we form
U from the r non-zero left singular vectors of Θ∗, and
V from its r non-zero right singular vectors. Note that
this choice of (U, V ) ensures that ΠM⊥(U,V )(Θ

∗) = 0.
For technical reasons, it suffices to set δ = 0 in the
case of exact rank constraints, and we thus obtain the
following result:

Corollary 1 (Exact low-rank recovery). Suppose that
Θ∗ has rank r, and X satisfies RSC with respect to
C(r; 0). Then as long as λN ≥ 2|||X∗(~ε)|||op/N , any op-

timal solution Θ̂ to the SDP (6) satisfies the bound

|||Θ̂ −Θ∗|||F ≤ 32
√
r λN

κ(X)
. (11)

Like Theorem 1, Corollary 1 is a deterministic
statement on the SDP error. It takes a much simpler
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form since when Θ∗ is exactly low rank, then neither
tolerance parameter δ nor the approximation term
are required.

As a more delicate example, suppose instead that Θ∗

is nearly low-rank, an assumption that we can for-
malize by requiring that its singular value sequence

{σi(Θ
∗)}min{k,p}

i=1 decays quickly enough. In particu-
lar, for a parameter q ∈ [0, 1] and a positive radius Rq,
we define the set

Bq(Rq) :=
{
Θ ∈ R

k×p |
min{k,p}∑

i=1

|σi(Θ)|q ≤ Rq

}
.

Note that when q = 0, the set B0(R0) corresponds to
the set of matrices with rank at most R0.

Corollary 2 (Near low-rank recovery). Suppose that
Θ∗ ∈ Bq(Rq), the regularization parameter is lower
bounded as λN ≥ 2|||X∗(~ε)|||op/N , and the operator X

satisfies RSC with parameter κ(X) ∈ (0, 1] over the

set C(Rqλ
−q
N ; δ). Then any solution Θ̂ to the SDP (6)

satisfies

|||Θ̂−Θ∗|||F ≤ max
{
δ, 32

√
Rq

(
λN

κ(X)

)1−q/2}
. (12)

Note that the error bound (12) reduces to the exact
low rank case (11) when q = 0, and δ = 0. The quan-
tity λ−q

N Rq acts as the “effective rank” in this setting.
This particular choice is designed to provide an opti-
mal trade-off between the approximation and estima-
tion error terms in Theorem 1. Since λN is chosen to
decay to zero as the sample size N increases, this ef-
fective rank will increase, reflecting the fact that as we
obtain more samples, we can afford to estimate more
of the smaller singular values of the matrix Θ∗.

3.2. Results for specific model classes

As stated, Corollaries 1 and 2 are fairly abstract in
nature. More importantly, it is not immediately clear
how the key underlying assumption—namely, the RSC
condition—can be verified, since it is specified via sub-
spaces that depend on Θ∗, which is itself the unknown
quantity that we are trying to estimate. Nonetheless,
we now show how, when specialized to more concrete
models, these results yield concrete and readily inter-
pretable results. Each corollary requires overcoming
two main technical obstacles: establishing that the ap-
propriate form of the RSC property holds in a uniform
sense (so that a priori knowledge of Θ∗ is not required),
and specifying an appropriate choice of the regulariza-
tion parameter λN . Each of these two steps is non-
trivial, requiring some random matrix theory, but the

end results are simply stated upper bounds that hold
with high probability.

We begin with the case of rank-constrained multivari-
ate regression. Recall that we observe pairs (Yi, Zi) ∈
R

k × R
p linked by the linear model Yi = Θ∗Zi +Wi,

where Wi ∼ N(0, ν2Ik×k) is observation noise. Here
we treat the case of random design regression, mean-
ing that the covariates Zi are modeled as random.
In particular, in the following result, we assume that
Zi ∼ N(0,Σ), i.i.d. for some p-dimensional covariance
matrix Σ ≻ 0. Recalling that σmax(Σ) and σmin(Σ) de-
note the maximum and minimum eigenvalues respec-
tively, we have:

Corollary 3 (Low-rank multivariate regression).
Consider the random design multivariate regression
model where Θ∗ ∈ Bq(Rq). There are univer-
sal constants {ci, i = 1, 2, 3} such that if we solve
the SDP (6) with regularization parameter λN =

10ν
√
σmax(Σ)

√
(k+p)

n , we have

|||Θ̂ −Θ∗|||2F ≤ c1

(
ν2σmax(Σ)

σ2
min(Σ)

)1−q/2

Rq

(
k + p

n

)1−q/2

(13)

with probability greater than 1− c2 exp(−c3(k + p)).

Remarks: Corollary 3 takes a particularly simple
form when Σ = Ip×p: then there exists a constant

c′1 such that |||Θ̂ − Θ∗|||2F ≤ c′1ν
2−2/q Rq

(
k+p
n

)1−q/2
.

When Θ∗ is exactly low rank—that is, q = 0, and Θ∗

has rank r = R0—this simplifies even further to

|||Θ̂ −Θ∗|||2F ≤ c′1
ν2 r (k + p)

n
.

The scaling in this error bound is easily interpretable:
naturally, the squared error is proportional to the
noise variance ν2, and the quantity r(k + p) counts
the number of degrees of freedom of a k × p matrix
with rank r. Note that if we did not impose any
constraints on Θ∗, then since a k × p matrix has a
total of kp free parameters, we would expect at best

to obtain rates of the order |||Θ̂ − Θ∗|||2F = Ω(ν
2 k p
n ).

Note that when Θ∗ is low rank—in particular, when
r ≪ min{k, p}—then the nuclear norm estimator
achieves substantially faster rates. Finally, we note
that as stated, the result requires that min{k, p} tend
to infinity in order for the claim to hold with high
probability. Although such high-dimensional scaling
is the primary focus of this paper, we note that for
application to the classical setting of fixed (k, p), the
same statement (with different constants) holds with
k + p replaced by logn.
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Next we turn to the case of estimating the system ma-
trix Θ∗ of an autoregressive (AR) model.

Corollary 4 (Autoregressive models). Suppose that
we are given n samples {Zt}nt=1 from a p-dimensional
autoregressive process (2) that is stationary, based on
a system matrix that is stable (|||Θ∗|||op ≤ γ < 1), and
approximately low-rank (Θ∗ ∈ Bq(Rq)). Then there
are universal constants {ci, i = 1, 2, 3} such that if we
solve the SDP (6) with regularization parameter λN =
80 |||Σ|||op

1−γ

√
p
n , then any solution Θ̂ satisfies

|||Θ̂−Θ∗|||2F ≤ c1

[
σmax(Σ)

σmin(Σ) (1 − γ)

]2−q

Rq

( p
n

)1−q/2

(14)

with probability greater than 1− c2 exp(−c3p).

Remarks: Like Corollary 3, the result as stated
requires that p tend to infinity, but the same bounds
hold with p replaced by logn, yielding results suitable
for classical (fixed dimension) scaling. Second, the
factor (p/n)1−q/2, like the analogous term1 in Corol-
lary 3, shows that faster rates are obtained if Θ∗ can
be well-approximated by a low rank matrix, namely
for choices of the parameter q ∈ [0, 1] that are closer
to zero. Indeed, in the limit q = 0, we again reduce
to the case of an exact rank constraint r = R0, and
the corresponding squared error scales as rp/n. In
contrast to the case of multivariate regression, the
error bound (14) also depends on the upper bound
|||Θ∗|||op = γ < 1 on the operator norm of the system
matrix Θ∗. Such dependence is to be expected since
the quantity γ controls the (in)stability and mixing
rate of the autoregressive process. The dependence
of the sampling in the AR model introduces some
technical challenges not present in the setting of
multivariate regression.

Finally, we turn to the analysis of the compressed sens-
ing model for matrix recovery. The following result
applies to the setting in which the observation ma-
trices {Xi}Ni=1 are drawn i.i.d., with standard N(0, 1)
elements. We assume that the observation noise vec-
tor ~ε ∈ R

N satisfies the bound ‖~ε‖2 ≤ 2ν
√
N for

some constant ν, an assumption that holds for any
bounded noise, and also holds with high probability
for any random noise vector with sub-Gaussian entries
with parameter ν (one example being Gaussian noise
N(0, ν2)).

Corollary 5 (Compressed sensing recovery). Suppose
that Θ∗ ∈ Bq(Rq), and that the sample size is lower

1The term in Corollary 3 has a factor k + p, since the
matrix in that case could be non-square in general.

bounded as N > 4max(k, p) (100Rq)
2/(2−q). Then any

solution Θ̂ to the SDP (6) satisfies the bound

|||Θ̂ −Θ∗|||2F ≤ 256 ν2−q Rq

[√ k

N
+

√
p

N

]2−q

(15)

with probability greater than 1− c1 exp(−c2(k + p)).

The central challenge in proving this result is in prov-
ing an appropriate form of the RSC property. The
following result on the random operator X may be of
independent interest here:

Proposition 1. Under the stated conditions, the ran-
dom operator X satisfies

‖X(Θ)‖2√
N

≥ 1

4
|||Θ|||F −

(√
k

N
+

√
p

N

)
|||Θ|||1

for all Θ ∈ R
k×p (16)

with probability at least 1− 2 exp(−N/32).

Proposition 1 also implies an interesting property of
the null space of the operator X; one that can be used
to establish a corollary about recovery of low-rank ma-
trices when the observations are noiseless. In partic-
ular, suppose that we are given the noiseless observa-
tions yi = 〈〈Xi, Θ

∗〉〉 for i = 1, . . . , N , and that we try
to recover the unknown matrix Θ∗ by solving the SDP

min
Θ∈Rk⋉p

|||Θ|||1 s.t. 〈〈Xi, Θ〉〉 = yi ∀i = 1, . . . , N ,

(17)
a recovery procedure that was studied by Recht et
al. (9). Proposition 1 allows us to obtain a sharp
result on recovery using this method:

Corollary 6. Suppose that Θ∗ has rank r, and that
we are given N > 402r(k + p) noiseless samples.
Then with probability at least 1 − 2 exp(−N/32), the
SDP (17) recovers the matrix Θ∗ exactly.

This result removes some extra logarithmic factors
that were included in the earlier work (9), and provides
the appropriate analog to compressed sensing results
for sparse vectors (2). Note that (like in most of our
results) we have made little effort to obtain good con-
stants in this result: the important property is that
the sample size N scales linearly in both r and k + p.

4. Experimental results

In this section, we report the results of various simu-
lations that demonstrate the close agreement between
the scaling predicted by our theory, and the actual
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Figure 1. Results of applying the SDP (6) to the problem of low-rank multivariate regression. (a) Plots of the Frobenius

error |||Θ̂−Θ∗|||F on a logarithmic scale versus the sample size N for three different matrix sizes p ∈ {40, 80, 160}, all with
rank r = 10. (b) Plots of the same Frobenius error versus the rescaled sample size N/(rp). Consistent with theory, all
three plots are now extremely well-aligned.

behavior of the SDP-based M -estimator (6) in prac-
tice. In all cases, we solved the convex program (6)
by using our own implementation in MATLAB of an
accelerated gradient descent method which adapts a
non-smooth convex optimization procedure (15) to the
nuclear-norm (16). We chose the regularization pa-
rameter λN in the manner suggested by our theoretical
results; in doing so, we assumed knowledge of quan-
tities such as the noise variance ν2. (In practice, one
would have to estimate such quantities from the data
using standard methods.)

We report simulation results for problems of low-
rank multivariate regression, estimation in vector au-
toregressive processes, and matrix recovery from ran-
dom projections (compressed sensing). In each case,
we solved instances of the SDP for a square matrix
Θ∗ ∈ R

p×p, where p ∈ {40, 80, 160} for the first two ex-
amples, and p ∈ {20, 40, 80} for the compressed sens-
ing example. In all cases, we considered the setting of
exact low rank constraints, with rank(Θ∗) = r = 10,
and we generated Θ∗ by choosing the subspaces of its
left and right singular vectors uniformly at random
from the Grassman manifold. The observation or in-
novations noise had variance ν2 = 1 in each case. The
VAR process was generated by first solving for the co-
variance matrix Σ using the MATLAB function dylap
and then generating a sample path. For each setting
of (r, p), we solved the SDP for various sample sizes
N .

Figure 1 shows results for a multivariate regression
model with the covariates chosen randomly from a
N(0, I) distribution. Naturally, in each case, the er-

ror decays to zero as N increases, but larger matrices
require larger sample sizes, as reflected by the right-
ward shift of the curves as p is increased. We note that
panel (b) shows the exact same set of simulation re-
sults, but now with the Frobenius error plotted versus
the rescaled sample size Ñ : = N/(rp). As predicted
by Corollary 3, the error plots now are all aligned with
one another; the degree of alignment in this particular
case is so close that the three plots are now indistin-
guishable. (The blue curve is the only one visible since
it was plotted last by our routine.) Consequently, the
figures show that N/(rp) acts as the effective sample
size in this high-dimensional setting.

Figure 2 shows similar results for the autoregressive
model. The figure plots the Frobenius error versus the
rescaled sample size N/(rp); as predicted by Corol-
lary 4, the errors for different matrix sizes p are again
quite well-aligned. In this case, we find (both in our
theoretical analysis and experimental results) that the
dependence in the autoregressive process slows down
the rate at which the concentration occurs, so that the
results are not as crisp as the low-rank multivariate
setting in Figure 1.

Finally, Figure 3 presents the same set of results for the
compressed sensing observation model discussed. Even
though the observation matrices Xi here are qualita-
tively different (in comparison to the multivariate re-
gression and autoregressive examples), we again see
the “stacking” phenomenon of the curves when plot-
ted versus the rescaled sample size N/rp, as predicted
by Corollary 5.
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Figure 2. Results of applying the SDP (6) to estimating the
system matrix of a vector autoregressive process. Plot of
the Frobenius error versus the rescaled sample size N/(rp).
Consistent with theory, all three plots are now reasonably
well-aligned.

5. Discussion

In this paper, we provided a detailed analysis of the
nuclear norm relaxation for a general class of noisy
observation models, and obtained non-asymptotic er-
ror bounds on the Frobenius norm valid under high-
dimensional scaling. Our results are applicable to both
exactly and approximately low-rank matrices. Ex-
ploiting a deterministic result that leverages our past
work (12), we showed concrete and easily interpretable
rates for various specific models, including low-rank
multivariate regression, estimation of autoregressive
processes, and matrix recovery from random projec-
tions. It is worth noting that our theory can also be
applied to noisy matrix completion, yielding analogous
rates to those reported here. Lastly, our simulation re-
sults showed very close agreement with the predictions
from our theory.
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